Merge branch 'tm_rotfinder'
This commit is contained in:
commit
7766c6ebc4
15 changed files with 929 additions and 293 deletions
|
@ -215,7 +215,9 @@ add_library(libslic3r STATIC
|
||||||
SimplifyMeshImpl.hpp
|
SimplifyMeshImpl.hpp
|
||||||
SimplifyMesh.cpp
|
SimplifyMesh.cpp
|
||||||
MarchingSquares.hpp
|
MarchingSquares.hpp
|
||||||
Optimizer.hpp
|
Optimize/Optimizer.hpp
|
||||||
|
Optimize/NLoptOptimizer.hpp
|
||||||
|
Optimize/BruteforceOptimizer.hpp
|
||||||
${OpenVDBUtils_SOURCES}
|
${OpenVDBUtils_SOURCES}
|
||||||
SLA/Pad.hpp
|
SLA/Pad.hpp
|
||||||
SLA/Pad.cpp
|
SLA/Pad.cpp
|
||||||
|
|
140
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
140
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
|
@ -0,0 +1,140 @@
|
||||||
|
#ifndef BRUTEFORCEOPTIMIZER_HPP
|
||||||
|
#define BRUTEFORCEOPTIMIZER_HPP
|
||||||
|
|
||||||
|
#include <libslic3r/Optimize/Optimizer.hpp>
|
||||||
|
|
||||||
|
namespace Slic3r { namespace opt {
|
||||||
|
|
||||||
|
namespace detail {
|
||||||
|
// Implementing a bruteforce optimizer
|
||||||
|
|
||||||
|
// Return the number of iterations needed to reach a specific grid position (idx)
|
||||||
|
template<size_t N>
|
||||||
|
long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
|
||||||
|
{
|
||||||
|
long ret = 0;
|
||||||
|
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Implementation of a grid search where the search interval is sampled in
|
||||||
|
// equidistant points for each dimension. Grid size determines the number of
|
||||||
|
// samples for one dimension so the number of function calls is gridsize ^ dimension.
|
||||||
|
struct AlgBurteForce {
|
||||||
|
bool to_min;
|
||||||
|
StopCriteria stc;
|
||||||
|
size_t gridsz;
|
||||||
|
|
||||||
|
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
|
||||||
|
|
||||||
|
// This function is called recursively for each dimension and generates
|
||||||
|
// the grid values for the particular dimension. If D is less than zero,
|
||||||
|
// the object function input values are generated for each dimension and it
|
||||||
|
// can be evaluated. The current best score is compared with the newly
|
||||||
|
// returned score and changed appropriately.
|
||||||
|
template<int D, size_t N, class Fn, class Cmp>
|
||||||
|
bool run(std::array<size_t, N> &idx,
|
||||||
|
Result<N> &result,
|
||||||
|
const Bounds<N> &bounds,
|
||||||
|
Fn &&fn,
|
||||||
|
Cmp &&cmp)
|
||||||
|
{
|
||||||
|
if (stc.stop_condition()) return false;
|
||||||
|
|
||||||
|
if constexpr (D < 0) { // Let's evaluate fn
|
||||||
|
Input<N> inp;
|
||||||
|
|
||||||
|
auto max_iter = stc.max_iterations();
|
||||||
|
if (max_iter && num_iter(idx, gridsz) >= max_iter)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
for (size_t d = 0; d < N; ++d) {
|
||||||
|
const Bound &b = bounds[d];
|
||||||
|
double step = (b.max() - b.min()) / (gridsz - 1);
|
||||||
|
inp[d] = b.min() + idx[d] * step;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto score = fn(inp);
|
||||||
|
if (cmp(score, result.score)) { // Change current score to the new
|
||||||
|
double absdiff = std::abs(score - result.score);
|
||||||
|
|
||||||
|
result.score = score;
|
||||||
|
result.optimum = inp;
|
||||||
|
|
||||||
|
// Check if the required precision is reached.
|
||||||
|
if (absdiff < stc.abs_score_diff() ||
|
||||||
|
absdiff < stc.rel_score_diff() * std::abs(score))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
} else {
|
||||||
|
for (size_t i = 0; i < gridsz; ++i) {
|
||||||
|
idx[D] = i; // Mark the current grid position and dig down
|
||||||
|
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||||
|
std::forward<Cmp>(cmp)))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Fn, size_t N>
|
||||||
|
Result<N> optimize(Fn&& fn,
|
||||||
|
const Input<N> &/*initvals*/,
|
||||||
|
const Bounds<N>& bounds)
|
||||||
|
{
|
||||||
|
std::array<size_t, N> idx = {};
|
||||||
|
Result<N> result;
|
||||||
|
|
||||||
|
if (to_min) {
|
||||||
|
result.score = std::numeric_limits<double>::max();
|
||||||
|
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||||
|
std::less<double>{});
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
result.score = std::numeric_limits<double>::lowest();
|
||||||
|
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||||
|
std::greater<double>{});
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace detail
|
||||||
|
|
||||||
|
using AlgBruteForce = detail::AlgBurteForce;
|
||||||
|
|
||||||
|
template<>
|
||||||
|
class Optimizer<AlgBruteForce> {
|
||||||
|
AlgBruteForce m_alg;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
|
||||||
|
: m_alg{cr, gridsz}
|
||||||
|
{}
|
||||||
|
|
||||||
|
Optimizer& to_max() { m_alg.to_min = false; return *this; }
|
||||||
|
Optimizer& to_min() { m_alg.to_min = true; return *this; }
|
||||||
|
|
||||||
|
template<class Func, size_t N>
|
||||||
|
Result<N> optimize(Func&& func,
|
||||||
|
const Input<N> &initvals,
|
||||||
|
const Bounds<N>& bounds)
|
||||||
|
{
|
||||||
|
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
|
||||||
|
}
|
||||||
|
|
||||||
|
Optimizer &set_criteria(const StopCriteria &cr)
|
||||||
|
{
|
||||||
|
m_alg.stc = cr; return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
const StopCriteria &get_criteria() const { return m_alg.stc; }
|
||||||
|
};
|
||||||
|
|
||||||
|
}} // namespace Slic3r::opt
|
||||||
|
|
||||||
|
#endif // BRUTEFORCEOPTIMIZER_HPP
|
|
@ -12,134 +12,11 @@
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include <utility>
|
#include <utility>
|
||||||
#include <tuple>
|
|
||||||
#include <array>
|
#include <libslic3r/Optimize/Optimizer.hpp>
|
||||||
#include <cmath>
|
|
||||||
#include <functional>
|
|
||||||
#include <limits>
|
|
||||||
#include <cassert>
|
|
||||||
|
|
||||||
namespace Slic3r { namespace opt {
|
namespace Slic3r { namespace opt {
|
||||||
|
|
||||||
// A type to hold the complete result of the optimization.
|
|
||||||
template<size_t N> struct Result {
|
|
||||||
int resultcode;
|
|
||||||
std::array<double, N> optimum;
|
|
||||||
double score;
|
|
||||||
};
|
|
||||||
|
|
||||||
// An interval of possible input values for optimization
|
|
||||||
class Bound {
|
|
||||||
double m_min, m_max;
|
|
||||||
|
|
||||||
public:
|
|
||||||
Bound(double min = std::numeric_limits<double>::min(),
|
|
||||||
double max = std::numeric_limits<double>::max())
|
|
||||||
: m_min(min), m_max(max)
|
|
||||||
{}
|
|
||||||
|
|
||||||
double min() const noexcept { return m_min; }
|
|
||||||
double max() const noexcept { return m_max; }
|
|
||||||
};
|
|
||||||
|
|
||||||
// Helper types for optimization function input and bounds
|
|
||||||
template<size_t N> using Input = std::array<double, N>;
|
|
||||||
template<size_t N> using Bounds = std::array<Bound, N>;
|
|
||||||
|
|
||||||
// A type for specifying the stop criteria. Setter methods can be concatenated
|
|
||||||
class StopCriteria {
|
|
||||||
|
|
||||||
// If the absolute value difference between two scores.
