WIP: Refactoring of PrintRegions. It nearly compiles!

This commit is contained in:
Vojtech Bubnik 2021-05-21 17:57:37 +02:00
parent 68b0d92183
commit 740773db85
8 changed files with 479 additions and 1206 deletions

View File

@ -10,6 +10,9 @@
namespace Slic3r {
class Layer;
using LayerPtrs = std::vector<Layer*>;
class LayerRegion;
using LayerRegionPtrs = std::vector<LayerRegion*>;
class PrintRegion;
class PrintObject;
@ -93,9 +96,6 @@ private:
const PrintRegion *m_region;
};
typedef std::vector<LayerRegion*> LayerRegionPtrs;
class Layer
{
public:
@ -162,6 +162,8 @@ public:
protected:
friend class PrintObject;
friend std::vector<Layer*> new_layers(PrintObject*, const std::vector<coordf_t>&);
friend std::string fix_slicing_errors(LayerPtrs&, const std::function<void()>&);
Layer(size_t id, PrintObject *object, coordf_t height, coordf_t print_z, coordf_t slice_z) :
upper_layer(nullptr), lower_layer(nullptr), slicing_errors(false),

View File

@ -827,7 +827,7 @@ inline void model_volumes_sort_by_id(ModelVolumePtrs &model_volumes)
inline const ModelVolume* model_volume_find_by_id(const ModelVolumePtrs &model_volumes, const ObjectID id)
{
auto it = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [id](const ModelVolume *mv) { return mv->id() < id; });
return it != model_volume.end() && (*it)->id() == id ? *it : nullptr;
return it != model_volumes.end() && (*it)->id() == id ? *it : nullptr;
}
enum ModelInstanceEPrintVolumeState : unsigned char

View File

@ -21,11 +21,11 @@
namespace Slic3r {
class Print;
class PrintObject;
class ModelObject;
class GCode;
class Layer;
class ModelObject;
class Print;
class PrintObject;
class SupportLayer;
namespace FillAdaptive {
@ -95,6 +95,10 @@ public:
{ m_config.apply_only(other, keys, ignore_nonexistent); m_config_hash = m_config.hash(); }
private:
friend Print;
friend void print_region_ref_inc(PrintRegion&);
friend void print_region_ref_reset(PrintRegion&);
friend int print_region_ref_cnt(const PrintRegion&);
PrintRegionConfig m_config;
size_t m_config_hash;
int m_print_region_id { -1 };
@ -162,7 +166,7 @@ public:
// clipped by a layer range modifier.
struct VolumeExtents {
ObjectID volume_id;
BoundingBoxf bbox;
BoundingBoxf3 bbox;
};
struct VolumeRegion
@ -174,7 +178,7 @@ public:
// Pointer to PrintObjectRegions::all_regions, null for a negative volume.
PrintRegion *region { nullptr };
// Pointer to VolumeExtents::bbox.
const BoundingBoxf *bbox { nullptr };
const BoundingBoxf3 *bbox { nullptr };
// To speed up merging of same regions.
const VolumeRegion *prev_same_region { nullptr };
};
@ -187,7 +191,7 @@ public:
int parent { -1 };
// Pointer to PrintObjectRegions::all_regions.
PrintRegion *region { nullptr };
}
};
// One slice over the PrintObject (possibly the whole PrintObject) and a list of ModelVolumes and their bounding boxes
// possibly clipped by the layer_height_range.
@ -200,29 +204,35 @@ public:
// Volumes sorted by ModelVolume::id().
std::vector<VolumeExtents> volumes;
bool has_volume(const ObjectID id) {
auto it = lower_bound_by_predicate(this->volumes.begin(), this->volumes.end(), [id](const VolumeExtents &v){ return v.volume_id == id; });
// Sorted in the order of their source ModelVolumes, thus reflecting the order of region clipping, modifier overrides etc.
std::vector<VolumeRegion> volume_regions;
std::vector<PaintedRegion> painted_regions;
bool has_volume(const ObjectID id) const {
auto it = lower_bound_by_predicate(this->volumes.begin(), this->volumes.end(), [id](const VolumeExtents& v) { return v.volume_id == id; });
return it != this->volumes.end() && it->volume_id == id;
}
// Sorted in the order of their source ModelVolumes, thus reflecting the order of region clipping, modifier overrides etc.
std::vector<VolumeRegion> volume_regions;
std::vector<PaintedRegion> painted_regions;
};
std::vector<std::unique_ptr<PrintRegion>> all_regions;
std::vector<LayerRangeRegions> layer_ranges;
// Transformation of this ModelObject into one of the associated PrintObjects (all PrintObjects derived from a single modelObject differ by a Z rotation only).
// This transformation is used to calculate VolumeExtents.
Matrix3x3f trafo_bboxes;
Transform3d trafo_bboxes;
std::vector<ObjectID> cached_volume_ids;
size_t ref_cnt_inc() { ++ this->ref_cnt; }
size_t ref_cnt_dec() { if (-- this->ref_cnt == 0) delete *this; }
size_t ref_cnt_inc() { ++ m_ref_cnt; }
size_t ref_cnt_dec() { if (-- m_ref_cnt == 0) delete this; }
void clear() {
all_regions.clear();
layer_ranges.clear();
}
private:
friend class PrintObject;
// Number of PrintObjects generated from the same ModelObject and sharing the regions.
// ref_cnt could only be modified by the main thread, thus it does not need to be atomic.
size_t m_ref_cnt;
size_t m_ref_cnt{ 0 };
};
class PrintObject : public PrintObjectBaseWithState<Print, PrintObjectStep, posCount>
@ -254,13 +264,6 @@ public:
bool has_brim() const { return this->config().brim_type != btNoBrim && this->config().brim_width.value > 0.; }
// adds region_id, too, if necessary
void add_region_volume(unsigned int region_id, int volume_id, const t_layer_height_range &layer_range) {
if (region_id >= m_region_volumes.size())
m_region_volumes.resize(region_id + 1);
m_region_volumes[region_id].volumes.push_back({ layer_range, volume_id });
}
// This is the *total* layer count (including support layers)
// this value is not supposed to be compared with Layer::id
// since they have different semantics.
@ -299,8 +302,8 @@ public:
const SlicingParameters& slicing_parameters() const { return m_slicing_params; }
static SlicingParameters slicing_parameters(const DynamicPrintConfig &full_config, const ModelObject &model_object, float object_max_z);
size_t num_printing_regions() const throw() { return m_all_regions.size(); }
const PrintRegion& printing_region(size_t idx) const throw() { return *m_all_regions[idx]; }
size_t num_printing_regions() const throw() { return m_shared_regions->all_regions.size(); }
const PrintRegion& printing_region(size_t idx) const throw() { return *m_shared_regions->all_regions[idx].get(); }
//FIXME returing all possible regions before slicing, thus some of the regions may not be slicing at the end.
std::vector<std::reference_wrapper<const PrintRegion>> all_regions() const;
@ -327,7 +330,7 @@ private:
friend class Print;
PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances);
~PrintObject() { if (m_shared_regions && -- m_shared_regions->ref_cnt == 0) delete m_shared_regions; }
~PrintObject() { if (m_shared_regions && -- m_shared_regions->m_ref_cnt == 0) delete m_shared_regions; }
void config_apply(const ConfigBase &other, bool ignore_nonexistent = false) { m_config.apply(other, ignore_nonexistent); }
void config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false) { m_config.apply_only(other, keys, ignore_nonexistent); }
@ -344,7 +347,6 @@ private:
void update_slicing_parameters();
static PrintObjectConfig object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders);
static PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders);
private:
void make_perimeters();
@ -378,7 +380,7 @@ private:
// Object split into layer ranges and regions with their associated configurations.
// Shared among PrintObjects created for the same ModelObject.
PrintObjectRegions m_shared_regions;
PrintObjectRegions *m_shared_regions;
SlicingParameters m_slicing_params;
LayerPtrs m_layers;

