Zipper implementation in gui level for png export.

This commit is contained in:
tamasmeszaros 2018-09-19 11:08:10 +02:00
parent 51d504c720
commit 7708fb8ada
3 changed files with 463 additions and 56 deletions

View File

@ -7,10 +7,6 @@
#include <fstream>
#include <sstream>
//#include <wx/stdstream.h>
//#include <wx/wfstream.h>
//#include <wx/zipstrm.h>
#include <boost/log/trivial.hpp>
#include "Rasterizer/Rasterizer.hpp"
@ -81,14 +77,12 @@ template<class Backend> class Zipper {
public:
Zipper(const std::string& /*zipfile_path*/) {
// static_assert(Backend>::value,
// "No zipper implementation provided!");
static_assert(VeryFalse<Backend>::value,
"No zipper implementation provided!");
}
void next_entry(const std::string& /*fname*/) {}
bool is_ok() { return false; }
std::string get_name() { return ""; }
template<class T> Zipper& operator<<(const T& /*arg*/) {
@ -208,17 +202,11 @@ public:
}
inline void save(const std::string& path) {
try {
Zipper<LyrFormat> zipper(path);
std::string project = zipper.get_name();
if(!zipper.is_ok()) {
BOOST_LOG_TRIVIAL(error) << "Can't create zip file for layers! "
<< path;
return;
}
zipper.next_entry(project);
zipper << createIniContent(project);
@ -234,6 +222,11 @@ public:
}
zipper.close();
} catch(std::exception&) {
BOOST_LOG_TRIVIAL(error) << "Can't create zip file for layers! "
<< path;
return;
}
// wxFileName filepath(path);
@ -294,7 +287,7 @@ inline coord_t py(const Point& p) { return p(1); }
inline coordf_t px(const Vec2d& p) { return p(0); }
inline coordf_t py(const Vec2d& p) { return p(1); }
template<FilePrinterFormat format, class...Args>
template<FilePrinterFormat format, class LayerFormat, class...Args>
void print_to(Print& print,
std::string dirpath,
double width_mm,
@ -312,7 +305,9 @@ void print_to(Print& print,
auto& objects = print.objects();
// Merge the sliced layers with the support layers
std::for_each(objects.cbegin(), objects.cend(), [&layers](const PrintObject *o) {
std::for_each(objects.cbegin(), objects.cend(),
[&layers](const PrintObject *o)
{
for(const auto l : o->layers()) {
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
lyrs.push_back(l);
@ -339,7 +334,7 @@ void print_to(Print& print,
auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
// Create the actual printer, forward any additional arguments to it.
FilePrinter<format> printer(width_mm, height_mm,
FilePrinter<format, LayerFormat> printer(width_mm, height_mm,
std::forward<Args>(args)...);
printer.printConfig(print);
@ -354,14 +349,11 @@ void print_to(Print& print,
keys.reserve(layers.size());
for(auto& e : layers) keys.push_back(e.first);
//FIXME
int initstatus = //print.progressindicator? print.progressindicator->state() :
0;
print.set_status(initstatus, jobdesc);
print.set_status(0, jobdesc);
// Method that prints one layer
auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
&jobdesc, print_bb, dir, cx, cy, &print, initstatus]
&jobdesc, print_bb, dir, cx, cy, &print]
(unsigned layer_id)
{
LayerPtrs lrange = layers[keys[layer_id]];
@ -405,7 +397,7 @@ void print_to(Print& print,
auto st = static_cast<int>(layer_id*80.0/layers.size());
m.lock();
if( st - st_prev > 10) {
print.set_status(initstatus + st, jobdesc);
print.set_status(st, jobdesc);
st_prev = st;
}
m.unlock();
@ -424,9 +416,9 @@ void print_to(Print& print,
// print.set_status(100, jobdesc);
// Save the print into the file system.
print.set_status(initstatus + 90, "Writing layers to disk");
print.set_status(90, "Writing layers to disk");
printer.save(dir);
print.set_status(initstatus + 100, "Writing layers completed");
print.set_status(100, "Writing layers completed");
}
}