|
|
||||||
double m_abs_score_diff = std::nan("");
|
|
||||||
|
|
||||||
// If the relative value difference between two scores.
|
|
||||||
double m_rel_score_diff = std::nan("");
|
|
||||||
|
|
||||||
// Stop if this value or better is found.
|
|
||||||
double m_stop_score = std::nan("");
|
|
||||||
|
|
||||||
// A predicate that if evaluates to true, the optimization should terminate
|
|
||||||
// and the best result found prior to termination should be returned.
|
|
||||||
std::function<bool()> m_stop_condition = [] { return false; };
|
|
||||||
|
|
||||||
// The max allowed number of iterations.
|
|
||||||
unsigned m_max_iterations = 0;
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
StopCriteria & abs_score_diff(double val)
|
|
||||||
{
|
|
||||||
m_abs_score_diff = val; return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
double abs_score_diff() const { return m_abs_score_diff; }
|
|
||||||
|
|
||||||
StopCriteria & rel_score_diff(double val)
|
|
||||||
{
|
|
||||||
m_rel_score_diff = val; return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
double rel_score_diff() const { return m_rel_score_diff; }
|
|
||||||
|
|
||||||
StopCriteria & stop_score(double val)
|
|
||||||
{
|
|
||||||
m_stop_score = val; return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
double stop_score() const { return m_stop_score; }
|
|
||||||
|
|
||||||
StopCriteria & max_iterations(double val)
|
|
||||||
{
|
|
||||||
m_max_iterations = val; return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
double max_iterations() const { return m_max_iterations; }
|
|
||||||
|
|
||||||
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
|
||||||
{
|
|
||||||
m_stop_condition = cond; return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool stop_condition() { return m_stop_condition(); }
|
|
||||||
};
|
|
||||||
|
|
||||||
// Helper class to use optimization methods involving gradient.
|
|
||||||
template<size_t N> struct ScoreGradient {
|
|
||||||
double score;
|
|
||||||
std::optional<std::array<double, N>> gradient;
|
|
||||||
|
|
||||||
ScoreGradient(double s, const std::array<double, N> &grad)
|
|
||||||
: score{s}, gradient{grad}
|
|
||||||
{}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Helper to be used in static_assert.
|
|
||||||
template<class T> struct always_false { enum { value = false }; };
|
|
||||||
|
|
||||||
// Basic interface to optimizer object
|
|
||||||
template<class Method, class Enable = void> class Optimizer {
|
|
||||||
public:
|
|
||||||
|
|
||||||
Optimizer(const StopCriteria &)
|
|
||||||
{
|
|
||||||
static_assert (always_false<Method>::value,
|
|
||||||
"Optimizer unimplemented for given method!");
|
|
||||||
}
|
|
||||||
|
|
||||||
Optimizer<Method> &to_min() { return *this; }
|
|
||||||
Optimizer<Method> &to_max() { return *this; }
|
|
||||||
Optimizer<Method> &set_criteria(const StopCriteria &) { return *this; }
|
|
||||||
StopCriteria get_criteria() const { return {}; };
|
|
||||||
|
|
||||||
template<class Func, size_t N>
|
|
||||||
Result<N> optimize(Func&& func,
|
|
||||||
const Input<N> &initvals,
|
|
||||||
const Bounds<N>& bounds) { return {}; }
|
|
||||||
|
|
||||||
// optional for randomized methods:
|
|
||||||
void seed(long /*s*/) {}
|
|
||||||
};
|
|
||||||
|
|
||||||
namespace detail {
|
namespace detail {
|
||||||
|
|
||||||
// Helper types for NLopt algorithm selection in template contexts
|
// Helper types for NLopt algorithm selection in template contexts
|
||||||
|
@ -166,19 +43,6 @@ struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
|
||||||
template<class M, class T = void>
|
template<class M, class T = void>
|
||||||
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
|
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
|
||||||
|
|
||||||
// Helper to convert C style array to std::array. The copy should be optimized
|
|
||||||
// away with modern compilers.
|
|
||||||
template<size_t N, class T> auto to_arr(const T *a)
|
|
||||||
{
|
|
||||||
std::array<T, N> r;
|
|
||||||
std::copy(a, a + N, std::begin(r));
|
|
||||||
return r;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
|
||||||
{
|
|
||||||
return to_arr<N>(static_cast<const T *>(a));
|
|
||||||
}
|
|
||||||
|
|
||||||
enum class OptDir { MIN, MAX }; // Where to optimize
|
enum class OptDir { MIN, MAX }; // Where to optimize
|
||||||
|
|
||||||
|
@ -357,23 +221,12 @@ public:
|
||||||
void seed(long s) { m_opt.seed(s); }
|
void seed(long s) { m_opt.seed(s); }
|
||||||
};
|
};
|
||||||
|
|
||||||
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
// Predefinded NLopt algorithms
|
||||||
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
|
||||||
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
|
||||||
{
|
|
||||||
return ScoreGradient<N>(s, detail::to_arr(grad));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Predefinded NLopt algorithms that are used in the codebase
|
|
||||||
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
|
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
|
||||||
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
|
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
|
||||||
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
|
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
|
||||||
|
using AlgNLoptDIRECT = detail::NLoptAlg<NLOPT_GN_DIRECT>;
|
||||||
// TODO: define others if needed...
|
using AlgNLoptMLSL = detail::NLoptAlg<NLOPT_GN_MLSL>;
|
||||||
|
|
||||||
// Helper defs for pre-crafted global and local optimizers that work well.
|
|
||||||
using DefaultGlobalOptimizer = Optimizer<AlgNLoptGenetic>;
|
|
||||||
using DefaultLocalOptimizer = Optimizer<AlgNLoptSubplex>;
|
|
||||||
|
|
||||||
}} // namespace Slic3r::opt
|
}} // namespace Slic3r::opt
|
||||||
|
|
182
src/libslic3r/Optimize/Optimizer.hpp
Normal file
182
src/libslic3r/Optimize/Optimizer.hpp
Normal file
|
@ -0,0 +1,182 @@
|
||||||
|
#ifndef OPTIMIZER_HPP
|
||||||
|
#define OPTIMIZER_HPP
|
||||||
|
|
||||||
|
#include <utility>
|
||||||
|
#include <tuple>
|
||||||
|
#include <array>
|
||||||
|
#include <cmath>
|
||||||
|
#include <functional>
|
||||||
|
#include <limits>
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
namespace Slic3r { namespace opt {
|
||||||
|
|
||||||
|
// A type to hold the complete result of the optimization.
|
||||||
|
template<size_t N> struct Result {
|
||||||
|
int resultcode; // Method dependent
|
||||||
|
std::array<double, N> optimum;
|
||||||
|
double score;
|
||||||
|
};
|
||||||
|
|
||||||
|
// An interval of possible input values for optimization
|
||||||
|
class Bound {
|
||||||
|
double m_min, m_max;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Bound(double min = std::numeric_limits<double>::min(),
|
||||||
|
double max = std::numeric_limits<double>::max())
|
||||||
|
: m_min(min), m_max(max)
|
||||||
|
{}
|
||||||
|
|
||||||
|
double min() const noexcept { return m_min; }
|
||||||
|
double max() const noexcept { return m_max; }
|
||||||
|
};
|
||||||
|
|
||||||
|
// Helper types for optimization function input and bounds
|
||||||
|
template<size_t N> using Input = std::array<double, N>;
|
||||||
|
template<size_t N> using Bounds = std::array<Bound, N>;
|
||||||
|
|
||||||
|
// A type for specifying the stop criteria. Setter methods can be concatenated
|
||||||
|
class StopCriteria {
|
||||||
|
|
||||||
|
// If the absolute value difference between two scores.
|
||||||
|
double m_abs_score_diff = std::nan("");
|
||||||
|
|
||||||
|
// If the relative value difference between two scores.
|
||||||
|
double m_rel_score_diff = std::nan("");
|
||||||
|
|
||||||
|
// Stop if this value or better is found.