View File

@ -293,6 +293,7 @@ public:
};
LayerRanges() = default;
LayerRanges(const t_layer_config_ranges &in) { this->assign(in); }
// Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs.
void assign(const t_layer_config_ranges &in) {
@ -310,7 +311,7 @@ public:
if (range.first.second > last_z + EPSILON) {
const DynamicPrintConfig *cfg = &range.second.get();
m_ranges.push_back({ t_layer_height_range(last_z, range.first.second), cfg });
last_z = range.layer_height_range.second;
last_z = range.first.second;
}
}
if (m_ranges.empty())
@ -328,13 +329,16 @@ public:
// assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON);
// assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON);
if (it == m_ranges.end() ||
std::abs(it->first.first - range.first) > EPSILON ||
std::abs(it->first.second - range.second) > EPSILON )
std::abs(it->layer_height_range.first - range.first) > EPSILON ||
std::abs(it->layer_height_range.second - range.second) > EPSILON )
return nullptr; // desired range doesn't found
return (it == m_ranges.end()) ? nullptr : it->second;
return (it == m_ranges.end()) ? nullptr : it->config;
}
std::vector<LayerRange>::const_iterator begin() const { return m_ranges.cbegin(); }
std::vector<LayerRange>::const_iterator end () const { return m_ranges.cend(); }
size_t size () const { return m_ranges.size(); }
private:
// Layer ranges with their config overrides and list of volumes with their snug bounding boxes in a given layer range.
std::vector<LayerRange> m_ranges;
@ -358,7 +362,7 @@ struct ModelObjectStatus {
};
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
~ModelObjectStatus() { if (print_object_regions) print_object_regions.ref_cnt_dec(); }
~ModelObjectStatus() { if (print_object_regions) print_object_regions->ref_cnt_dec(); }
// Key of the set.
ObjectID id;
@ -377,11 +381,11 @@ struct ModelObjectStatus {
struct ModelObjectStatusDB
{
void add(const ModelObject &model_object, const ModelObjectStatus status) {
void add(const ModelObject &model_object, const ModelObjectStatus::Status status) {
db.emplace(model_object.id(), status);
}
bool add_if_new(const ModelObject &model_object, const ModelObjectStatus status) {
bool add_if_new(const ModelObject &model_object, const ModelObjectStatus::Status status) {
auto it = db.find(ModelObjectStatus(model_object.id()));
assert(it != db.end());
if (it == db.end()) {
@ -404,7 +408,7 @@ struct ModelObjectStatusDB
}
std::set<ModelObjectStatus> db;
}
};
struct PrintObjectStatus {
enum Status {
@ -413,36 +417,34 @@ struct PrintObjectStatus {
Reused,
New
};
PrintObjectStatus(PrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ObjectID id;
ObjectID id;
// Pointer to the old PrintObject
PrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
template <typename I>
iter_pair<I> make_range(std::pair<I, I> p) {
return iter_pair<I>(p);
}
class PrintObjectStatusDB {
public:
using iterator = std::multiset<PrintObjectStatus>::iterator;
using const_iterator = std::multiset<PrintObjectStatus>::const_iterator;
PrintObjectStatusDB(const PrintObjects &print_objects) {
for (PrintObject *print_object : m_objects)
db.emplace(PrintObjectStatus(print_object));
PrintObjectStatusDB(const PrintObjectPtrs &print_objects) {
for (PrintObject *print_object : print_objects)
m_db.emplace(PrintObjectStatus(print_object));
}
struct iterator_range : std::pair<const_iterator, const_iterator>
@ -454,26 +456,26 @@ public:
};
iterator_range get_range(const ModelObject &model_object) {
return print_object_status.equal_range(PrintObjectStatus(model_object.id()));
return m_db.equal_range(PrintObjectStatus(model_object.id()));
}
iterator_range get_range(const ModelObjectStatus &model_object_status) {
return print_object_status.equal_range(PrintObjectStatus(model_object_status.id));
return m_db.equal_range(PrintObjectStatus(model_object_status.id));
}
size_t count(const ModelObject &model_object) {
return db.count(PrintObjectStatus(model_object.id()));
return m_db.count(PrintObjectStatus(model_object.id()));
}
std::multiset<PrintObjectStatus>::iterator begin() { return m_db.begin(); }
std::multiset<PrintObjectStatus>::iterator end() { return m_db.end(); }
void clear() {
db.clear();
m_db.clear();
}
const_iterator begin() throw() { return this->first; }
const_iterator end() throw() { return this->second; }
private:
std::multiset<PrintObjectStatus> db;
std::multiset<PrintObjectStatus> m_db;
};
static inline bool model_volume_needs_bbox(const ModelVolume &mv)
@ -511,28 +513,33 @@ static inline bool trafos_differ_in_rotation_and_mirroring_by_z_only(const Trans
return std::abs(d) > EPSILON;
}
static BoundingBoxf3 transformed_its_bbox2d(const stl_triangle_vertex_indices &its, const Matrix3f &m)
static BoundingBoxf3 transformed_its_bbox2d(const indexed_triangle_set &its, const Matrix3f &m, float offset)
{
BoundingBoxf3 bbox;
for (const stl_triangle_vertex_indices &tri : its.indices)
for (int i = 0; i < 3; ++ i)
bbox.merge(m * its.vertices[tri(i)]);
bbox.min.x() -= offset;
bbox.min.y() -= offset;
bbox.min.x() += offset;
bbox.min.y() += offset;
return bbox;
}
static void transformed_its_bboxes_in_z_ranges(
const stl_triangle_vertex_indices &its,
const indexed_triangle_set &its,
const Matrix3f &m,
const std::vector<t_layer_height_range> &z_ranges,
std::vector<BoundingBoxf3> &bboxes)
std::vector<BoundingBoxf3> &bboxes,
const float offset)
{
bboxes.assign(z_ranges.size(), BoundingBoxf());
bboxes.assign(z_ranges.size(), BoundingBoxf3());
for (const stl_triangle_vertex_indices &tri : its.indices) {
const Vec3f pts[3] = { m * its.vertices[tri(0)], m * its.vertices[tri(1)], m * its.vertices[tri(2)] };
for (size_t irange = 0; irange < z_ranges.size(); ++ irange) {
t_layer_height_range &z_range = z_ranges[irange];
BoundingBoxf3 &bbox = bboxes[irange];
int iprev = 3;
const t_layer_height_range &z_range = z_ranges[irange];
BoundingBoxf3 &bbox = bboxes[irange];
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
const Vec3f *p1 = &pts[iprev];
const Vec3f *p2 = &pts[iedge];
@ -545,24 +552,24 @@ static void transformed_its_bboxes_in_z_ranges(
if (p1->z() > z_range.second) {
// Two intersections.
float zspan = p2->z() - p1->z();
float t1 = z_range.first / zspan;
float t2 = z_range.second / zspan;
float t1 = (z_range.first - p1->z()) / zspan;
float t2 = (z_range.second - p1->z()) / zspan;
Vec2f p = to_2d(*p1);
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge(to_3d(p + v * t1, z_range.first));
bbox.merge(to_3d(p + v * t2, z_range.second));
bbox.merge(to_3d((p + v * t1).eval(), float(z_range.first)));
bbox.merge(to_3d((p + v * t2).eval(), float(z_range.second)));
} else {
// Single intersection with the lower limit.
float t = z_range.first / (p2->z() - p1->z());
float t = (z_range.first - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge(to_3d(to_2d(*p1) + v * t), z_range.first);
bbox.merge(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.first)));
bbox.merge(*p2);
}
} else if (p2->z() > z_range.second) {
// Single intersection with the upper limit.
float t = z_range.second / (p2->z() - p1->z());
float t = (z_range.second - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge(to_3d(to_2d(*p1) + v * t), z_range.second);
bbox.merge(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.second)));
bbox.merge(*p1);
} else {
// Both points are inside.
@ -573,204 +580,132 @@ static void transformed_its_bboxes_in_z_ranges(
}
}
}
}
// Update from scratch.
void update_model_object_status_layers_bboxes(
const ModelObject &model_object,
ModelObjectStatus &model_object_status)
{
assert(! model_object_status.print_instances.empty());
assert(! model_object_status.layer_ranges.m_ranges.empty());
// Use the trafo of the 1st newly created PrintObject.
model_object_status.layer_ranges.m_trafo = model_object_status.print_instances.front().trafo;
if (model_object_status.layer_ranges.m_ranges.size() == 1) {
LayerRange &layer_range = model_object_status.layer_ranges.m_ranges.front();
assert(layer_range.volumes.empty());
layer_range.reserve(model_object.volumes.size());
for (const ModelVolume *model_volume : model_object.volumes)
if (model_volume_needs_bbox(*model_volume))
layer_range.volumes.emplace_back(model_volume->id(),
transformed_its_bbox2d(model_volume.mesh().its, trafo_for_bbox(model_object_status.layer_ranges.m_trafo, model_volume->get_matrix(false))));
} else {
std::vector<BoundingBoxf> bboxes;
std::vector<t_layer_height_range> ranges;
ranges.reserve(model_object_status.layer_ranges.m_ranges.size());
for (const LayerRange &layer_range : model_object_status.layer_ranges.m_ranges) {
assert(layer_range.volumes.empty());
t_layer_height_range r = layer_range.layer_height_range;
r.first -= EPSILON;
r.second += EPSILON;
ranges.emplace_back(r);
}
double offset = print_object.config().xy_size_compensation();
for (const ModelVolume *model_volume : model_object.volumes)
if (model_volume_needs_bbox(*model_volume)) {
transformed_its_bbox2ds_in_z_ranges(model_volume.mesh().its, trafo_for_bbox(model_object_status.layer_ranges.m_trafo, model_volume->get_matrix(false)),
ranges, bboxes);
size_t i = 0;
for (LayerRange &layer_range : model_object_status.layer_ranges.m_ranges) {
if (bboxes[i].defined) {
bboxes.min.x() -= offset;
bboxes.min.y() -= offset;
bboxes.max.x() += offset;
bboxes.max.y() += offset;
layer_range.volumes.emplace_back(model_volume->id(), bboxes[i]);
}
++ i;
}
}
}
// Update by reusing everything.
void update_model_object_status_layers_bboxes(
const ModelObject &model_object,
PrintObject &&print_object,
ModelObjectStatus &model_object_status)
{
assert(! model_object_status.print_instances.empty());
assert(! model_object_status.layer_ranges.m_ranges.empty());
for (print_object.m_volumes_ranges
}
// Try to extract layer ranges and snug bounding boxes from some existing PrintObject.
void update_model_object_status_layers_bboxes(
const ModelObject &model_object_old,
const ModelObject &model_object_new,
PrintObject &&print_object,
ModelObjectStatus &model_object_status)
{
assert(! print_object.m_region_volumes.empty());
// 1) Verify that the trafo is still applicable.
if (trafos_differ_in_rotation_and_mirroring_by_z_only(model_object_status.layer_ranges.m_trafo, model_object_status.print_instances.front().trafo)) {
update_model_object_status_layers_bboxes(model_object_new, model_object_status);
return;
for (BoundingBoxf3 &bbox : bboxes) {
bbox.min.x() -= offset;
bbox.min.y() -= offset;
bbox.min.x() += offset;
bbox.min.y() += offset;
}
// 2) Try to recover some of the trafos from print_object.
}
void print_objects_regions_update_volumes(PrintObjectRegions &print_object_regions, ModelVolumePtrs old_volumes, ModelVolumePtrs new_volumes)
// Last PrintObject for this print_object_regions has been fully invalidated (deleted).
// Keep print_object_regions, but delete those volumes, which were either removed from new_volumes, or which rotated or scaled, so they need
// their bounding boxes to be recalculated.
void print_objects_regions_invalidate_keep_some_volumes(PrintObjectRegions &print_object_regions, ModelVolumePtrs old_volumes, ModelVolumePtrs new_volumes)
{
assert(old_volumes.size() == print_object_regions.cached_volume_ids.size());
print_object_regions.all_regions.clear();
model_volumes_sort_by_id(old_volumes);
model_volumes_sort_by_id(new_volumes);
{
size_t last = 0;
size_t i_old = 0;
for (size_t i_new = 0; i_new < new_volumes.size(); ++ i_new) {
for (; i_old < old_volumes.size(); ++ i_old)
if (old_volumes[i_old]->id() == new_volumes[i_new]->id())
break;
if (i_old == old_volumes.size())
size_t last = 0;
size_t i_old = 0;
for (size_t i_new = 0; i_new < new_volumes.size(); ++ i_new) {
for (; i_old < old_volumes.size(); ++ i_old)
if (old_volumes[i_old]->id() >= new_volumes[i_new]->id())
break;
if (old_volumes[i_old]->get_matrix().isApprox(new_volumes[i_new]->get_matrix())) {
// Reuse the volume.
new_volumes[last ++] = new_volumes[i_new];
} else {
// Don't reuse the volume.
}
if (i_old == old_volumes.size())
break;
if (old_volumes[i_old]->id() == new_volumes[i_new]->id() && old_volumes[i_old]->get_matrix().isApprox(new_volumes[i_new]->get_matrix())) {
// Reuse the volume.
print_object_regions.cached_volume_ids[last ++] = print_object_regions.cached_volume_ids[i_old];
} else {
// Don't reuse the volume.
}
old_volumes.clear();
new_volumes.erase(new_volumes.begin() + last, new_volumes.end());
}
for (PrintObjectRegions::LayerRangeRegions &layer_regions : print_object_regions.layer_ranges) {
auto it = std::remove_if(layer_regions.volumes.begin(), layer_regions.volumes.end(),
[](const PrintObjectRegions::VolumeExtents &v) { return model_volume_find_by_id(new_volumes, v.volume_id) == nullptr; });
layer_regions.volumes.erase(it, layer_regions.volumes.end());
layer_regions.volume_regions.clear();
layer_regions.volume_regions.clear();
layer_regions.painted_regions.clear();
}
print_object_regions.cached_volume_ids.erase(print_object_regions.cached_volume_ids.begin() + last, print_object_regions.cached_volume_ids.end());
}
const BoundingBoxf3* find_volume(const PrintObjectLayerRange &layer_range, const ModelVolume &volume)
const BoundingBoxf3* find_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const ModelVolume &volume)
{
auto it = lower_bound_by_predicate(layer_range.volumes.begin(), layer_range.volumes.end(), [&volume](const PrintVolumeExtents &v){ return v.volume_id < volume.id(); });
retun it != layer_range.volumes.end() && it->volume_id == volume.id() ? &it->bbox : nullptr;
auto it = lower_bound_by_predicate(layer_range.volumes.begin(), layer_range.volumes.end(), [&volume](const PrintObjectRegions::VolumeExtents &v){ return v.volume_id < volume.id(); });
return it != layer_range.volumes.end() && it->volume_id == volume.id() ? &it->bbox : nullptr;
}
// Returns false if this object needs to be resliced.
static bool verify_update_print_object_regions(