View File

@ -11,12 +11,17 @@
#include <ModelArrange.hpp>
#include <slic3r/GUI/PresetBundle.hpp>
#include <Geometry.hpp>
#include <PrintConfig.hpp>
#include <Print.hpp>
#include <PrintExport.hpp>
#include <Geometry.hpp>
#include <Model.hpp>
#include <Utils.hpp>
#include <wx/stdstream.h>
#include <wx/wfstream.h>
#include <wx/zipstrm.h>
namespace Slic3r {
class AppControllerBoilerplate::PriData {
@ -43,6 +48,15 @@ namespace GUI {
PresetBundle* get_preset_bundle();
}
static const PrintObjectStep STEP_SLICE = posSlice;
static const PrintObjectStep STEP_PERIMETERS = posPerimeters;
static const PrintObjectStep STEP_PREPARE_INFILL = posPrepareInfill;
static const PrintObjectStep STEP_INFILL = posInfill;
static const PrintObjectStep STEP_SUPPORTMATERIAL = posSupportMaterial;
static const PrintStep STEP_SKIRT = psSkirt;
static const PrintStep STEP_BRIM = psBrim;
static const PrintStep STEP_WIPE_TOWER = psWipeTower;
AppControllerBoilerplate::ProgresIndicatorPtr
AppControllerBoilerplate::global_progress_indicator() {
ProgresIndicatorPtr ret;
@ -62,6 +76,376 @@ void AppControllerBoilerplate::global_progress_indicator(
pri_data_->m.unlock();
}
//void PrintController::make_skirt()
//{
// assert(print_ != nullptr);
// // prerequisites
// for(auto obj : print_->objects) make_perimeters(obj);
// for(auto obj : print_->objects) infill(obj);
// for(auto obj : print_->objects) gen_support_material(obj);
// if(!print_->state.is_done(STEP_SKIRT)) {
// print_->state.set_started(STEP_SKIRT);
// print_->skirt.clear();
// if(print_->has_skirt()) print_->_make_skirt();
// print_->state.set_done(STEP_SKIRT);
// }
//}
//void PrintController::make_brim()
//{
// assert(print_ != nullptr);
// // prerequisites
// for(auto obj : print_->objects) make_perimeters(obj);
// for(auto obj : print_->objects) infill(obj);
// for(auto obj : print_->objects) gen_support_material(obj);
// make_skirt();
// if(!print_->state.is_done(STEP_BRIM)) {
// print_->state.set_started(STEP_BRIM);
// // since this method must be idempotent, we clear brim paths *before*
// // checking whether we need to generate them
// print_->brim.clear();
// if(print_->config.brim_width > 0) print_->_make_brim();
// print_->state.set_done(STEP_BRIM);
// }
//}
//void PrintController::make_wipe_tower()
//{
// assert(print_ != nullptr);
// // prerequisites
// for(auto obj : print_->objects) make_perimeters(obj);
// for(auto obj : print_->objects) infill(obj);
// for(auto obj : print_->objects) gen_support_material(obj);
// make_skirt();
// make_brim();
// if(!print_->state.is_done(STEP_WIPE_TOWER)) {
// print_->state.set_started(STEP_WIPE_TOWER);
// // since this method must be idempotent, we clear brim paths *before*
// // checking whether we need to generate them
// print_->brim.clear();
// if(print_->has_wipe_tower()) print_->_make_wipe_tower();
// print_->state.set_done(STEP_WIPE_TOWER);
// }
//}
//void PrintController::slice(PrintObject *pobj)
//{
// assert(pobj != nullptr && print_ != nullptr);
// if(pobj->state.is_done(STEP_SLICE)) return;
// pobj->state.set_started(STEP_SLICE);
// pobj->_slice();
// auto msg = pobj->_fix_slicing_errors();
// if(!msg.empty()) report_issue(IssueType::WARN, msg);
// // simplify slices if required
// if (print_->config.resolution)
// pobj->_simplify_slices(scale_(print_->config.resolution));
// if(pobj->layers.empty())
// report_issue(IssueType::ERR,
// L("No layers were detected. You might want to repair your "
// "STL file(s) or check their size or thickness and retry")
// );
// pobj->state.set_done(STEP_SLICE);
//}
//void PrintController::make_perimeters(PrintObject *pobj)
//{
// assert(pobj != nullptr);
// slice(pobj);
// if (!pobj->state.is_done(STEP_PERIMETERS)) {
// pobj->_make_perimeters();
// }
//}
//void PrintController::infill(PrintObject *pobj)
//{
// assert(pobj != nullptr);
// make_perimeters(pobj);
// if (!pobj->state.is_done(STEP_PREPARE_INFILL)) {
// pobj->state.set_started(STEP_PREPARE_INFILL);
// pobj->_prepare_infill();
// pobj->state.set_done(STEP_PREPARE_INFILL);
// }
// pobj->_infill();
//}
//void PrintController::gen_support_material(PrintObject *pobj)
//{
// assert(pobj != nullptr);
// // prerequisites
// slice(pobj);
// if(!pobj->state.is_done(STEP_SUPPORTMATERIAL)) {
// pobj->state.set_started(STEP_SUPPORTMATERIAL);
// pobj->clear_support_layers();
// if((pobj->config.support_material || pobj->config.raft_layers > 0)
// && pobj->layers.size() > 1) {
// pobj->_generate_support_material();
// }
// pobj->state.set_done(STEP_SUPPORTMATERIAL);
// }
//}
PrintController::PngExportData
PrintController::query_png_export_data(const DynamicPrintConfig& conf)
{
PngExportData ret;
auto zippath = query_destination_path("Output zip file", "*.zip", "out");
ret.zippath = zippath;
ret.width_mm = conf.opt_float("display_width");
ret.height_mm = conf.opt_float("display_height");
ret.width_px = conf.opt_int("display_pixels_x");
ret.height_px = conf.opt_int("display_pixels_y");