|
||||||
|
double m_stop_score = std::nan("");
|
||||||
|
|
||||||
|
// A predicate that if evaluates to true, the optimization should terminate
|
||||||
|
// and the best result found prior to termination should be returned.
|
||||||
|
std::function<bool()> m_stop_condition = [] { return false; };
|
||||||
|
|
||||||
|
// The max allowed number of iterations.
|
||||||
|
unsigned m_max_iterations = 0;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
StopCriteria & abs_score_diff(double val)
|
||||||
|
{
|
||||||
|
m_abs_score_diff = val; return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
double abs_score_diff() const { return m_abs_score_diff; }
|
||||||
|
|
||||||
|
StopCriteria & rel_score_diff(double val)
|
||||||
|
{
|
||||||
|
m_rel_score_diff = val; return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
double rel_score_diff() const { return m_rel_score_diff; }
|
||||||
|
|
||||||
|
StopCriteria & stop_score(double val)
|
||||||
|
{
|
||||||
|
m_stop_score = val; return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
double stop_score() const { return m_stop_score; }
|
||||||
|
|
||||||
|
StopCriteria & max_iterations(double val)
|
||||||
|
{
|
||||||
|
m_max_iterations = val; return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
double max_iterations() const { return m_max_iterations; }
|
||||||
|
|
||||||
|
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
||||||
|
{
|
||||||
|
m_stop_condition = cond; return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool stop_condition() { return m_stop_condition(); }
|
||||||
|
};
|
||||||
|
|
||||||
|
// Helper class to use optimization methods involving gradient.
|
||||||
|
template<size_t N> struct ScoreGradient {
|
||||||
|
double score;
|
||||||
|
std::optional<std::array<double, N>> gradient;
|
||||||
|
|
||||||
|
ScoreGradient(double s, const std::array<double, N> &grad)
|
||||||
|
: score{s}, gradient{grad}
|
||||||
|
{}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Helper to be used in static_assert.
|
||||||
|
template<class T> struct always_false { enum { value = false }; };
|
||||||
|
|
||||||
|
// Basic interface to optimizer object
|
||||||
|
template<class Method, class Enable = void> class Optimizer {
|
||||||
|
public:
|
||||||
|
|
||||||
|
Optimizer(const StopCriteria &)
|
||||||
|
{
|
||||||
|
static_assert (always_false<Method>::value,
|
||||||
|
"Optimizer unimplemented for given method!");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Switch optimization towards function minimum
|
||||||
|
Optimizer &to_min() { return *this; }
|
||||||
|
|
||||||
|
// Switch optimization towards function maximum
|
||||||
|
Optimizer &to_max() { return *this; }
|
||||||
|
|
||||||
|
// Set criteria for successive optimizations
|
||||||
|
Optimizer &set_criteria(const StopCriteria &) { return *this; }
|
||||||
|
|
||||||
|
// Get current criteria
|
||||||
|
StopCriteria get_criteria() const { return {}; };
|
||||||
|
|
||||||
|
// Find function minimum or maximum for Func which has has signature:
|
||||||
|
// double(const Input<N> &input) and input with dimension N
|
||||||
|
//
|
||||||
|
// Initial starting point can be given as the second parameter.
|
||||||
|
//
|
||||||
|
// For each dimension an interval (Bound) has to be given marking the bounds
|
||||||
|
// for that dimension.
|
||||||
|
//
|
||||||
|
// initvals have to be within the specified bounds, otherwise its undefined
|
||||||
|
// behavior.
|
||||||
|
//
|
||||||
|
// Func can return a score of type double or optionally a ScoreGradient
|
||||||
|
// class to indicate the function gradient for a optimization methods that
|
||||||
|
// make use of the gradient.
|
||||||
|
template<class Func, size_t N>
|
||||||
|
Result<N> optimize(Func&& /*func*/,
|
||||||
|
const Input<N> &/*initvals*/,
|
||||||
|
const Bounds<N>& /*bounds*/) { return {}; }
|
||||||
|
|
||||||
|
// optional for randomized methods:
|
||||||
|
void seed(long /*s*/) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace detail {
|
||||||
|
|
||||||
|
// Helper to convert C style array to std::array. The copy should be optimized
|
||||||
|
// away with modern compilers.
|
||||||
|
template<size_t N, class T> auto to_arr(const T *a)
|
||||||
|
{
|
||||||
|
std::array<T, N> r;
|
||||||
|
std::copy(a, a + N, std::begin(r));
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
||||||
|
{
|
||||||
|
return to_arr<N>(static_cast<const T *>(a));
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace detail
|
||||||
|
|
||||||
|
// Helper functions to create bounds, initial value
|
||||||
|
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
||||||
|
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
||||||
|
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
||||||
|
{
|
||||||
|
return ScoreGradient<N>(s, detail::to_arr(grad));
|
||||||
|
}
|
||||||
|
|
||||||
|
}} // namespace Slic3r::opt
|
||||||
|
|
||||||
|
#endif // OPTIMIZER_HPP
|
|
@ -4,7 +4,11 @@
|
||||||
#include <tbb/spin_mutex.h>
|
#include <tbb/spin_mutex.h>
|
||||||
#include <tbb/mutex.h>
|
#include <tbb/mutex.h>
|
||||||
#include <tbb/parallel_for.h>
|
#include <tbb/parallel_for.h>
|
||||||
|
#include <tbb/parallel_reduce.h>
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
|
#include <numeric>
|
||||||
|
|
||||||
#include <libslic3r/libslic3r.h>
|
#include <libslic3r/libslic3r.h>
|
||||||
|
|
||||||
namespace Slic3r {
|
namespace Slic3r {
|
||||||
|
@ -21,28 +25,56 @@ template<> struct _ccr<true>
|
||||||
using SpinningMutex = tbb::spin_mutex;
|
using SpinningMutex = tbb::spin_mutex;
|
||||||
using BlockingMutex = tbb::mutex;
|
using BlockingMutex = tbb::mutex;
|
||||||
|
|
||||||
|
template<class Fn, class It>
|
||||||
|
static IteratorOnly<It, void> loop_(const tbb::blocked_range<It> &range, Fn &&fn)
|
||||||
|
{
|
||||||
|
for (auto &el : range) fn(el);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Fn, class I>
|
||||||
|
static IntegerOnly<I, void> loop_(const tbb::blocked_range<I> &range, Fn &&fn)
|
||||||
|
{
|
||||||
|
for (I i = range.begin(); i < range.end(); ++i) fn(i);
|
||||||
|
}
|
||||||
|
|
||||||
template<class It, class Fn>
|
template<class It, class Fn>
|
||||||
static IteratorOnly<It, void> for_each(It from,
|
static void for_each(It from, It to, Fn &&fn, size_t granularity = 1)
|
||||||
It to,
|
|
||||||
Fn && fn,
|
|
||||||
size_t granularity = 1)
|
|
||||||
{
|
{
|
||||||
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
||||||
[&fn, from](const auto &range) {
|
[&fn, from](const auto &range) {
|
||||||
for (auto &el : range) fn(el);
|
loop_(range, std::forward<Fn>(fn));
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class I, class Fn>
|
template<class I, class MergeFn, class T, class AccessFn>
|
||||||
static IntegerOnly<I, void> for_each(I from,
|
static T reduce(I from,
|
||||||
I to,
|
I to,
|
||||||
Fn && fn,
|
const T &init,
|
||||||
size_t granularity = 1)
|
MergeFn &&mergefn,
|
||||||
|
AccessFn &&access,
|
||||||
|
size_t granularity = 1
|
||||||
|
)
|