ModelVolumePtrs model_volumes,
const PrintRegionConfig &default_region_config,
size_t num_extruders,
const std::vector<unsigned int> &painting_extruders,
const PrintObjectRegions &print_object_regions,
std::function<> callback_invalidate)
PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders);
void print_region_ref_inc(PrintRegion &r) { ++ r.m_ref_cnt; }
void print_region_ref_reset(PrintRegion &r) { r.m_ref_cnt = 0; }
int print_region_ref_cnt(const PrintRegion &r) { return r.m_ref_cnt; }
// Verify whether the PrintRegions of a PrintObject are still valid, possibly after updating the region configs.
// Before region configs are updated, callback_invalidate() is called to possibly stop background processing.
// Returns false if this object needs to be resliced because regions were merged or split.
bool verify_update_print_object_regions(
ModelVolumePtrs model_volumes,
const PrintRegionConfig &default_region_config,
size_t num_extruders,
const std::vector<unsigned int> &painting_extruders,
PrintObjectRegions &print_object_regions,
const std::function<void(const PrintRegionConfig&, const PrintRegionConfig&, const t_config_option_keys&)> &callback_invalidate)
{
// Sort by ModelVolume ID.
std::sort(model_volumes.begin(), model_volumes.end(), [](const ModelVolume *l, const ModelVolume *r){ return l->id() < r->id(); });
model_volumes_sort_by_id(model_volumes);
for (std::unique_ptr<PrintRegion> &region : all_regions)
region->m_ref_cnt = 0;
for (std::unique_ptr<PrintRegion> &region : print_object_regions.all_regions)
print_region_ref_reset(*region);
// Verify and / or update PrintRegions produced by ModelVolumes, layer range modifiers, modifier volumes.
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges)
for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions) {
auto it_model_volume = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [&region](const ModelVolume *v){ return v->id() < region.volume_id});
assert(it_model_volume != model_volumes.begin() && it_model_volume->id() == region.volume_id);
for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges)
for (PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions) {
auto it_model_volume = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [&region](const ModelVolume *v){ return v->id() < region.model_volume->id(); });
assert(it_model_volume != model_volumes.end() && (*it_model_volume)->id() == region.model_volume->id());
PrintRegionConfig cfg = region.parent == -1 ?
PrintObject::region_config_from_model_volume(default_region_config, region.config, *it_model_volume, num_extruders) :
PrintObject::region_config_from_model_volume(parent_region.region->config(), nullptr, *it_model_volume, num_extruders);
region_config_from_model_volume(default_region_config, layer_range.config, **it_model_volume, num_extruders) :
region_config_from_model_volume(layer_range.volume_regions[region.parent].region->config(), nullptr, **it_model_volume, num_extruders);
if (cfg != region.region->config()) {
// Region configuration changed.
if (region.region->m_ref_cnt == 0) {
if (print_region_ref_cnt(*region.region) == 0) {
// Region is referenced for the first time. Just change its parameters.
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = override.region->config().diff(cfg);
callback_invalidate(override.region->config(), cfg, diff);
override.region->config().config_apply_only(cfg, diff, false);
t_config_option_keys diff = region.region->config().diff(cfg);
callback_invalidate(region.region->config(), cfg, diff);
region.region->config_apply_only(cfg, diff, false);
} else {
// Region is referenced multiple times, thus the region is being split. We need to reslice.
return false;
}
}
++ region.region->m_ref_cnt;
print_region_ref_inc(*region.region);
}
// Verify and / or update PrintRegions produced by color painting.
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges)
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
size_t painted_region_idx = 0;
for (unsigned int painted_extruder_id : painting_extruders)
for (int parent_region_id = 0; parent_region_id < int(layer_range.volume_regions.size()); ++ parent_region_id) {
const PrintVolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
const PrintPaintedRegion &region = layer_range.painted_regions[painted_region_idx ++];
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
const PrintObjectRegions::PaintedRegion &region = layer_range.painted_regions[painted_region_idx ++];
PrintRegionConfig cfg = parent_region.region->config();
cfg.external_perimeter_extruder = painted_extruder_id;
cfg.perimeter_extruder = painted_extruder_id;
cfg.infill_extruder = painted_extruder_id;
cfg.perimeter_extruder.value = painted_extruder_id;
cfg.infill_extruder.value = painted_extruder_id;
if (cfg != region.region->config()) {
// Region configuration changed.
if (region->m_ref_cnt == 0) {
if (print_region_ref_cnt(*region.region) == 0) {
// Region is referenced for the first time. Just change its parameters.
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = override.region->config().diff(cfg);
callback_invalidate(override.region->config(), cfg, diff);
override.region->config().config_apply_only(cfg, diff, false);
t_config_option_keys diff = region.region->config().diff(cfg);
callback_invalidate(region.region->config(), cfg, diff);
region.region->config_apply_only(cfg, diff, false);
} else {
// Region is referenced multiple times, thus the region is being split. We need to reslice.
return false;
}
}
++ region.region->m_ref_cnt;
print_region_ref_inc(*region.region);
}
}
// Lastly verify, whether some regions were not merged.
{
std::vector<const PrintRegion*> regions;
regions.reserve(all_regions.size());
for (std::unique_ptr<PrintRegion> &region : all_regions) {
assert(region->m_ref_cnt > 0);
regions.emplace_back(&(*region));
regions.reserve(print_object_regions.all_regions.size());
for (std::unique_ptr<PrintRegion> &region : print_object_regions.all_regions) {
assert(print_region_ref_cnt(*region) > 0);
regions.emplace_back(&(*region.get()));
}
std::sort(regions.begin(), regions.end(), [](const PrintRegion *l, const PrintRegion *r){ return l->config_hash() < r->config_hash(); });
for (size_t i = 0; i < regions.size(); ++ i) {
@ -784,53 +719,143 @@ static bool verify_update_print_object_regions(
}
}
return out;
return true;
}
// Update caches of volume bounding boxes.
void update_volume_bboxes(
std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
std::vector<ObjectID> &cached_volume_ids,
ModelVolumePtrs model_volumes,
const Transform3d &object_trafo,
const float offset)
{
// output will be sorted by the order of model_volumes sorted by their ObjectIDs.
model_volumes_sort_by_id(model_volumes);
if (layer_ranges.size() == 1) {
PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front();
std::vector<PrintObjectRegions::VolumeExtents> volumes_old(std::move(layer_range.volumes));
layer_range.volumes.reserve(model_volumes.size());
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_bbox(*model_volume)) {
if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) {
auto it = lower_bound_by_predicate(volumes_old.begin(), volumes_old.end(), [model_volume](PrintObjectRegions::VolumeExtents &v) { return v.volume_id == model_volume->id(); });
if (it != volumes_old.end() && it->volume_id == model_volume->id())
layer_range.volumes.emplace_back(*it);
} else
layer_range.volumes.emplace_back(model_volume->id(),
transformed_its_bbox2d(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), offset));
}
} else {
std::vector<std::vector<PrintObjectRegions::VolumeExtents>> volumes_old;
if (cached_volume_ids.empty())
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
layer_range.volumes.clear();
else {
volumes_old.reserve(layer_ranges.size());
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
volumes_old.emplace_back(std::move(layer_range.volumes));
}
std::vector<BoundingBoxf3> bboxes;
std::vector<t_layer_height_range> ranges;
ranges.reserve(layer_ranges.size());
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
t_layer_height_range r = layer_range.layer_height_range;
r.first -= EPSILON;
r.second += EPSILON;
ranges.emplace_back(r);
}
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_bbox(*model_volume)) {
if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
const auto &vold = volumes_old[&layer_range - layer_ranges.data()];
auto it = lower_bound_by_predicate(vold.begin(), vold.end(), [model_volume](const PrintObjectRegions::VolumeExtents &v) { return v.volume_id == model_volume->id(); });
if (it != vold.end() && it->volume_id == model_volume->id())
layer_range.volumes.emplace_back(*it);
}
} else {
transformed_its_bboxes_in_z_ranges(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), ranges, bboxes, offset);
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
layer_range.volumes.emplace_back(model_volume->id(), bboxes[&layer_range - layer_ranges.data()]);
}
}
}
cached_volume_ids.clear();
cached_volume_ids.reserve(model_volumes.size());
for (const ModelVolume *v : model_volumes)
cached_volume_ids.emplace_back(v->id());
}
// Either a fresh PrintObject, or PrintObject regions were invalidated (merged, split).
// Generate PrintRegions from scratch.
static PrintObjectRegions generate_print_object_regions(
static PrintObjectRegions* generate_print_object_regions(
PrintObjectRegions *print_object_regions_old,
const ModelVolumePtrs &model_volumes,
const std::vector<PrintObjectLayerRange> &layer_ranges,
const LayerRanges &model_layer_ranges,
const PrintRegionConfig &default_region_config,
const Transform3d &trafo,
size_t num_extruders,
const std::vector<unsigned int> &painting_extruders)
{
PrintObjectRegions out;
auto &all_regions = all_regions;
auto &layer_ranges_regions = layer_ranges;
// Reuse the old object or generate a new one.
auto out = print_object_regions_old ? std::unique_ptr<PrintObjectRegions>(print_object_regions_old) : std::make_unique<PrintObjectRegions>();
auto &all_regions = out->all_regions;
auto &layer_ranges_regions = out->layer_ranges;
layer_ranges_regions.assign(layer_ranges.size(), PrintObjectLayerRangeRegions{});
for (PrintObjectLayerRangeRegions &lrr : layer_ranges_regions)
lrr = layer_ranges[&lrr - layer_ranges_regions.data()];
bool reuse_old = print_object_regions_old && !print_object_regions_old->layer_ranges.empty();
std::set<const PrintRegion*, > region_set;
auto get_create_region = [&region_set](PrintRegionConfig &&config) {
if (reuse_old) {
#ifndef NDEBUG
// Verify that the old ranges match the new ranges.
assert(model_layer_ranges.size() == layer_ranges_regions.size());
for (const auto &range : model_layer_ranges) {
const PrintObjectRegions::LayerRangeRegions &r = layer_ranges_regions[&range - &*(model_layer_ranges.end())];
assert(range.layer_height_range == r.layer_height_range);
assert(range.config == r.config);
assert(r.volume_regions.empty());
assert(r.painted_regions.empty());
}
#endif // NDEBUG
} else {
out->trafo_bboxes = trafo;
layer_ranges_regions.reserve(model_layer_ranges.size());
for (const auto &range : model_layer_ranges)
layer_ranges_regions.push_back({ range.layer_height_range, range.config });
}
update_volume_bboxes(layer_ranges_regions, out->cached_volume_ids, model_volumes, out->trafo_bboxes, std::max(0.f, float(print_object.config().xy_size_compensation()));
std::set<const PrintRegion*> region_set;
auto get_create_region = [&region_set](PrintRegionConfig &&config) -> PrintRegion* {
return nullptr;
};
// Chain the regions in the order they are stored in the volumes list.
for (int volume_id = 0; volume_id < int(model_volumes.size()); ++ volume_id) {
const ModelVolume &volume = model_volumes[volume_id];
const ModelVolume &volume = *model_volumes[volume_id];
if (volume.type() == ModelVolumeType::MODEL_PART || volume.type() == ModelVolumeType::PARAMETER_MODIFIER) {
for (const PrintObjectLayerRangeRegions &layer_range : layer_ranges_regions)
if (const BoundingBoxf3 *bbox = find_volume(layer_range, volume); bbox) {
if (volume.type() == MODEL_PART)
layer_range.regions.push_back( {
volume.id(), -1,
get_create_region(PrintObject::region_config_from_model_volume(default_region_config, layer_range.config, volume, num_extruders))
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions)
if (const BoundingBoxf3 *bbox = find_volume_extents(layer_range, volume); bbox) {
if (volume.is_model_part())
layer_range.volume_regions.push_back({
&volume, -1,
get_create_region(region_config_from_model_volume(default_region_config, layer_range.config, volume, num_extruders))
});
else {
assert(volume.type() == ModelVolumeType::PARAMETER_MODIFIER);
assert(volume.is_modifier());
// Modifiers may be chained one over the other. Check for overlap, merge DynamicPrintConfigs.
for (int parent_region_id = int(layer_range.regions.size()) - 1; parent_region_id >= 0; -- parent_region_id) {
const PrintVolumeRegion &parent_region = layer_range.regions[parent_region_id];
const BoundingBoxf3 *parent_bbox = find_volume(layer_range, parent_region.volume_id);
for (int parent_region_id = int(layer_range.volume_regions.size()) - 1; parent_region_id >= 0; -- parent_region_id) {
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
const BoundingBoxf3 *parent_bbox = find_volume_extents(layer_range, *parent_region.model_volume);
assert(parent_bbox != nullptr);
if (parent_bbox->overlap(*bbox))
layer_range.regions.push_back( {
volume.id(), parent_region_id,
get_create_region(PrintObject::region_config_from_model_volume(parent_region.region->config(), nullptr, volume, num_extruders))
layer_range.volume_regions.push_back( {
&volume, parent_region_id,
get_create_region(region_config_from_model_volume(parent_region.region->config(), nullptr, volume, num_extruders))
});
}
}
@ -839,19 +864,17 @@ static PrintObjectRegions generate_print_object_regions(
}
// Finally add painting regions.