auto opt_corr = conf.opt<ConfigOptionFloats>("printer_correction");
if(opt_corr) {
ret.corr_x = opt_corr->values[0];
ret.corr_y = opt_corr->values[1];
ret.corr_z = opt_corr->values[2];
}
ret.exp_time_first_s = conf.opt_float("initial_exposure_time");
ret.exp_time_s = conf.opt_float("exposure_time");
return ret;
}
void PrintController::slice(AppControllerBoilerplate::ProgresIndicatorPtr pri)
{
auto st = pri->state();
Slic3r::trace(3, "Starting the slicing process.");
pri->update(st+20, L("Generating perimeters"));
// for(auto obj : print_->objects) make_perimeters(obj);
pri->update(st+60, L("Infilling layers"));
// for(auto obj : print_->objects) infill(obj);
pri->update(st+70, L("Generating support material"));
// for(auto obj : print_->objects) gen_support_material(obj);
// pri->message_fmt(L("Weight: %.1fg, Cost: %.1f"),
// print_->total_weight, print_->total_cost);
pri->state(st+85);
pri->update(st+88, L("Generating skirt"));
make_skirt();
pri->update(st+90, L("Generating brim"));
make_brim();
pri->update(st+95, L("Generating wipe tower"));
make_wipe_tower();
pri->update(st+100, L("Done"));
// time to make some statistics..
Slic3r::trace(3, L("Slicing process finished."));
}
void PrintController::slice()
{
auto pri = global_progress_indicator();
if(!pri) pri = create_progress_indicator(100, L("Slicing"));
slice(pri);
}
struct wxZipper {};
template<> class Zipper<wxZipper> {
wxFileName m_fpath;
wxFFileOutputStream m_zipfile;
wxZipOutputStream m_zipstream;
wxStdOutputStream m_pngstream;
public:
Zipper(const std::string& zipfile_path):
m_fpath(zipfile_path),
m_zipfile(zipfile_path),
m_zipstream(m_zipfile),
m_pngstream(m_zipstream)
{
if(!m_zipfile.IsOk())
throw std::runtime_error(L("Cannot create zip file."));
}
void next_entry(const std::string& fname) {
m_zipstream.PutNextEntry(fname);
}
std::string get_name() {
return m_fpath.GetName().ToStdString();
}
template<class T> Zipper& operator<<(const T& arg) {
m_pngstream << arg; return *this;
}
void close() {
m_zipstream.Close();
m_zipfile.Close();
}
};
void PrintController::slice_to_png()
{
using Pointf3 = Vec3d;
auto presetbundle = GUI::get_preset_bundle();
assert(presetbundle);
auto pt = presetbundle->printers.get_selected_preset().printer_technology();
if(pt != ptSLA) {
report_issue(IssueType::ERR, L("Printer technology is not SLA!"),
L("Error"));
return;
}
auto conf = presetbundle->full_config();
conf.validate();
auto exd = query_png_export_data(conf);
if(exd.zippath.empty()) return;
Print *print = print_;
try {
print->apply_config(conf);
print->validate();
} catch(std::exception& e) {
report_issue(IssueType::ERR, e.what(), "Error");
return;
}
// TODO: copy the model and work with the copy only
bool correction = false;
if(exd.corr_x != 1.0 || exd.corr_y != 1.0 || exd.corr_z != 1.0) {
correction = true;
// print->invalidate_all_steps();
// for(auto po : print->objects) {
// po->model_object()->scale(
// Pointf3(exd.corr_x, exd.corr_y, exd.corr_z)
// );
// po->model_object()->invalidate_bounding_box();
// po->reload_model_instances();
// po->invalidate_all_steps();
// }
}
// Turn back the correction scaling on the model.
auto scale_back = [this, print, correction, exd]() {
if(correction) { // scale the model back
// print->invalidate_all_steps();
// for(auto po : print->objects) {
// po->model_object()->scale(
// Pointf3(1.0/exd.corr_x, 1.0/exd.corr_y, 1.0/exd.corr_z)
// );
// po->model_object()->invalidate_bounding_box();
// po->reload_model_instances();
// po->invalidate_all_steps();
// }
}
};
auto print_bb = print->bounding_box();
Vec2d punsc = unscale(print_bb.size());
// If the print does not fit into the print area we should cry about it.
if(px(punsc) > exd.width_mm || py(punsc) > exd.height_mm) {
std::stringstream ss;
ss << L("Print will not fit and will be truncated!") << "\n"
<< L("Width needed: ") << px(punsc) << " mm\n"
<< L("Height needed: ") << py(punsc) << " mm\n";
if(!report_issue(IssueType::WARN_Q, ss.str(), L("Warning"))) {
scale_back();
return;
}
}
auto pri = create_progress_indicator(
200, L("Slicing to zipped png files..."));
pri->on_cancel([&print](){ print->cancel(); });
try {
pri->update(0, L("Slicing..."));
slice(pri);
} catch (std::exception& e) {
report_issue(IssueType::ERR, e.what(), L("Exception occurred"));
scale_back();
if(print->canceled()) print->restart();
return;
}
auto initstate = unsigned(pri->state());
print->set_status_callback([pri, initstate](int st, const std::string& msg)
{
pri->update(initstate + unsigned(st), msg);
});
try {
print_to<FilePrinterFormat::PNG, wxZipper>( *print, exd.zippath,
exd.width_mm, exd.height_mm,
exd.width_px, exd.height_px,
exd.exp_time_s, exd.exp_time_first_s);
} catch (std::exception& e) {
report_issue(IssueType::ERR, e.what(), L("Exception occurred"));
}
scale_back();
if(print->canceled()) print->restart();
}
const PrintConfig &PrintController::config() const
{
return print_->config();
}
void ProgressIndicator::message_fmt(
const std::string &fmtstr, ...) {
std::stringstream ss;