||||||
{
|
{
|
||||||
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
return tbb::parallel_reduce(
|
||||||
[&fn](const auto &range) {
|
tbb::blocked_range{from, to, granularity}, init,
|
||||||
for (I i = range.begin(); i < range.end(); ++i) fn(i);
|
[&](const auto &range, T subinit) {
|
||||||
});
|
T acc = subinit;
|
||||||
|
loop_(range, [&](auto &i) { acc = mergefn(acc, access(i)); });
|
||||||
|
return acc;
|
||||||
|
},
|
||||||
|
std::forward<MergeFn>(mergefn));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class I, class MergeFn, class T>
|
||||||
|
static IteratorOnly<I, T> reduce(I from,
|
||||||
|
I to,
|
||||||
|
const T & init,
|
||||||
|
MergeFn &&mergefn,
|
||||||
|
size_t granularity = 1)
|
||||||
|
{
|
||||||
|
return reduce(
|
||||||
|
from, to, init, std::forward<MergeFn>(mergefn),
|
||||||
|
[](typename I::value_type &i) { return i; }, granularity);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -55,23 +87,52 @@ public:
|
||||||
using SpinningMutex = _Mtx;
|
using SpinningMutex = _Mtx;
|
||||||
using BlockingMutex = _Mtx;
|
using BlockingMutex = _Mtx;
|
||||||
|
|
||||||
template<class It, class Fn>
|
template<class Fn, class It>
|
||||||
static IteratorOnly<It, void> for_each(It from,
|
static IteratorOnly<It, void> loop_(It from, It to, Fn &&fn)
|
||||||
It to,
|
|
||||||
Fn &&fn,
|
|
||||||
size_t /* ignore granularity */ = 1)
|
|
||||||
{
|
{
|
||||||
for (auto it = from; it != to; ++it) fn(*it);
|
for (auto it = from; it != to; ++it) fn(*it);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class I, class Fn>
|
template<class Fn, class I>
|
||||||
static IntegerOnly<I, void> for_each(I from,
|
static IntegerOnly<I, void> loop_(I from, I to, Fn &&fn)
|
||||||
I to,
|
|
||||||
Fn &&fn,
|
|
||||||
size_t /* ignore granularity */ = 1)
|
|
||||||
{
|
{
|
||||||
for (I i = from; i < to; ++i) fn(i);
|
for (I i = from; i < to; ++i) fn(i);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class It, class Fn>
|
||||||
|
static void for_each(It from,
|
||||||
|
It to,
|
||||||
|
Fn &&fn,
|
||||||
|
size_t /* ignore granularity */ = 1)
|
||||||
|
{
|
||||||
|
loop_(from, to, std::forward<Fn>(fn));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class I, class MergeFn, class T, class AccessFn>
|
||||||
|
static T reduce(I from,
|
||||||
|
I to,
|
||||||
|
const T & init,
|
||||||
|
MergeFn &&mergefn,
|
||||||
|
AccessFn &&access,
|
||||||
|
size_t /*granularity*/ = 1
|
||||||
|
)
|
||||||
|
{
|
||||||
|
T acc = init;
|
||||||
|
loop_(from, to, [&](auto &i) { acc = mergefn(acc, access(i)); });
|
||||||
|
return acc;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class I, class MergeFn, class T>
|
||||||
|
static IteratorOnly<I, T> reduce(I from,
|
||||||
|
I to,
|
||||||
|
const T &init,
|
||||||
|
MergeFn &&mergefn,
|
||||||
|
size_t /*granularity*/ = 1
|
||||||
|
)
|
||||||
|
{
|
||||||
|
return reduce(from, to, init, std::forward<MergeFn>(mergefn),
|
||||||
|
[](typename I::value_type &i) { return i; });
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
using ccr = _ccr<USE_FULL_CONCURRENCY>;
|
using ccr = _ccr<USE_FULL_CONCURRENCY>;
|
||||||
|
|
|
@ -1,35 +1,259 @@
|
||||||
#include <limits>
|
#include <limits>
|
||||||
#include <exception>
|
|
||||||
|
|
||||||
#include <libnest2d/optimizers/nlopt/genetic.hpp>
|
|
||||||
#include <libslic3r/SLA/Rotfinder.hpp>
|
#include <libslic3r/SLA/Rotfinder.hpp>
|
||||||
#include <libslic3r/SLA/SupportTree.hpp>
|
#include <libslic3r/SLA/Concurrency.hpp>
|
||||||
|
|
||||||
|
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
|
||||||
|
|
||||||
|
#include "libslic3r/SLAPrint.hpp"
|
||||||
|
#include "libslic3r/PrintConfig.hpp"
|
||||||
|
|
||||||
|
#include <libslic3r/Geometry.hpp>
|
||||||
#include "Model.hpp"
|
#include "Model.hpp"
|
||||||
|
|
||||||
namespace Slic3r {
|
#include <thread>
|
||||||
namespace sla {
|
|
||||||
|
|
||||||
std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
namespace Slic3r { namespace sla {
|
||||||
float accuracy,
|
|
||||||
std::function<void(unsigned)> statuscb,
|
inline bool is_on_floor(const SLAPrintObject &mo)
|
||||||
std::function<bool()> stopcond)
|
|
||||||
{
|
{
|
||||||
using libnest2d::opt::Method;
|
auto opt_elevation = mo.config().support_object_elevation.getFloat();
|
||||||
using libnest2d::opt::bound;
|
auto opt_padaround = mo.config().pad_around_object.getBool();
|
||||||
using libnest2d::opt::Optimizer;
|
|
||||||
using libnest2d::opt::TOptimizer;
|
|
||||||
using libnest2d::opt::StopCriteria;
|
|
||||||
|
|
||||||
static const unsigned MAX_TRIES = 100000;
|
return opt_elevation < EPSILON || opt_padaround;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find transformed mesh ground level without copy and with parallel reduce.
|
||||||
|
double find_ground_level(const TriangleMesh &mesh,
|
||||||
|
const Transform3d & tr,
|
||||||
|
size_t threads)
|
||||||
|
{
|
||||||
|
size_t vsize = mesh.its.vertices.size();
|
||||||
|
|
||||||
|
auto minfn = [](double a, double b) { return std::min(a, b); };
|
||||||
|
|
||||||
|
auto accessfn = [&mesh, &tr] (size_t vi) {
|
||||||
|
return (tr * mesh.its.vertices[vi].template cast<double>()).z();
|
||||||
|
};
|
||||||
|
|
||||||
|
double zmin = std::numeric_limits<double>::max();
|
||||||
|
size_t granularity = vsize / threads;
|
||||||
|
return ccr_par::reduce(size_t(0), vsize, zmin, minfn, accessfn, granularity);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get the vertices of a triangle directly in an array of 3 points
|
||||||
|
std::array<Vec3d, 3> get_triangle_vertices(const TriangleMesh &mesh,
|
||||||
|
size_t faceidx)
|
||||||
|
{
|
||||||
|
const auto &face = mesh.its.indices[faceidx];
|
||||||
|
return {Vec3d{mesh.its.vertices[face(0)].cast<double>()},
|
||||||
|
Vec3d{mesh.its.vertices[face(1)].cast<double>()},
|
||||||
|
Vec3d{mesh.its.vertices[face(2)].cast<double>()}};
|
||||||
|
}
|
||||||
|
|
||||||
|
std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh,
|
||||||
|
const Transform3d & tr,
|
||||||
|
size_t faceidx)
|
||||||
|
{
|
||||||
|
const auto &tri = get_triangle_vertices(mesh, faceidx);
|
||||||
|
return {tr * tri[0], tr * tri[1], tr * tri[2]};
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get area and normal of a triangle
|
||||||
|
struct Facestats {
|
||||||
|
Vec3d normal;
|
||||||
|
double area;
|
||||||
|
|
||||||
|
explicit Facestats(const std::array<Vec3d, 3> &triangle)
|
||||||
|
{
|
||||||
|
Vec3d U = triangle[1] - triangle[0];
|
||||||
|
Vec3d V = triangle[2] - triangle[0];
|
||||||
|
Vec3d C = U.cross(V);
|
||||||
|
normal = C.normalized();
|
||||||
|
area = 0.5 * C.norm();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
inline const Vec3d DOWN = {0., 0., -1.};
|
||||||
|
constexpr double POINTS_PER_UNIT_AREA = 1.;
|
||||||
|
|
||||||
|
// The score function for a particular face
|
||||||
|
inline double get_score(const Facestats &fc)
|
||||||
|
{
|
||||||
|
// Simply get the angle (acos of dot product) between the face normal and
|
||||||
|
// the DOWN vector.