for (const PrintObjectLayerRangeRegions &layer_range : layer_ranges_regions) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions)
for (unsigned int painted_extruder_id : painting_extruders)
for (int parent_region_id = 0; parent_region_id < int(layer_range.regions.size()); ++ parent_region_id) {
const PrintVolumeRegion &parent_region = layer_range.regions[parent_region_id];
for (int parent_region_id = 0; parent_region_id < int(layer_range.volume_regions.size()); ++ parent_region_id) {
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
PrintRegionConfig cfg = parent_region.region->config();
cfg.external_perimeter_extruder = painted_extruder_id;
cfg.perimeter_extruder = painted_extruder_id;
cfg.infill_extruder = painted_extruder_id;
cfg.perimeter_extruder.value = painted_extruder_id;
cfg.infill_extruder.value = painted_extruder_id;
layer_range.painted_regions.push_back({ painted_extruder_id, parent_region_id, get_create_region(std::move(cfg))});
}
}
return out;
return out.release();
}
Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config)
@ -1021,14 +1044,14 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
// 3) Synchronize ModelObjects & PrintObjects.
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status.reuse(model_object));
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(model_object));
const ModelObject &model_object_new = *model.objects[idx_model_object];
model_object_status.print_instances = print_objects_from_model_object(*model_object_new);
if (it_status->status == ModelObjectStatus::New)
model_object_status.print_instances = print_objects_from_model_object(model_object_new);
if (model_object_status.status == ModelObjectStatus::New)
// PrintObject instances will be added in the next loop.
continue;
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
assert(model_object_status.status == ModelObjectStatus::Old || model_object_status.status == ModelObjectStatus::Moved);
// Check whether a model part volume was added or removed, their transformations or order changed.
// Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked.
bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART);
@ -1036,27 +1059,31 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) ||
model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER);
bool layer_height_ranges_differ = ! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty());
auto print_objects_range = print_object_status_db.get_range(&model_object);
auto print_objects_range = print_object_status_db.get_range(model_object);
assert(print_objects_range.begin() != print_objects_range.end());
model_object_status.prints_objects_regions = (*print_objects_range.begin())->prints_objects_regions;
model_object_status.prints_objects_regions->ref_cnt_inc();
// All PrintObjects in print_objects_range shall point to the same prints_objects_regions
model_object_status.print_object_regions = print_objects_range.begin()->print_object->m_shared_regions;
model_object_status.print_object_regions->ref_cnt_inc();
if (model_parts_differ || modifiers_differ ||
model_object.origin_translation != model_object_new.origin_translation ||
! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile) ||
layer_height_ranges_differ) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
model_object_status.prints_objects_regions_status =
model_object.origin_translation == model_object_new.origin_translation && ! layer_height_ranges_differ ?
model_object_status.print_object_regions_status =
model_object.origin_translation == model_object_new.origin_translation && ! layer_height_ranges_differ ?
// Drop print_objects_regions.
ModelObjectStatus::PrintObjectRegionsStatus::Invalid :
// Reuse bounding boxes of print_objects_regions for ModelVolumes with unmodified transformation.
ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid;
for (auto it : print_objects_range) {
update_apply_status(it->print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(*it).status = PrintObjectStatus::Deleted;
for (const PrintObjectStatus &print_object_status : print_objects_range) {
update_apply_status(print_object_status.print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(print_object_status).status = PrintObjectStatus::Deleted;
}
if (model_object_status.prints_objects_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid)
print_objects_regions_update_volumes(*model_object_status.prints_objects_regions, model_object.volumes, model_object_new.volumes);
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid)
// Drop everything from PrintObjectRegions but those VolumeExtents (of their particular ModelVolumes) that are still valid.
print_objects_regions_invalidate_keep_some_volumes(*model_object_status.print_object_regions, model_object.volumes, model_object_new.volumes);
else
model_object_status.print_object_regions->clear();
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) {
@ -1066,8 +1093,8 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
update_apply_status(false);
}
// Invalidate just the supports step.
for (auto it : print_objects_range)
update_apply_status(it->print_object->invalidate_step(posSupportMaterial));
for (const PrintObjectStatus &print_object_status : print_objects_range)
update_apply_status(print_object_status.print_object->invalidate_step(posSupportMaterial));
if (supports_differ) {
// Copy just the support volumes.
model_volume_list_update_supports(model_object, model_object_new);
@ -1082,11 +1109,11 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
model_object.config.assign_config(model_object_new.config);
if (! object_diff.empty() || object_config_changed || num_extruders_changed) {
PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders);
for (auto it : print_object_status_db.get_range(model_object)) {
t_config_option_keys diff = it->print_object->config().diff(new_config);
for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(model_object)) {
t_config_option_keys diff = print_object_status.print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(it->print_object->invalidate_state_by_config_options(it->print_object->config(), new_config, diff));
it->print_object->config_apply_only(new_config, diff, true);
update_apply_status(print_object_status.print_object->invalidate_state_by_config_options(print_object_status.print_object->config(), new_config, diff));
print_object_status.print_object->config_apply_only(new_config, diff, true);
}
}
}
@ -1133,16 +1160,16 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
bool new_objects = false;
// Walk over all new model objects and check, whether there are matching PrintObjects.
for (ModelObject *model_object : m_model.objects) {
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status.reuse(model_object));
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(*model_object));
std::vector<const PrintObjectStatus*> old;
old.reserve(print_object_status.count(*model_object));
for (auto it : print_object_status.get_range(*model_object))
if (it->status != PrintObjectStatus::Deleted)
old.emplace_back(&(*it));
old.reserve(print_object_status_db.count(*model_object));
for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(*model_object))
if (print_object_status.status != PrintObjectStatus::Deleted)
old.emplace_back(&print_object_status);
// Generate a list of trafos and XY offsets for instances of a ModelObject
// Producing the config for PrintObject on demand, caching it at print_object_last.
const PrintObject *print_object_last = nullptr;
auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject* print_object) {
auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject *print_object) {
print_object->config_apply(print_object_last ?
print_object_last->config() :
PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders));
@ -1164,7 +1191,6 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); });
// Merge the old / new lists.
auto it_old = old.begin();
size_t num_old = old.size();
for (PrintObjectTrafoAndInstances &new_instances : model_object_status.print_instances) {
for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old);
if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) {
@ -1174,11 +1200,8 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
if (it_old != old.end()) {
if (-- num_old == 0)
update_model_object_status_layers_bboxes(*model_object, model_object_status, std::move(*old.front()->print_object));
if (it_old != old.end())
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Deleted;
}
} else {
// The PrintObject already exists and the copies differ.
PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances));
@ -1195,7 +1218,7 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
bool deleted_objects = false;
for (auto &pos : print_object_status_db)
for (const PrintObjectStatus &pos : print_object_status_db)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
@ -1207,25 +1230,30 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
update_apply_status(false);
print_regions_reshuffled = true;
}
print_object_status.clear();
print_object_status_db.clear();
}
// All regions now have distinct settings.
// Check whether applying the new region config defaults we would get different regions.
// Check whether applying the new region config defaults we would get different regions,
// update regions or create regions from scratch.
const std::vector<unsigned int> painting_extruders;
for (auto it_print_object = m_objects.begin(); it_print_object != m_objects.end();) {
// Find the range of PrintObjects sharing the same associated ModelObject.
auto it_print_object_end = m_objects.begin();
PrintObject &print_object = *(*it_print_object);
const ModelObject &model_object = *print_object.model_object();
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status.reuse(model_object));
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(model_object));
PrintObjectRegions *print_object_regions = model_object_status.print_object_regions;
for (++ it_print_object_end; it_print_object != m_objects.end() && (*it_print_object)->model_object() == (*it_print_object_end)->model_object(); ++ it_print_object_end)
assert((*it_print_object_end)->m_shared_regions == nullptr || (*it_print_object_end)->m_shared_regions == print_object_regions);
if (print_object_regions == nullptr)
print_object_regions = new PrintObjectRegions {};
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::Valid) {
if (verify_update_print_object_regions(
// Verify that the trafo for regions & volume bounding boxes thus for regions is still applicable.
if (print_object_regions && ! trafos_differ_in_rotation_and_mirroring_by_z_only(print_object_regions->trafo_bboxes, model_object_status.print_instances.front().trafo))
print_object_regions->clear();
if (print_object_regions &&
verify_update_print_object_regions(
print_object.model_object()->volumes,
m_default_region_config,
num_extruders,
@ -1237,44 +1265,38 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
update_apply_status(print_object->invalidate_state_by_config_options(region.config(), region_config, diff));
region.config_apply_only(region_config, diff, false);
})) {
// Regions are valid, assign them to the other PrintObjects.
for (auto it = it_print_object; it != it_print_object_end; ++ it)
if ((*it)->m_shared_regions == nullptr) {
(*it)->m_shared_regions = print_object_regions;
print_object_regions->ref_cnt_inc();
}
// Regions are valid, just keep them.
} else {
// Regions were reshuffled.
for (auto it = it_print_object; it != it_print_object_end; ++ it)
if ((*it)->m_shared_regions != nullptr) {
assert(print_object_regions == (*it)->m_shared_regions);
update_apply_status((*it)->invalidate_all_steps());
(*it)->m_shared_regions = nullptr;
print_object_regions->ref_cnt_dec();
}
// At least reuse layer ranges and bounding boxes of ModelVolumes.
model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid;
print_regions_reshuffled = true;
}
}
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid) {
// Reuse layer ranges and bounding boxes of ModelVolumes.
} else {
assert(model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::Invalid);
// Layer ranges with their associated configurations.
LayerRanges layer_ranges;
layer_ranges.assign(print_object.model_object()->layer_config_ranges);
print_object_regions = new PrintObjectRegions(generate_print_object_regions(
if (print_object_regions == nullptr || model_object_status.print_object_regions_status != ModelObjectStatus::PrintObjectRegionsStatus::Valid) {
// Layer ranges with their associated configurations. Remove overlaps between the ranges
// and create the regions from scratch.
print_object_regions = generate_print_object_regions(
print_object_regions,
print_object.model_object()->volumes,
layer_ranges,
LayerRanges(print_object.model_object()->layer_config_ranges),
model_object_status.print_instances.front().trafo,
m_default_region_config,
num_extruders,
painting_extruders));
for (auto it = it_print_object; it != it_print_object_end; ++ it) {
painting_extruders);
}
for (auto it = it_print_object; it != it_print_object_end; ++it)
if ((*it)->m_shared_regions)
assert((*it)->m_shared_regions == print_object_regions);
else {
(*it)->m_shared_regions = print_object_regions;
print_object_regions->ref_cnt_inc();
}
}
it_print_object = it_print_object_end;
}
@ -1284,7 +1306,7 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
std::set<const PrintRegion*, cmp> region_set;
m_print_regions.clear();
PrintObjectRegions *print_object_regions = nullptr;
for (PrintObject *print_object : m_objects) {
for (PrintObject *print_object : m_objects)
if (print_object_regions != print_object->m_shared_regions) {
print_object_regions = print_object->m_shared_regions;
for (std::unique_ptr<Slic3r::PrintRegion> &print_region : print_object_regions->all_regions)