View File

@ -165,12 +165,49 @@ protected:
ProgresIndicatorPtr global_progressind_;
};
#if 0
/**
* @brief Implementation of the printing logic.
*/
class PrintController: public AppControllerBoilerplate {
Print *print_ = nullptr;
std::function<void()> rempools_;
protected:
void make_skirt() {}
void make_brim() {}
void make_wipe_tower() {}
void make_perimeters(PrintObject *pobj) {}
void infill(PrintObject *pobj) {}
void gen_support_material(PrintObject *pobj) {}
// Data structure with the png export input data
struct PngExportData {
std::string zippath; // output zip file
unsigned long width_px = 1440; // resolution - rows
unsigned long height_px = 2560; // resolution columns
double width_mm = 68.0, height_mm = 120.0; // dimensions in mm
double exp_time_first_s = 35.0; // first exposure time
double exp_time_s = 8.0; // global exposure time
double corr_x = 1.0; // offsetting in x
double corr_y = 1.0; // offsetting in y
double corr_z = 1.0; // offsetting in y
};
// Should display a dialog with the input fields for printing to png
PngExportData query_png_export_data(const DynamicPrintConfig&);
// The previous export data, to pre-populate the dialog
PngExportData prev_expdata_;
/**
* @brief Slice one pront object.
* @param pobj The print object.
*/
void slice(PrintObject *pobj);
void slice(ProgresIndicatorPtr pri);
public:
// Must be public for perl to use it
@ -185,24 +222,18 @@ public:
return PrintController::Ptr( new PrintController(print) );
}
void slice() {}
void slice_to_png() {}
/**
* @brief Slice the loaded print scene.
*/
void slice();
/**
* @brief Slice the print into zipped png files.
*/
void slice_to_png();
const PrintConfig& config() const;
};
#else
class PrintController: public AppControllerBoilerplate {
public:
using Ptr = std::unique_ptr<PrintController>;
explicit inline PrintController(Print *print){}
inline static Ptr create(Print *print) {
return PrintController::Ptr( new PrintController(print) );
}
void slice() {}
void slice_to_png() {}
const PrintConfig& config() const { static PrintConfig cfg; return cfg; }
};
#endif
/**
* @brief Top level controller.