|
||||||
|
double phi = 1. - std::acos(fc.normal.dot(DOWN)) / PI;
|
||||||
|
|
||||||
|
// Only consider faces that have have slopes below 90 deg:
|
||||||
|
phi = phi * (phi > 0.5);
|
||||||
|
|
||||||
|
// Make the huge slopes more significant than the smaller slopes
|
||||||
|
phi = phi * phi * phi;
|
||||||
|
|
||||||
|
// Multiply with the area of the current face
|
||||||
|
return fc.area * POINTS_PER_UNIT_AREA * phi;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class AccessFn>
|
||||||
|
double sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
|
||||||
|
{
|
||||||
|
double initv = 0.;
|
||||||
|
auto mergefn = std::plus<double>{};
|
||||||
|
size_t grainsize = facecount / Nthreads;
|
||||||
|
size_t from = 0, to = facecount;
|
||||||
|
|
||||||
|
return ccr_par::reduce(from, to, initv, mergefn, accessfn, grainsize);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Try to guess the number of support points needed to support a mesh
|
||||||
|
double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
|
||||||
|
{
|
||||||
|
if (mesh.its.vertices.empty()) return std::nan("");
|
||||||
|
|
||||||
|
auto accessfn = [&mesh, &tr](size_t fi) {
|
||||||
|
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
|
||||||
|
return get_score(fc);
|
||||||
|
};
|
||||||
|
|
||||||
|
size_t facecount = mesh.its.indices.size();
|
||||||
|
size_t Nthreads = std::thread::hardware_concurrency();
|
||||||
|
return sum_score(accessfn, facecount, Nthreads) / facecount;
|
||||||
|
}
|
||||||
|
|
||||||
|
double get_model_supportedness_onfloor(const TriangleMesh &mesh,
|
||||||
|
const Transform3d & tr)
|
||||||
|
{
|
||||||
|
if (mesh.its.vertices.empty()) return std::nan("");
|
||||||
|
|
||||||
|
size_t Nthreads = std::thread::hardware_concurrency();
|
||||||
|
|
||||||
|
double zmin = find_ground_level(mesh, tr, Nthreads);
|
||||||
|
double zlvl = zmin + 0.1; // Set up a slight tolerance from z level
|
||||||
|
|
||||||
|
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
|
||||||
|
std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi);
|
||||||
|
Facestats fc{tri};
|
||||||
|
|
||||||
|
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
|
||||||
|
return -fc.area * POINTS_PER_UNIT_AREA;
|
||||||
|
|
||||||
|
return get_score(fc);
|
||||||
|
};
|
||||||
|
|
||||||
|
size_t facecount = mesh.its.indices.size();
|
||||||
|
return sum_score(accessfn, facecount, Nthreads) / facecount;
|
||||||
|
}
|
||||||
|
|
||||||
|
using XYRotation = std::array<double, 2>;
|
||||||
|
|
||||||
|
// prepare the rotation transformation
|
||||||
|
Transform3d to_transform3d(const XYRotation &rot)
|
||||||
|
{
|
||||||
|
Transform3d rt = Transform3d::Identity();
|
||||||
|
rt.rotate(Eigen::AngleAxisd(rot[1], Vec3d::UnitY()));
|
||||||
|
rt.rotate(Eigen::AngleAxisd(rot[0], Vec3d::UnitX()));
|
||||||
|
return rt;
|
||||||
|
}
|
||||||
|
|
||||||
|
XYRotation from_transform3d(const Transform3d &tr)
|
||||||
|
{
|
||||||
|
Vec3d rot3d = Geometry::Transformation {tr}.get_rotation();
|
||||||
|
return {rot3d.x(), rot3d.y()};
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the best score from a set of function inputs. Evaluate for every point.
|
||||||
|
template<size_t N, class Fn, class It, class StopCond>
|
||||||
|
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
|
||||||
|
{
|
||||||
|
std::array<double, N> ret;
|
||||||
|
|
||||||
|
double score = std::numeric_limits<double>::max();
|
||||||
|
|
||||||
|
size_t Nthreads = std::thread::hardware_concurrency();
|
||||||
|
size_t dist = std::distance(from, to);
|
||||||
|
std::vector<double> scores(dist, score);
|
||||||
|
|
||||||
|
ccr_par::for_each(size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
|
||||||
|
if (stopfn()) return;
|
||||||
|
|
||||||
|
scores[i] = fn(*(from + i));
|
||||||
|
}, dist / Nthreads);
|
||||||
|
|
||||||
|
auto it = std::min_element(scores.begin(), scores.end());
|
||||||
|
|
||||||
|
if (it != scores.end()) ret = *(from + std::distance(scores.begin(), it));
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
// collect the rotations for each face of the convex hull
|
||||||
|
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
|
||||||
|
{
|
||||||
|
TriangleMesh chull = mesh.convex_hull_3d();
|
||||||
|
chull.require_shared_vertices();
|
||||||
|
double chull2d_area = chull.convex_hull().area();
|
||||||
|
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
|
||||||
|
|
||||||
|
size_t facecount = chull.its.indices.size();
|
||||||
|
|
||||||
|
struct RotArea { XYRotation rot; double area; };
|
||||||
|
|
||||||
|
auto inputs = reserve_vector<RotArea>(facecount);
|
||||||
|
|
||||||
|
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
|
||||||
|
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
|
||||||
|
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
|
||||||
|
};
|
||||||
|
|
||||||
|
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
|
||||||
|
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
|
||||||
|
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (size_t fi = 0; fi < facecount; ++fi) {
|
||||||
|
Facestats fc{get_triangle_vertices(chull, fi)};
|
||||||
|
|
||||||
|
if (fc.area > area_threshold) {
|
||||||
|
auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN);
|
||||||
|
XYRotation rot = from_transform3d(Transform3d::Identity() * q);
|
||||||
|
RotArea ra = {rot, fc.area};
|
||||||
|
|
||||||
|
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
|
||||||
|
|
||||||
|
if (it == inputs.end() || !eqcmp(it->rot, rot))
|
||||||
|
inputs.insert(it, ra);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
inputs.shrink_to_fit();
|
||||||
|
if (!max_count) max_count = inputs.size();
|
||||||
|
std::sort(inputs.begin(), inputs.end(),
|
||||||
|
[](const RotArea &ra, const RotArea &rb) {
|
||||||
|
return ra.area > rb.area;
|
||||||
|
});
|
||||||
|
|
||||||
|
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
|
||||||
|
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
Vec2d find_best_rotation(const SLAPrintObject & po,
|
||||||
|
float accuracy,
|
||||||
|
std::function<void(unsigned)> statuscb,
|
||||||
|
std::function<bool()> stopcond)
|
||||||
|
{
|
||||||
|
static const unsigned MAX_TRIES = 1000;
|
||||||
|
|
||||||
// return value
|
// return value
|
||||||
std::array<double, 3> rot;
|
XYRotation rot;
|
||||||
|
|
||||||
// We will use only one instance of this converted mesh to examine different
|
// We will use only one instance of this converted mesh to examine different
|
||||||
// rotations
|
// rotations
|
||||||
const TriangleMesh& mesh = modelobj.raw_mesh();
|
TriangleMesh mesh = po.model_object()->raw_mesh();
|
||||||
|
mesh.require_shared_vertices();
|
||||||
|
|
||||||
// For current iteration number
|
// To keep track of the number of iterations
|
||||||
unsigned status = 0;
|
unsigned status = 0;
|
||||||
|
|
||||||
// The maximum number of iterations
|
// The maximum number of iterations
|
||||||
|
@ -38,77 +262,61 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
||||||
// call status callback with zero, because we are at the start
|
// call status callback with zero, because we are at the start
|
||||||
statuscb(status);
|
statuscb(status);
|
||||||
|
|
||||||
// So this is the object function which is called by the solver many times
|
auto statusfn = [&statuscb, &status, &max_tries] {
|
||||||
// It has to yield a single value representing the current score. We will
|
|
||||||
// call the status callback in each iteration but the actual value may be
|
|
||||||
// the same for subsequent iterations (status goes from 0 to 100 but
|
|
||||||
// iterations can be many more)
|
|
||||||
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
|
|
||||||
(double rx, double ry, double rz)
|
|
||||||
{
|
|
||||||
const TriangleMesh& m = mesh;
|
|
||||||
|
|
||||||
// prepare the rotation transformation
|
|
||||||
Transform3d rt = Transform3d::Identity();
|
|
||||||
|
|
||||||
rt.rotate(Eigen::AngleAxisd(rz, Vec3d::UnitZ()));
|
|
||||||
rt.rotate(Eigen::AngleAxisd(ry, Vec3d::UnitY()));
|
|
||||||
rt.rotate(Eigen::AngleAxisd(rx, Vec3d::UnitX()));
|
|
||||||
|
|
||||||
double score = 0;
|
|
||||||
|
|
||||||
// For all triangles we calculate the normal and sum up the dot product
|
|
||||||
// (a scalar indicating how much are two vectors aligned) with each axis
|
|
||||||
// this will result in a value that is greater if a normal is aligned
|
|
||||||
// with all axes. If the normal is aligned than the triangle itself is
|
|
||||||
// orthogonal to the axes and that is good for print quality.