View File

@ -101,58 +101,12 @@ PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances)
std::vector<std::reference_wrapper<const PrintRegion>> PrintObject::all_regions() const
{
std::vector<std::reference_wrapper<const PrintRegion>> out;
out.reserve(m_all_regions.size());
for (size_t i = 0; i < m_all_regions.size(); ++ i)
out.emplace_back(*m_all_regions[i]);
out.reserve(m_shared_regions->all_regions.size());
for (const std::unique_ptr<Slic3r::PrintRegion> &region : m_shared_regions->all_regions)
out.emplace_back(*region.get());
return out;
}
// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
void PrintObject::slice()
{
if (! this->set_started(posSlice))
return;
m_print->set_status(10, L("Processing triangulated mesh"));
std::vector<coordf_t> layer_height_profile;
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
m_print->throw_if_canceled();
this->_slice(layer_height_profile);
m_print->throw_if_canceled();
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
std::string warning = this->_fix_slicing_errors();
m_print->throw_if_canceled();
if (! warning.empty())
BOOST_LOG_TRIVIAL(info) << warning;
// Simplify slices if required.
if (m_print->config().resolution)
this->simplify_slices(scale_(this->print()->config().resolution));
// Update bounding boxes, back up raw slices of complex models.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[layer_idx];
layer.lslices_bboxes.clear();
layer.lslices_bboxes.reserve(layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
layer.lslices_bboxes.emplace_back(get_extents(expoly));
layer.backup_untyped_slices();
}
});
if (m_layers.empty())
throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
this->set_done(posSlice);
}
// 1) Merges typed region slices into stInternal type.
// 2) Increases an "extra perimeters" counter at region slices where needed.
// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
@ -194,8 +148,8 @@ void PrintObject::make_perimeters()
[this, &region, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
LayerRegion &layerm = *m_layers[layer_idx]->m_regions[region_id];
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->m_regions[region_id];
LayerRegion &layerm = *m_layers[layer_idx]->get_region(region_id);
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->get_region(region_id);
const Polygons upper_layerm_polygons = to_polygons(upper_layerm.slices.surfaces);
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
@ -747,7 +701,6 @@ bool PrintObject::invalidate_all_steps()
bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
// Then reset some of the depending values.
m_slicing_params.valid = false;
m_region_volumes.clear();
return result;
}
@ -1605,7 +1558,7 @@ static void apply_to_print_region_config(PrintRegionConfig &out, const DynamicPr
}
}
PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
{
PrintRegionConfig config = default_region_config;
apply_to_print_region_config(config, volume.get_object()->config.get());
@ -1725,681 +1678,6 @@ bool PrintObject::update_layer_height_profile(const ModelObject &model_object, c
return updated;
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
{
BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info();
m_typed_slices = false;
// 1) Initialize layers and their slice heights.
std::vector<float> slice_zs;
{
this->clear_layers();
// Object layers (pairs of bottom/top Z coordinate), without the raft.
std::vector<coordf_t> object_layers = generate_object_layers(m_slicing_params, layer_height_profile);
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
int id = int(m_slicing_params.raft_layers());
slice_zs.reserve(object_layers.size());
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = this->add_layer(id ++, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
slice_zs.push_back(float(slice_z));
if (prev != nullptr) {
prev->upper_layer = layer;
layer->lower_layer = prev;
}
// Make sure all layers contain layer region objects for all regions.
for (size_t region_id = 0; region_id < m_region_volumes.size(); ++ region_id)
layer->add_region(&this->printing_region(region_id));
prev = layer;
}
}
// Count model parts and modifier meshes, check whether the model parts are of the same region.
int all_volumes_single_region = -2; // not set yet
bool has_z_ranges = false;
size_t num_volumes = 0;
size_t num_modifiers = 0;
for (int region_id = 0; region_id < int(m_region_volumes.size()); ++ region_id) {
int last_volume_id = -1;
for (const PrintRegionVolumes::VolumeWithZRange &volume_w_zrange : m_region_volumes[region_id].volumes) {
const ModelVolume *model_volume = this->model_object()->volumes[volume_w_zrange.volume_idx];
if (model_volume->is_model_part()) {
if (last_volume_id == volume_w_zrange.volume_idx) {
has_z_ranges = true;
} else {
last_volume_id = volume_w_zrange.volume_idx;
if (all_volumes_single_region == -2)
// first model volume met
all_volumes_single_region = region_id;
else if (all_volumes_single_region != region_id)
// multiple volumes met and they are not equal
all_volumes_single_region = -1;
++ num_volumes;
}
} else if (model_volume->is_modifier())
++ num_modifiers;
}
}
assert(num_volumes > 0);
// Slice all non-modifier volumes.
bool clipped = false;
bool upscaled = false;
bool spiral_vase = this->print()->config().spiral_vase;
auto slicing_mode = spiral_vase ? MeshSlicingParams::SlicingMode::PositiveLargestContour : MeshSlicingParams::SlicingMode::Regular;
if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) {
// Cheap path: Slice regions without mutual clipping.
// The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region.
for (size_t region_id = 0; region_id < m_region_volumes.size(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
// slicing in parallel
size_t slicing_mode_normal_below_layer = 0;
if (spiral_vase) {
// Slice the bottom layers with SlicingMode::Regular.
// This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
const PrintRegionConfig &config = this->printing_region(region_id).config();
slicing_mode_normal_below_layer = size_t(config.bottom_solid_layers.value);
for (; slicing_mode_normal_below_layer < slice_zs.size() && slice_zs[slicing_mode_normal_below_layer] < config.bottom_solid_min_thickness - EPSILON;
++ slicing_mode_normal_below_layer);
}
std::vector<ExPolygons> expolygons_by_layer = this->slice_region(region_id, slice_zs, slicing_mode, slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode::Regular);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
}
} else {
// Expensive path: Slice one volume after the other in the order they are presented at the user interface,
// clip the last volumes with the first.
// First slice the volumes.
struct SlicedVolume {
SlicedVolume(int volume_id, int region_id, std::vector<ExPolygons> &&expolygons_by_layer) :
volume_id(volume_id), region_id(region_id), expolygons_by_layer(std::move(expolygons_by_layer)) {}
int volume_id;
int region_id;
std::vector<ExPolygons> expolygons_by_layer;
};
std::vector<SlicedVolume> sliced_volumes;
sliced_volumes.reserve(num_volumes);
for (size_t region_id = 0; region_id < m_region_volumes.size(); ++ region_id) {
const PrintRegionVolumes &volumes_and_ranges = m_region_volumes[region_id];
for (size_t i = 0; i < volumes_and_ranges.volumes.size(); ) {
int volume_id = volumes_and_ranges.volumes[i].volume_idx;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_model_part()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - volume " << volume_id;
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges.volumes[i].layer_height_range);
size_t j = i + 1;
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j)
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges.volumes[j].layer_height_range.first) < EPSILON)
ranges.back().second = volumes_and_ranges.volumes[j].layer_height_range.second;
else
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
// slicing in parallel
sliced_volumes.emplace_back(volume_id, (int)region_id, this->slice_volume(slice_zs, ranges, slicing_mode, *model_volume));
i = j;
} else
++ i;
}
}
// Second clip the volumes in the order they are presented at the user interface.
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, slice_zs.size()),
[this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
float delta = float(scale_(m_config.xy_size_compensation.value));
// Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
// (upscaling may grow the object outside of the modifier mesh).
bool upscale = delta > 0 && num_modifiers == 0;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
// Trim volumes in a single layer, one by the other, possibly apply upscaling.
{
Polygons processed;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (! sliced_volume.expolygons_by_layer.empty()) {
ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
if (upscale)
slices = offset_ex(std::move(slices), delta);
if (! processed.empty())
// Trim by the slices of already processed regions.
slices = diff_ex(slices, processed);
if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
}
}
// Collect and union volumes of a single region.
for (int region_id = 0; region_id < int(m_region_volumes.size()); ++ region_id) {
ExPolygons expolygons;
size_t num_volumes = 0;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
++ num_volumes;
append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
}
if (num_volumes > 1)
// Merge the islands using a positive / negative offset.
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - end";
clipped = true;
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
}
// Slice all modifier volumes.
if (m_region_volumes.size() > 1) {
for (size_t region_id = 0; region_id < m_region_volumes.size(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
// slicing in parallel
std::vector<ExPolygons> expolygons_by_layer = this->slice_modifiers(region_id, slice_zs);
m_print->throw_if_canceled();
if (expolygons_by_layer.empty())
continue;
// loop through the other regions and 'steal' the slices belonging to this one
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &expolygons_by_layer, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
for (size_t other_region_id = 0; other_region_id < m_region_volumes.size(); ++ other_region_id) {
if (region_id == other_region_id)
continue;
Layer *layer = m_layers[layer_id];
LayerRegion *layerm = layer->m_regions[region_id];
LayerRegion *other_layerm = layer->m_regions[other_region_id];
if (layerm == nullptr || other_layerm == nullptr || other_layerm->slices.empty() || expolygons_by_layer[layer_id].empty())
continue;
ExPolygons my_parts = intersection_ex(other_layerm->slices.surfaces, expolygons_by_layer[layer_id]);
if (my_parts.empty())
continue;
// Remove such parts from original region.
other_layerm->slices.set(diff_ex(other_layerm->slices.surfaces, my_parts), stInternal);
// Append new parts to our region.
layerm->slices.append(std::move(my_parts), stInternal);
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
}
}
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
if (! layer->empty())
goto end;
delete layer;
m_layers.pop_back();
if (! m_layers.empty())
m_layers.back()->upper_layer = nullptr;
}
m_print->throw_if_canceled();
end:
;
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
{
// Compensation value, scaled.
const float xy_compensation_scaled = float(scale_(m_config.xy_size_compensation.value));
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
// Only enable Elephant foot compensation if printing directly on the print bed.
float(scale_(m_config.elefant_foot_compensation.value)) :
0.f;
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
ExPolygons lslices_1st_layer;
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, upscaled, clipped, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
(const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
if (layer->m_regions.size() == 1) {
assert(! upscaled);
assert(! clipped);
// Optimized version for a single region layer.
// Single region, growing or shrinking.
LayerRegion *layerm = layer->m_regions.front();
if (elfoot > 0) {
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
float delta = xy_compensation_scaled;
if (delta > elfoot) {
delta -= elfoot;
elfoot = 0.f;
} else if (delta > 0)
elfoot -= delta;
layerm->slices.set(
union_ex(
Slic3r::elephant_foot_compensation(
(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta),
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
stInternal);
if (xy_compensation_scaled != 0.f)
lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
} else if (xy_compensation_scaled != 0.f) {
// Apply the XY compensation.
layerm->slices.set(
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
stInternal);
}
} else {
bool upscale = ! upscaled && xy_compensation_scaled > 0.f;
bool clip = ! clipped && m_config.clip_multipart_objects.value;
if (upscale || clip) {
// Multiple regions, growing or just clipping one region by the other.
// When clipping the regions, priority is given to the first regions.
Polygons processed;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
if (upscale)
slices = offset_ex(std::move(slices), xy_compensation_scaled);
if (region_id > 0 && clip)
// Trim by the slices of already processed regions.
slices = diff_ex(slices, processed);
if (clip && (region_id + 1 < layer->m_regions.size()))
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
layerm->slices.set(std::move(slices), stInternal);
}
}
if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
// Apply the negative XY compensation.
Polygons trimming;
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
if (elfoot > 0.f) {
lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
} else
trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->trim_surfaces(trimming);
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
layer->make_slices();
}
});
if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
// Store the uncompensated value there.
assert(m_layers.front()->id() == 0);
m_layers.front()->lslices = std::move(lslices_1st_layer);
}
}
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
}
// To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region.
std::vector<ExPolygons> PrintObject::slice_region(size_t region_id, const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, size_t slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode mode_below) const
{
std::vector<const ModelVolume*> volumes;
if (region_id < m_region_volumes.size()) {
for (const PrintRegionVolumes::VolumeWithZRange &volume_w_zrange : m_region_volumes[region_id].volumes) {
const ModelVolume *volume = this->model_object()->volumes[volume_w_zrange.volume_idx];
if (volume->is_model_part())
volumes.emplace_back(volume);
}
}
return this->slice_volumes(z, mode, slicing_mode_normal_below_layer, mode_below, volumes);
}
// Z ranges are not applicable to modifier meshes, therefore a single volume will be found in volume_w_zrange at most once.
std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
{
std::vector<ExPolygons> out;
if (region_id < m_region_volumes.size())
{
std::vector<std::vector<t_layer_height_range>> volume_ranges;
const PrintRegionVolumes &volumes_and_ranges = m_region_volumes[region_id];
volume_ranges.reserve(volumes_and_ranges.volumes.size());
for (size_t i = 0; i < volumes_and_ranges.volumes.size(); ) {
int volume_id = volumes_and_ranges.volumes[i].volume_idx;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_modifier()) {
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges.volumes[i].layer_height_range);
size_t j = i + 1;
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j) {
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges.volumes[j].layer_height_range.first) < EPSILON)
ranges.back().second = volumes_and_ranges.volumes[j].layer_height_range.second;
else
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
}
volume_ranges.emplace_back(std::move(ranges));
i = j;
} else
++ i;
}
if (! volume_ranges.empty())
{
bool equal_ranges = true;
for (size_t i = 1; i < volume_ranges.size(); ++ i) {
assert(! volume_ranges[i].empty());
if (volume_ranges.front() != volume_ranges[i]) {
equal_ranges = false;
break;
}
}
if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) {
// No modifier in this region was split to layer spans.
std::vector<const ModelVolume*> volumes;
for (const PrintRegionVolumes::VolumeWithZRange &volume_w_zrange : m_region_volumes[region_id].volumes) {
const ModelVolume *volume = this->model_object()->volumes[volume_w_zrange.volume_idx];
if (volume->is_modifier())
volumes.emplace_back(volume);
}
out = this->slice_volumes(slice_zs, MeshSlicingParams::SlicingMode::Regular, volumes);
} else {
// Some modifier in this region was split to layer spans.
std::vector<char> merge;
for (size_t region_id = 0; region_id < m_region_volumes.size(); ++ region_id) {
const PrintRegionVolumes &volumes_and_ranges = m_region_volumes[region_id];
for (size_t i = 0; i < volumes_and_ranges.volumes.size(); ) {
int volume_id = volumes_and_ranges.volumes[i].volume_idx;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_modifier()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing modifiers - volume " << volume_id;
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges.volumes[i].layer_height_range);
size_t j = i + 1;
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j)
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
// slicing in parallel
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, MeshSlicingParams::SlicingMode::Regular, *model_volume);
// Variable this_slices could be empty if no value of slice_zs is within any of the ranges of this volume.
if (out.empty()) {
out = std::move(this_slices);
merge.assign(out.size(), false);
} else if (!this_slices.empty()) {
assert(out.size() == this_slices.size());
for (size_t i = 0; i < out.size(); ++ i)
if (! this_slices[i].empty()) {
if (! out[i].empty()) {
append(out[i], this_slices[i]);
merge[i] = true;
} else
out[i] = std::move(this_slices[i]);
}
}
i = j;
} else
++ i;
}
}
for (size_t i = 0; i < merge.size(); ++ i)
if (merge[i])
out[i] = union_ex(out[i]);
}
}
}
return out;
}
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType &model_volume_type) const
{
std::vector<const ModelVolume*> volumes;
for (const ModelVolume *volume : this->model_object()->volumes)
if (volume->type() == model_volume_type)
volumes.emplace_back(volume);
std::vector<float> zs;
zs.reserve(this->layers().size());
for (const Layer *l : this->layers())
zs.emplace_back((float)l->slice_z);
return this->slice_volumes(zs, MeshSlicingParams::SlicingMode::Regular, volumes);
}
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
static void fix_mesh_connectivity(TriangleMesh &mesh)
{
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
}
std::vector<ExPolygons> PrintObject::slice_volumes(
const std::vector<float> &z,
MeshSlicingParams::SlicingMode mode, size_t slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode mode_below,
const std::vector<const ModelVolume*> &volumes) const
{
std::vector<ExPolygons> layers;
if (! volumes.empty()) {
// Compose mesh.
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volumes.front()->mesh());
mesh.transform(volumes.front()->get_matrix(), true);
assert(mesh.repaired);
if (volumes.size() == 1 && mesh.repaired)
fix_mesh_connectivity(mesh);
for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) {
const ModelVolume &model_volume = *volumes[idx_volume];
TriangleMesh vol_mesh(model_volume.mesh());
vol_mesh.transform(model_volume.get_matrix(), true);
mesh.merge(vol_mesh);
mesh.repair(false);
}
if (mesh.stl.stats.number_of_facets > 0) {
mesh.transform(m_trafo, true);
// apply XY shift
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// perform actual slicing
const Print *print = this->print();
// TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
mesh.require_shared_vertices();
MeshSlicingParamsEx params { { mode, slicing_mode_normal_below_layer, mode_below }, float(m_config.slice_closing_radius.value) };
layers = slice_mesh_ex(mesh.its, z, params, [print]() { print->throw_if_canceled(); });
m_print->throw_if_canceled();
}
}
return layers;
}
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, const ModelVolume &volume) const
{
std::vector<ExPolygons> layers;
if (! z.empty()) {
// Compose mesh.
//FIXME better to split the mesh into separate shells, perform slicing over each shell separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volume.mesh());
mesh.transform(volume.get_matrix(), true);
if (mesh.repaired)
fix_mesh_connectivity(mesh);
if (mesh.stl.stats.number_of_facets > 0) {
mesh.transform(m_trafo, true);
// apply XY shift
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// perform actual slicing
const Print *print = this->print();
// TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices();
MeshSlicingParamsEx params;
params.mode = mode;
params.closing_radius = float(m_config.slice_closing_radius.value);
layers = slice_mesh_ex(mesh.its, z, params, [print](){ print->throw_if_canceled(); });
m_print->throw_if_canceled();
}
}
return layers;
}
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, MeshSlicingParams::SlicingMode mode, const ModelVolume &volume) const
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
// All layers fit into a single range.
out = this->slice_volume(z, mode, volume);
} else {
std::vector<float> z_filtered;
std::vector<std::pair<size_t, size_t>> n_filtered;
z_filtered.reserve(z.size());
n_filtered.reserve(2 * ranges.size());
size_t i = 0;
for (const t_layer_height_range &range : ranges) {
for (; i < z.size() && z[i] < range.first; ++ i) ;
size_t first = i;
for (; i < z.size() && z[i] < range.second; ++ i)
z_filtered.emplace_back(z[i]);
if (i > first)
n_filtered.emplace_back(std::make_pair(first, i));
}
if (! n_filtered.empty()) {
std::vector<ExPolygons> layers = this->slice_volume(z_filtered, mode, volume);
out.assign(z.size(), ExPolygons());
i = 0;
for (const std::pair<size_t, size_t> &span : n_filtered)
for (size_t j = span.first; j < span.second; ++ j)
out[j] = std::move(layers[i ++]);
}
}
}
return out;
}
std::string PrintObject::_fix_slicing_errors()
{
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(m_layers.size());
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
if (m_layers[idx_layer]->slicing_errors)
buggy_layers.push_back(idx_layer);
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
m_print->throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
Layer *layer = m_layers[idx_layer];
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
if (! m_layers[j]->slicing_errors) {
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
break;
}
for (int j = int(idx_layer) - 1; j >= 0; -- j)
if (! m_layers[j]->slicing_errors) {
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
break;
}
// Collect outer contours and holes from the valid layers above & below.
Polygons outer;
outer.reserve(
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
size_t num_holes = 0;
if (upper_surfaces)
for (const auto &surface : *upper_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
if (lower_surfaces)
for (const auto &surface : *lower_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
Polygons holes;
holes.reserve(num_holes);
if (upper_surfaces)
for (const auto &surface : *upper_surfaces)
polygons_append(holes, surface.expolygon.holes);
if (lower_surfaces)
for (const auto &surface : *lower_surfaces)
polygons_append(holes, surface.expolygon.holes);
layerm->slices.set(diff_ex(union_(outer), holes), stInternal);
}
// Update layer slices after repairing the single regions.
layer->make_slices();
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
delete m_layers.front();
m_layers.erase(m_layers.begin());
m_layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < m_layers.size(); ++ i)
m_layers[i]->set_id(m_layers[i]->id() - 1);
}
return buggy_layers.empty() ? "" :
"The model has overlapping or self-intersecting facets. I tried to repair it, "
"however you might want to check the results or repair the input file and retry.\n";
}
// Simplify the sliced model, if "resolution" configuration parameter > 0.
// The simplification is problematic, because it simplifies the slices independent from each other,
// which makes the simplified discretization visible on the object surface.
void PrintObject::simplify_slices(double distance)
{
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, distance](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_idx];
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
layer->m_regions[region_idx]->slices.simplify(distance);
{
ExPolygons simplified;
for (const ExPolygon &expoly : layer->lslices)
expoly.simplify(distance, &simplified);
layer->lslices = std::move(simplified);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
}
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.