|
|
||||||
|
|
||||||
// TODO: some applications optimize for minimum z-axis cross section
|
|
||||||
// area. The current function is only an example of how to optimize.
|
|
||||||
|
|
||||||
// Later we can add more criteria like the number of overhangs, etc...
|
|
||||||
for(size_t i = 0; i < m.stl.facet_start.size(); i++) {
|
|
||||||
Vec3d n = m.stl.facet_start[i].normal.cast<double>();
|
|
||||||
|
|
||||||
// rotate the normal with the current rotation given by the solver
|
|
||||||
n = rt * n;
|
|
||||||
|
|
||||||
// We should score against the alignment with the reference planes
|
|
||||||
score += std::abs(n.dot(Vec3d::UnitX()));
|
|
||||||
score += std::abs(n.dot(Vec3d::UnitY()));
|
|
||||||
score += std::abs(n.dot(Vec3d::UnitZ()));
|
|
||||||
}
|
|
||||||
|
|
||||||
// report status
|
// report status
|
||||||
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) );
|
statuscb(unsigned(++status * 100.0/max_tries) );
|
||||||
|
|
||||||
return score;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// Firing up the genetic optimizer. For now it uses the nlopt library.
|
// Different search methods have to be used depending on the model elevation
|
||||||
StopCriteria stc;
|
if (is_on_floor(po)) {
|
||||||
stc.max_iterations = max_tries;
|
|
||||||
stc.relative_score_difference = 1e-3;
|
|
||||||
stc.stop_condition = stopcond; // stop when stopcond returns true
|
|
||||||
TOptimizer<Method::G_GENETIC> solver(stc);
|
|
||||||
|
|
||||||
// We are searching rotations around the three axes x, y, z. Thus the
|
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
|
||||||
// problem becomes a 3 dimensional optimization task.
|
max_tries = inputs.size();
|
||||||
// We can specify the bounds for a dimension in the following way:
|
|
||||||
auto b = bound(-PI/2, PI/2);
|
|
||||||
|
|
||||||
// Now we start the optimization process with initial angles (0, 0, 0)
|
// If the model can be placed on the bed directly, we only need to
|
||||||
auto result = solver.optimize_max(objfunc,
|
// check the 3D convex hull face rotations.
|
||||||
libnest2d::opt::initvals(0.0, 0.0, 0.0),
|
|
||||||
b, b, b);
|
|
||||||
|
|
||||||
// Save the result and fck off
|
auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
|
||||||
rot[0] = std::get<0>(result.optimum);
|
statusfn();
|
||||||
rot[1] = std::get<1>(result.optimum);
|
Transform3d tr = to_transform3d(rot);
|
||||||
rot[2] = std::get<2>(result.optimum);
|
return get_model_supportedness_onfloor(mesh, tr);
|
||||||
|
};
|
||||||
|
|
||||||
return rot;
|
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
|
||||||
|
} else {
|
||||||
|
// Preparing the optimizer.
|
||||||
|
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
|
||||||
|
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
|
||||||
|
.max_iterations(max_tries)
|
||||||
|
.stop_condition(stopcond),
|
||||||
|
gridsize);
|
||||||
|
|
||||||
|
// We are searching rotations around only two axes x, y. Thus the
|
||||||
|
// problem becomes a 2 dimensional optimization task.
|
||||||
|
// We can specify the bounds for a dimension in the following way:
|
||||||
|
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
|
||||||
|
|
||||||
|
auto result = solver.to_min().optimize(
|
||||||
|
[&mesh, &statusfn] (const XYRotation &rot)
|
||||||
|
{
|
||||||
|
statusfn();
|
||||||
|
return get_model_supportedness(mesh, to_transform3d(rot));
|
||||||
|
}, opt::initvals({0., 0.}), bounds);
|
||||||
|
|
||||||
|
// Save the result and fck off
|
||||||
|
rot = result.optimum;
|
||||||
|
}
|
||||||
|
|
||||||
|
return {rot[0], rot[1]};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr)
|
||||||
|
{
|
||||||
|
TriangleMesh mesh = po.model_object()->raw_mesh();
|
||||||
|
mesh.require_shared_vertices();
|
||||||
|
|
||||||
|
return is_on_floor(po) ? get_model_supportedness_onfloor(mesh, tr) :
|
||||||
|
get_model_supportedness(mesh, tr);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
}} // namespace Slic3r::sla
|
||||||
|
|
|
@ -4,9 +4,11 @@
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <array>
|
#include <array>
|
||||||
|
|
||||||
|
#include <libslic3r/Point.hpp>
|
||||||
|
|
||||||
namespace Slic3r {
|
namespace Slic3r {
|
||||||
|
|
||||||
class ModelObject;
|
class SLAPrintObject;
|
||||||
|
|
||||||
namespace sla {
|
namespace sla {
|
||||||
|
|
||||||
|
@ -25,14 +27,17 @@ namespace sla {
|
||||||
*
|
*
|
||||||
* @return Returns the rotations around each axis (x, y, z)
|
* @return Returns the rotations around each axis (x, y, z)
|
||||||
*/
|
*/
|
||||||
std::array<double, 3> find_best_rotation(
|
Vec2d find_best_rotation(
|
||||||
const ModelObject& modelobj,
|
const SLAPrintObject& modelobj,
|
||||||
float accuracy = 1.0f,
|
float accuracy = 1.0f,
|
||||||
std::function<void(unsigned)> statuscb = [] (unsigned) {},
|
std::function<void(unsigned)> statuscb = [] (unsigned) {},
|
||||||
std::function<bool()> stopcond = [] () { return false; }
|
std::function<bool()> stopcond = [] () { return false; }
|
||||||
);
|
);
|
||||||
|
|
||||||
}
|
double get_model_supportedness(const SLAPrintObject &mesh,
|
||||||
}
|
const Transform3d & tr);
|
||||||
|
|
||||||
|
} // namespace sla
|
||||||
|
} // namespace Slic3r
|
||||||
|
|
||||||
#endif // SLAROTFINDER_HPP
|
#endif // SLAROTFINDER_HPP
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
|
#include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
|
||||||
|
|
||||||
#include <libslic3r/SLA/SpatIndex.hpp>
|
#include <libslic3r/SLA/SpatIndex.hpp>
|
||||||
#include <libslic3r/Optimizer.hpp>
|
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
|
||||||
#include <boost/log/trivial.hpp>
|
#include <boost/log/trivial.hpp>
|
||||||
|
|
||||||
namespace Slic3r {
|
namespace Slic3r {
|
||||||
|
|
|
@ -1,9 +1,15 @@
|
||||||
// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
|
// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
|
||||||
#include "GLGizmoRotate.hpp"
|
#include "GLGizmoRotate.hpp"
|
||||||
#include "slic3r/GUI/GLCanvas3D.hpp"
|
#include "slic3r/GUI/GLCanvas3D.hpp"
|
||||||
|
#include "slic3r/GUI/ImGuiWrapper.hpp"
|
||||||
|
|
||||||
#include <GL/glew.h>
|
#include <GL/glew.h>
|
||||||
|
|
||||||
|