View File

@ -1,5 +1,7 @@
#include "Print.hpp"
#include "ElephantFootCompensation.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include <boost/log/trivial.hpp>
@ -10,22 +12,21 @@
namespace Slic3r {
static inline LayerPtrs new_layers(
LayerPtrs new_layers(
PrintObject *print_object,
// Object layers (pairs of bottom/top Z coordinate), without the raft.
const std::vector<coordf_t> &object_layers,
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
size_t first_layer_id)
const std::vector<coordf_t> &object_layers)
{
LayerPtrs out;
out.reserve(object_layers.size());
auto id = int(first_layer_id);
Layer *prev = nullptr;
auto id = int(print_object->slicing_parameters().raft_layers());
coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
out.emplace_back(layer);
if (prev != nullptr) {
prev->upper_layer = layer;
@ -36,7 +37,7 @@ static inline LayerPtrs new_layers(
return out;
}
template<LayerContainer>
template<typename LayerContainer>
static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
{
std::vector<float> zs;
@ -47,57 +48,38 @@ static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
}
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
static void fix_mesh_connectivity(TriangleMesh &mesh)
// This function will go away once we get rid of admesh from ModelVolume.
static indexed_triangle_set get_mesh_its_fix_mesh_connectivity(TriangleMesh mesh)
{
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
assert(mesh.repaired && mesh.has_shared_vertices());
if (mesh.stl.stats.number_of_facets > 0) {
assert(mesh.repaired && mesh.has_shared_vertices());
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
} else
mesh.its.clear();
return std::move(mesh.its);
}
struct SliceVolumeParams
{
const SlicingMode mode { SlicingMode::Regular };
// For vase mode: below this layer a different slicing mode will be used to produce a single contour.
// 0 = ignore.
const size_t slicing_mode_normal_below_layer { 0 };
// Mode to apply below slicing_mode_normal_below_layer. Ignored if slicing_mode_nromal_below_layer == 0.
const SlicingMode mode_below { SlicingMode::Regular };
// Morphological closing operation when creating output expolygons.
const float closing_radius { 0 };
// Positive offset applied when creating output expolygons.
const float extra_offset { 0 };
// Resolution for contour simplification.
// 0 = don't simplify.
const double resolution { 0 };
// Transformation of the object owning the ModelVolume.
Transform3d object_trafo;
};
// Slice single triangle mesh.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &z,
const SliceVolumeParams &params,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const ModelVolume &volume,
const std::vector<float> &zs,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> layers;
if (! z.empty()) {
TriangleMesh mesh(volume.mesh());
mesh.transform(params.object_trafo * volume.get_matrix(), true);
if (mesh.repaired)
fix_mesh_connectivity(mesh);
if (mesh.stl.stats.number_of_facets > 0) {
// perform actual slicing
TriangleMeshSlicer mesh_slicer;
// TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices();
mesh_slicer.init(&mesh, throw_on_cancel_callback);
//FIXME simplify contours
mesh_slicer.slice(z, mode, params.slicing_mode_normal_below_layer, params.mode_below, params.closing_radius, params.extra_offset, &layers, throw_on_cancel_callback);
if (! zs.empty()) {
indexed_triangle_set its = get_mesh_its_fix_mesh_connectivity(volume.mesh());
if (its.indices.size() > 0) {
MeshSlicingParamsEx params2 { params };
params2.trafo = params2.trafo * volume.get_matrix();
if (params2.trafo.rotation().determinant() < 0.)
its_flip_triangles(its);
layers = slice_mesh_ex(its, zs, params, throw_on_cancel_callback);
throw_on_cancel_callback();
}
}
@ -107,11 +89,11 @@ static std::vector<ExPolygons> slice_volume(
// Slice single triangle mesh.
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &z,
const std::vector<t_layer_height_range> &ranges,
const SliceVolumeParams &params,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const ModelVolume &volume,
const std::vector<float> &z,
const std::vector<t_layer_height_range> &ranges,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
@ -161,14 +143,14 @@ static inline bool model_volume_needs_slicing(const ModelVolume &mv)
// Apply closing radius.
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
// Apply contour simplification.
static std::vector<VolumeSlices> slice_volumes(
static std::vector<VolumeSlices> slice_volumes_inner(
const PrintConfig &print_config,
const PrintObjectConfig &print_object_config,
const Transform3d &object_trafo,
ModelVolumePtrs model_volumes,
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges;
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
const std::vector<float> &zs,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
@ -179,32 +161,32 @@ static std::vector<VolumeSlices> slice_volumes(
if (layer_ranges.size() > 1)
slicing_ranges.reserve(layer_ranges.size());
SliceVolumeParams params_base;
MeshSlicingParamsEx params_base;
params_base.closing_radius = float(print_object_config.slice_closing_radius.value);
params_base.extra_offset = 0;
params_base.object_trafo = object_trafo;
params_base.resolution = print_config.resolution;
params_base.trafo = object_trafo;
params_base.resolution = scaled<double>(print_config.resolution.value);
const float extra_offset = print_object_config.xy_size_compensation > 0 ? float(print_object_config.xy_size_compensation.value) : 0.f;
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_slicing(*model_volume)) {
SliceVolumeParams params { params_base };
MeshSlicingParamsEx params { params_base };
if (! model_volume->is_negative_volume())
params.extra_offset = extra_ofset;
params.extra_offset = extra_offset;
if (layer_ranges.size() == 1) {
if (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
if (model_volume->is_model_part() && print_config.spiral_vase) {
auto it = std::find_first(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
params.mode = SlicingMode::PositiveLargestContour;
params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
// Slice the bottom layers with SlicingMode::Regular.
// This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
params.mode_below = SlicingMode::Regular;
params.mode_below = MeshSlicingParams::SlicingMode::Regular;
const PrintRegionConfig &region_config = it->region->config();
slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
for (; slicing_mode_normal_below_layer < zs.size() && zs[slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
++ slicing_mode_normal_below_layer);
params.slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
++ params.slicing_mode_normal_below_layer);
}
out.push_back({
model_volume->id(),
@ -212,7 +194,7 @@ static std::vector<VolumeSlices> slice_volumes(
});
}
} else {
assert(! spiral_vase);
assert(! print_config.spiral_vase);
slicing_ranges.clear();
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
if (layer_range.has_volume(model_volume->id()))
@ -249,7 +231,7 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
// It is up to the model designer to handle these overlaps.
const bool clip_multipart_objects,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
@ -263,13 +245,13 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
if (layer_range.volume_regions.empty()) {
} else if (layer_range.volume_regions.size() == 1) {
const ModelVolume *model_volume = layer_range.volume_regions.model_volume;
const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
assert(model_volume != nullptr);
if (model_volume->is_model_part()) {
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
slices_dst[z_idx] = std::move(slices_src[z_idx]);
slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
}
} else {
zs_complex.reserve(zs.size());
@ -279,14 +261,14 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
bool complex = false;
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.bbox.min().z() >= z && region.bbox.max().z() <= z) {
if (region.bbox->min.z() >= z && region.bbox->max.z() <= z) {
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
idx_first_printable_region = idx_region;
else if (idx_first_printable_region != -1) {
// Test for overlap with some other region.
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
if (region2.bbox.min().z() >= z && region2.bbox.max().z() <= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
if (region2.bbox->min.z() >= z && region2.bbox->max.z() <= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
complex = true;
break;
}
@ -312,15 +294,15 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
VolumeSlices* volume_slices;
int prev_same_region { -1 };
};
std::vector<std::vector<SliceEntry>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
std::vector<std::vector<SliceEntry>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<SliceEntry>());
std::vector<int> last_volume_idx_of_region;
for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
std::vector<SliceEntry> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
last_volume_idx_of_region.assign(print_object_regions.layer_ranges.all_regions.size(), -1);
for (PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions) {
last_volume_idx_of_region.assign(print_object_regions.all_regions.size(), -1);
for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions) {
int region_id = region.region->print_object_region_id();
layer_range_regions_to_slices.emplace_back({ &volume_slices_find_by_id(volume_slices, region.model_volume->id()), last_volume_idx_of_region[region_id] });
layer_range_regions_to_slices.emplace_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()), last_volume_idx_of_region[region_id]);
last_volume_idx_of_region[region_id] = &region - layer_range.volume_regions.data();
}
}
@ -328,9 +310,9 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
tbb::blocked_range<size_t>(0, zs_complex.size()),
[&slices_by_region, &model_volumes, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
(const tbb::blocked_range<size_t> &range) {
float z = zs_complex[*range.begin()];
it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(),
[z](const PrintObjectRegions::LayerRangeRegions &lr){ lr.layer_height_range.first < z; });
float z = zs_complex[range.begin()];
auto it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(),
[z](const PrintObjectRegions::LayerRangeRegions &lr){ return lr.layer_height_range.first < z; });
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
// Per volume_regions slices at this Z height.
struct RegionSlice {
@ -351,13 +333,13 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
{
SliceEntry &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
std::vector<SliceEntry> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
// Per volume_regions slices at thiz Z height.
temp_slices.clear();
temp_slices.reserve(layer_range.volume_regions.size());
for (VolumeSlices *slices : layer_range_regions_to_slices.volume_slices) {
const PrintRegion *region = layer_range.volume_regions[i].region;
temp_slices.push_back({ std::move(slices->slices[idx_z]), region ? region->print_object_region_id() : -1, slices->volume_id });
for (SliceEntry &slices : layer_range_regions_to_slices) {
const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
temp_slices.push_back({ std::move(slices.volume_slices->slices[idx_z]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
}
}
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
@ -365,16 +347,16 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.model_volume->is_modifier()) {
assert(region.parent > -1);
bool next_region_same_modifier = idx_region + 1 < temp_slices.size() && layer_range.volume_regions[idx_region + 1]->model_volume == region.model_volume;
bool next_region_same_modifier = idx_region + 1 < temp_slices.size() && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
if (next_region_same_modifier)
temp_slices[idx_region + 1] = std::move(temp_slices[idx_region]);
ExPolygons &parent_slice = temp_slices[region.parent];
ExPolygons &this_slice = temp_slices[idx_region];
RegionSlice &parent_slice = temp_slices[region.parent];
RegionSlice &this_slice = temp_slices[idx_region];
if (parent_slice.empty())
this_slice.clear();
this_slice.expolygons.clear();
else {
ExPolygons &source_slice = temp_slices[idx_region + int(next_region_same_modifier)];
this_slice = intersection_ex(parent_slice, source_slice);
RegionSlice &source_slice = temp_slices[idx_region + int(next_region_same_modifier)];
this_slice.expolygons = intersection_ex(parent_slice.expolygons, source_slice.expolygons);
}
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
// Clip every non-zero region preceding it.
@ -382,15 +364,14 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
if (! temp_slices[idx_region2].empty()) {
if (const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region];
! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
temp_slices[idx_region] = diff_ex(temp_slices[idx_region], temp_slices[idx_region2]);
temp_slices[idx_region].expolygons = diff_ex(temp_slices[idx_region].expolygons, temp_slices[idx_region2].expolygons);
}
}
}
}
// Sort by region_id, push empty slices to the end.
std::sort(temp_slices.begin(), temp_slices.end());
// Remove the empty slices.
temp_slices.erase(temp_slices.begin(), std::find_first(temp_slices.begin(), temp_slices.end(), [](const auto &slice){ return slice.empty(); }));
temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.empty(); }), temp_slices.end());
// Merge slices and store them to the output.
for (int i = 0; i < temp_slices.size();) {
// Find a range of temp_slices with the same region_id.
@ -411,15 +392,15 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
}
if (merged)
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
slices_by_region[temp_slices[i].region_id][idx_z] = std::move(expolygons);
i = j;
}
}
});
}
}
}
#if 0
// Z ranges are not applicable to modifier meshes, therefore a single volume will be found in volume_w_zrange at most once.
std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
{
@ -467,7 +448,7 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
if (volume->is_modifier())
volumes.emplace_back(volume);
}
out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes);
out = this->slice_volumes(slice_zs, MeshSlicingParams::SlicingMode::Regular, volumes);
} else {
// Some modifier in this region was split to layer spans.
std::vector<char> merge;
@ -485,7 +466,7 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j)
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
// slicing in parallel
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume);
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, MeshSlicingParams::SlicingMode::Regular, *model_volume);
// Variable this_slices could be empty if no value of slice_zs is within any of the ranges of this volume.
if (out.empty()) {
out = std::move(this_slices);
@ -515,41 +496,42 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
return out;
}
#endif
std::string PrintObject::_fix_slicing_errors()
std::string fix_slicing_errors(LayerPtrs &layers, const std::function<void()> &throw_if_canceled)
{
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(m_layers.size());
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
if (m_layers[idx_layer]->slicing_errors)
buggy_layers.reserve(layers.size());
for (size_t idx_layer = 0; idx_layer < layers.size(); ++ idx_layer)
if (layers[idx_layer]->slicing_errors)
buggy_layers.push_back(idx_layer);
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
[&layers, &throw_if_canceled, &buggy_layers](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
m_print->throw_if_canceled();
throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
Layer *layer = m_layers[idx_layer];
Layer *layer = layers[idx_layer];
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
LayerRegion *layerm = layer->get_region(region_id);
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
if (! m_layers[j]->slicing_errors) {
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
for (size_t j = idx_layer + 1; j < layers.size(); ++ j)
if (! layers[j]->slicing_errors) {
upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
for (int j = int(idx_layer) - 1; j >= 0; -- j)
if (! m_layers[j]->slicing_errors) {
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
if (! layers[j]->slicing_errors) {
lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
// Collect outer contours and holes from the valid layers above & below.
@ -582,16 +564,16 @@ std::string PrintObject::_fix_slicing_errors()
layer->make_slices();
}
});
m_print->throw_if_canceled();
throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
delete m_layers.front();
m_layers.erase(m_layers.begin());
m_layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < m_layers.size(); ++ i)
m_layers[i]->set_id(m_layers[i]->id() - 1);
while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
delete layers.front();
layers.erase(layers.begin());
layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < layers.size(); ++ i)
layers[i]->set_id(layers[i]->id() - 1);
}
return buggy_layers.empty() ? "" :
@ -599,31 +581,6 @@ std::string PrintObject::_fix_slicing_errors()
"however you might want to check the results or repair the input file and retry.\n";
}
// Simplify the sliced model, if "resolution" configuration parameter > 0.
// The simplification is problematic, because it simplifies the slices independent from each other,
// which makes the simplified discretization visible on the object surface.
void PrintObject::simplify_slices(double distance)
{
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, distance](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_idx];
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
layer->m_regions[region_idx]->slices.simplify(distance);
{
ExPolygons simplified;
for (const ExPolygon &expoly : layer->lslices)
expoly.simplify(distance, &simplified);
layer->lslices = std::move(simplified);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
}
// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
@ -642,12 +599,12 @@ void PrintObject::slice()
m_print->throw_if_canceled();
m_typed_slices = false;
this->clear_layers();
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile), m_slicing_params.raft_layers());
this->_slice();
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile));
this->slice_volumes();
m_print->throw_if_canceled();
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
std::string warning = this->_fix_slicing_errors();
std::string warning = fix_slicing_errors(m_layers, [this](){ m_print->throw_if_canceled(); });
m_print->throw_if_canceled();
if (! warning.empty())
BOOST_LOG_TRIVIAL(info) << warning;
@ -682,16 +639,17 @@ void PrintObject::slice()
void PrintObject::slice_volumes()
{
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
bool spiral_vase = this->print()->config().spiral_vase;
auto throw_on_cancel_callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
const Print* print = this->print();
const bool spiral_vase = print->config().spiral_vase;
const auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
std::vector<float> slice_zs = zs_from_layers(m_layers);
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs,
slice_volumes(
this->print()->config(), this->config(),
this->model_object()->volumes, m_shared_regions->layer_ranges, m_center_offset, slice_zs, SlicingMode::Regular, spiral_vase, throw_on_cancel_callback),
Transform3d trafo = this->trafo();
trafo.pretranslate(Vec3d(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0));
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
slice_volumes_inner(
print->config(), this->config(), trafo,
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback),
m_config.clip_multipart_objects,
throw_on_cancel_callback);
@ -702,6 +660,7 @@ void PrintObject::slice_volumes()
}
region_slices.clear();
#if 0
// Second clip the volumes in the order they are presented at the user interface.
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - start";
tbb::parallel_for(
@ -750,7 +709,8 @@ void PrintObject::slice_volumes()
clipped = true;
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
}
#endif
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
@ -864,9 +824,9 @@ void PrintObject::slice_volumes()
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
{
size_t it_volume = this->model_object()->volumes.begin();
size_t it_volume_end = this->model_object()->volumes.end();
for (; it_volume->type() != model_volume_type && it_volume != it_volume_end; ++ it_volume) ;
auto it_volume = this->model_object()->volumes.begin();
auto it_volume_end = this->model_object()->volumes.end();
for (; (*it_volume)->type() != model_volume_type && it_volume != it_volume_end; ++ it_volume) ;
std::vector<ExPolygons> slices;
if (it_volume != it_volume_end) {
// Found at least a single support volume of model_volume_type.
@ -874,10 +834,10 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
std::vector<char> merge_layers;
bool merge = false;
const Print *print = this->print();
auto throw_on_cancel_callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
for (; it_volume != it_volume_end; ++ it_volume; it_volume != it_volume_end)
if (it_volume->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, SlicingMode::Regular, throw_on_cancel_callback);
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
for (; it_volume != it_volume_end; ++ it_volume)
if ((*it_volume)->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, MeshSlicingParamsEx{}, throw_on_cancel_callback);
if (slices.empty())
slices = std::move(slices2);
else if (! slices2.empty()) {
@ -896,7 +856,7 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
}
if (merge) {
std::vector<ExPolygons*> to_merge;
to_merge.reserve(zs);
to_merge.reserve(zs.size());
for (size_t i = 0; i < zs.size(); ++ i)
if (merge_layers[i])
to_merge.emplace_back(&slices[i]);
@ -904,7 +864,7 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
tbb::blocked_range<size_t>(0, to_merge.size()),
[&to_merge](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++ i)
to_merge[i] = union_ex(to_merge[i]);
*to_merge[i] = union_ex(*to_merge[i]);
});
}
}

View File

@ -842,6 +842,12 @@ int its_merge_vertices(indexed_triangle_set &its, bool shrink_to_fit)
return num_erased;
}
void its_flip_triangles(indexed_triangle_set &its)
{
for (stl_triangle_vertex_indices &face : its.indices)
std::swap(face(1), face(2));
}
int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit)
{
int last = 0;

View File

@ -99,6 +99,9 @@ std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangl
std::vector<Vec3i> create_face_neighbors_index(const indexed_triangle_set &its);
std::vector<Vec3i> create_face_neighbors_index(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback);
// After applying a transformation with negative determinant, flip the faces to keep the transformed mesh volume positive.
void its_flip_triangles(indexed_triangle_set &its);
// Merge duplicate vertices, return number of vertices removed.
// This function will happily create non-manifolds if more than two faces share the same vertex position
// or more than two faces share the same edge position!