#include "slic3r/GUI/GUI_App.hpp"
|
||||||
|
#include "slic3r/GUI/GUI.hpp"
|
||||||
|
#include "libslic3r/PresetBundle.hpp"
|
||||||
|
|
||||||
|
#include "libslic3r/SLA/Rotfinder.hpp"
|
||||||
|
|
||||||
namespace Slic3r {
|
namespace Slic3r {
|
||||||
namespace GUI {
|
namespace GUI {
|
||||||
|
@ -194,6 +200,64 @@ void GLGizmoRotate::on_render_for_picking() const
|
||||||
glsafe(::glPopMatrix());
|
glsafe(::glPopMatrix());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
GLGizmoRotate3D::RotoptimzeWindow::RotoptimzeWindow(ImGuiWrapper * imgui,
|
||||||
|
State & state,
|
||||||
|
const Alignment &alignment)
|
||||||
|
: m_imgui{imgui}
|
||||||
|
{
|
||||||
|
imgui->begin(_L("Rotation"), ImGuiWindowFlags_NoMove |
|
||||||
|
ImGuiWindowFlags_AlwaysAutoResize |
|
||||||
|
ImGuiWindowFlags_NoCollapse);
|
||||||
|
|
||||||
|
// adjust window position to avoid overlap the view toolbar
|
||||||
|
float win_h = ImGui::GetWindowHeight();
|
||||||
|
float x = alignment.x, y = alignment.y;
|
||||||
|
y = std::min(y, alignment.bottom_limit - win_h);
|
||||||
|
ImGui::SetWindowPos(ImVec2(x, y), ImGuiCond_Always);
|
||||||
|
|
||||||
|
static constexpr const char * button_txt = L("Optimize orientation");
|
||||||
|
static constexpr const char * slider_txt = L("Accuracy");
|
||||||
|
|
||||||
|
float button_width = imgui->calc_text_size(_(button_txt)).x;
|
||||||
|
ImGui::PushItemWidth(100.);
|
||||||
|
//if (imgui->button(_(button_txt))) {
|
||||||
|
if (ImGui::ArrowButton(_(button_txt).c_str(), ImGuiDir_Down)){
|
||||||
|
std::cout << "Blip" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
ImGui::SliderFloat(_(slider_txt).c_str(), &state.accuracy, 0.01f, 1.f, "%.1f");
|
||||||
|
|
||||||
|
static const std::vector<std::string> options = {
|
||||||
|
_L("Least supports").ToStdString(),
|
||||||
|
_L("Suface quality").ToStdString()
|
||||||
|
};
|
||||||
|
|
||||||
|
// if (imgui->combo(_L("Choose method"), options, state.method) ) {
|
||||||
|
// std::cout << "method: " << state.method << std::endl;
|
||||||
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
GLGizmoRotate3D::RotoptimzeWindow::~RotoptimzeWindow()
|
||||||
|
{
|
||||||
|
m_imgui->end();
|
||||||
|
}
|
||||||
|
|
||||||
|
void GLGizmoRotate3D::on_render_input_window(float x, float y, float bottom_limit)
|
||||||
|
{
|
||||||
|
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
|
||||||
|
return;
|
||||||
|
|
||||||
|
// TODO:
|
||||||
|
|
||||||
|
// m_rotoptimizewin_state.mobj = ?;
|
||||||
|
// RotoptimzeWindow popup{m_imgui, m_rotoptimizewin_state, {x, y, bottom_limit}};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
void GLGizmoRotate::render_circle() const
|
void GLGizmoRotate::render_circle() const
|
||||||
{
|
{
|
||||||
::glBegin(GL_LINE_LOOP);
|
::glBegin(GL_LINE_LOOP);
|
||||||
|
|
|
@ -52,12 +52,12 @@ public:
|
||||||
std::string get_tooltip() const override;
|
std::string get_tooltip() const override;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
virtual bool on_init();
|
bool on_init() override;
|
||||||
virtual std::string on_get_name() const { return ""; }
|
std::string on_get_name() const override { return ""; }
|
||||||
virtual void on_start_dragging();
|
void on_start_dragging() override;
|
||||||
virtual void on_update(const UpdateData& data);
|
void on_update(const UpdateData& data) override;
|
||||||
virtual void on_render() const;
|
void on_render() const override;
|
||||||
virtual void on_render_for_picking() const;
|
void on_render_for_picking() const override;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
void render_circle() const;
|
void render_circle() const;
|
||||||
|
@ -94,46 +94,79 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
virtual bool on_init();
|
bool on_init() override;
|
||||||
virtual std::string on_get_name() const;
|
std::string on_get_name() const override;
|
||||||
virtual void on_set_state()
|
void on_set_state() override
|
||||||
{
|
{
|
||||||
for (GLGizmoRotate& g : m_gizmos)
|
for (GLGizmoRotate& g : m_gizmos)
|
||||||
g.set_state(m_state);
|
g.set_state(m_state);
|
||||||
}
|
}
|
||||||
virtual void on_set_hover_id()
|
void on_set_hover_id() override
|
||||||
{
|
{
|
||||||
for (int i = 0; i < 3; ++i)
|
for (int i = 0; i < 3; ++i)
|
||||||
m_gizmos[i].set_hover_id((m_hover_id == i) ? 0 : -1);
|
m_gizmos[i].set_hover_id((m_hover_id == i) ? 0 : -1);
|
||||||
}
|
}
|
||||||
virtual void on_enable_grabber(unsigned int id)
|
void on_enable_grabber(unsigned int id) override
|
||||||
{
|
{
|
||||||
if (id < 3)
|
if (id < 3)
|
||||||
m_gizmos[id].enable_grabber(0);
|
m_gizmos[id].enable_grabber(0);
|
||||||
}
|
}
|
||||||
virtual void on_disable_grabber(unsigned int id)
|
void on_disable_grabber(unsigned int id) override
|
||||||
{
|
{
|
||||||
if (id < 3)
|
if (id < 3)
|
||||||
m_gizmos[id].disable_grabber(0);
|
m_gizmos[id].disable_grabber(0);
|
||||||
}
|
}
|
||||||
virtual bool on_is_activable() const;
|
bool on_is_activable() const override;
|
||||||
virtual void on_start_dragging();
|
void on_start_dragging() override;
|
||||||
virtual void on_stop_dragging();
|
void on_stop_dragging() override;
|
||||||
virtual void on_update(const UpdateData& data)
|
void on_update(const UpdateData& data) override
|
||||||
{
|
{
|
||||||
for (GLGizmoRotate& g : m_gizmos)
|
for (GLGizmoRotate& g : m_gizmos)
|
||||||
{
|
{
|
||||||
g.update(data);
|
g.update(data);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
virtual void on_render() const;
|
void on_render() const override;
|
||||||
virtual void on_render_for_picking() const
|
void on_render_for_picking() const override
|
||||||
{
|
{
|
||||||
for (const GLGizmoRotate& g : m_gizmos)
|
for (const GLGizmoRotate& g : m_gizmos)
|
||||||
{
|
{
|
||||||
g.render_for_picking();
|
g.render_for_picking();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void on_render_input_window(float x, float y, float bottom_limit) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
class RotoptimzeWindow {
|
||||||
|
ImGuiWrapper *m_imgui = nullptr;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
struct State {
|
||||||
|
enum Metods { mMinSupportPoints, mLegacy };
|
||||||
|
|
||||||
|
float accuracy = 1.f;
|
||||||
|
int method = mMinSupportPoints;
|
||||||
|
ModelObject *mobj = nullptr;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Alignment { float x, y, bottom_limit; };
|
||||||
|
|
||||||
|
RotoptimzeWindow(ImGuiWrapper * imgui,
|
||||||
|
State & state,
|
||||||
|
const Alignment &bottom_limit);
|
||||||
|
|
||||||
|
~RotoptimzeWindow();
|
||||||
|
|
||||||
|
RotoptimzeWindow(const RotoptimzeWindow&) = delete;
|
||||||
|
RotoptimzeWindow(RotoptimzeWindow &&) = delete;
|
||||||
|
RotoptimzeWindow& operator=(const RotoptimzeWindow &) = delete;
|
||||||
|
RotoptimzeWindow& operator=(RotoptimzeWindow &&) = delete;
|
||||||
|
};
|
||||||
|
|
||||||
|
RotoptimzeWindow::State m_rotoptimizewin_state = {};
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace GUI
|
} // namespace GUI
|
||||||
|
|
|
@ -425,10 +425,10 @@ bool ImGuiWrapper::combo(const wxString& label, const std::vector<std::string>&
|
||||||
text(label);
|
text(label);
|
||||||
ImGui::SameLine();
|
ImGui::SameLine();
|
||||||
|
|
||||||
int selection_out = -1;
|
int selection_out = selection;
|
||||||
bool res = false;
|
bool res = false;
|
||||||
|
|
||||||
const char *selection_str = selection < (int)options.size() ? options[selection].c_str() : "";
|
const char *selection_str = selection < int(options.size()) && selection >= 0 ? options[selection].c_str() : "";
|
||||||
if (ImGui::BeginCombo("", selection_str)) {
|
if (ImGui::BeginCombo("", selection_str)) {
|
||||||
for (int i = 0; i < (int)options.size(); i++) {
|
for (int i = 0; i < (int)options.size(); i++) {
|
||||||
if (ImGui::Selectable(options[i].c_str(), i == selection)) {
|
if (ImGui::Selectable(options[i].c_str(), i == selection)) {
|
||||||
|
|
|
@ -4,6 +4,7 @@
|
||||||
#include "libslic3r/SLA/Rotfinder.hpp"
|
#include "libslic3r/SLA/Rotfinder.hpp"
|
||||||
#include "libslic3r/MinAreaBoundingBox.hpp"
|
#include "libslic3r/MinAreaBoundingBox.hpp"
|
||||||
#include "libslic3r/Model.hpp"
|
#include "libslic3r/Model.hpp"
|
||||||
|
#include "libslic3r/SLAPrint.hpp"
|
||||||
|
|
||||||
#include "slic3r/GUI/Plater.hpp"
|
#include "slic3r/GUI/Plater.hpp"
|
||||||
|
|
||||||
|
@ -12,26 +13,41 @@ namespace Slic3r { namespace GUI {
|
||||||
void RotoptimizeJob::process()
|
void RotoptimizeJob::process()
|
||||||
{
|
{
|
||||||
int obj_idx = m_plater->get_selected_object_idx();
|
int obj_idx = m_plater->get_selected_object_idx();
|
||||||
if (obj_idx < 0) { return; }
|
if (obj_idx < 0 || int(m_plater->sla_print().objects().size()) <= obj_idx)
|
||||||
|
return;
|
||||||
|
|
||||||
ModelObject *o = m_plater->model().objects[size_t(obj_idx)];
|
ModelObject *o = m_plater->model().objects[size_t(obj_idx)];
|
||||||
|
const SLAPrintObject *po = m_plater->sla_print().objects()[size_t(obj_idx)];
|
||||||
|
|
||||||
auto r = sla::find_best_rotation(
|
if (!o || !po) return;
|
||||||
*o,
|
|
||||||
.005f,
|
TriangleMesh mesh = o->raw_mesh();
|
||||||
|
mesh.require_shared_vertices();
|
||||||
|
|
||||||
|
// for (auto inst : o->instances) {
|
||||||
|
// Transform3d tr = Transform3d::Identity();
|
||||||
|
// tr.rotate(Eigen::AngleAxisd(inst->get_rotation(Z), Vec3d::UnitZ()));
|
||||||
|
// tr.rotate(Eigen::AngleAxisd(inst->get_rotation(Y), Vec3d::UnitY()));
|
||||||
|
// tr.rotate(Eigen::AngleAxisd(inst->get_rotation(X), Vec3d::UnitX()));
|
||||||
|
|
||||||
|
// double score = sla::get_model_supportedness(*po, tr);
|
||||||
|
|
||||||
|
// std::cout << "Model supportedness before: " << score << std::endl;
|
||||||
|
// }
|
||||||
|
|
||||||
|
Vec2d r = sla::find_best_rotation(*po, 0.75f,
|
||||||
[this](unsigned s) {
|
[this](unsigned s) {
|
||||||
if (s < 100)
|
if (s < 100)
|
||||||
update_status(int(s),
|
update_status(int(s), _(L("Searching for optimal orientation")));
|
||||||
_(L("Searching for optimal orientation")));
|
|
||||||
},
|
},
|
||||||
[this]() { return was_canceled(); });
|
[this] () { return was_canceled(); });
|
||||||
|
|
||||||
|
|
||||||
double mindist = 6.0; // FIXME
|
double mindist = 6.0; // FIXME
|
||||||
|
|
||||||
if (!was_canceled()) {
|
if (!was_canceled()) {
|
||||||
for(ModelInstance * oi : o->instances) {
|
for(ModelInstance * oi : o->instances) {
|
||||||
oi->set_rotation({r[X], r[Y], r[Z]});
|
oi->set_rotation({r[X], r[Y], 0.});
|
||||||
|
|
||||||
auto trmatrix = oi->get_transformation().get_matrix();
|
auto trmatrix = oi->get_transformation().get_matrix();
|
||||||
Polygon trchull = o->convex_hull_2d(trmatrix);
|
Polygon trchull = o->convex_hull_2d(trmatrix);
|
||||||
|
|
|
@ -17,6 +17,7 @@ add_executable(${_TEST_NAME}_tests
|
||||||
test_marchingsquares.cpp
|
test_marchingsquares.cpp
|
||||||
test_timeutils.cpp
|
test_timeutils.cpp
|
||||||
test_voronoi.cpp
|
test_voronoi.cpp
|
||||||
|
test_optimizers.cpp
|
||||||
test_png_io.cpp
|
test_png_io.cpp
|
||||||
test_timeutils.cpp
|
test_timeutils.cpp
|
||||||
)
|
)
|
||||||
|
|
59
tests/libslic3r/test_optimizers.cpp
Normal file
59
tests/libslic3r/test_optimizers.cpp
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
#include <catch2/catch.hpp>
|
||||||
|
#include <test_utils.hpp>
|
||||||
|
|
||||||
|
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
|
||||||
|
|
||||||
|
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
|
||||||
|
|
||||||
|
void check_opt_result(double score, double ref, double abs_err, double rel_err)
|
||||||
|
{
|
||||||
|
double abs_diff = std::abs(score - ref);
|
||||||
|
double rel_diff = std::abs(abs_diff / std::abs(ref));
|
||||||
|
|
||||||
|
bool abs_reached = abs_diff < abs_err;
|
||||||
|
bool rel_reached = rel_diff < rel_err;
|
||||||
|
bool precision_reached = abs_reached || rel_reached;
|
||||||
|
REQUIRE(precision_reached);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Opt> void test_sin(Opt &&opt)
|
||||||
|
{
|
||||||
|
using namespace Slic3r::opt;
|
||||||
|
|
||||||
|
auto optfunc = [](const auto &in) {
|
||||||
|
auto [phi] = in;
|
||||||
|
|
||||||
|
return std::sin(phi);
|
||||||
|
};
|
||||||
|
|
||||||
|
auto init = initvals({PI});
|
||||||
|
auto optbounds = bounds({ {0., 2 * PI}});
|
||||||
|
|
||||||
|
Result result_min = opt.to_min().optimize(optfunc, init, optbounds);
|
||||||
|
Result result_max = opt.to_max().optimize(optfunc, init, optbounds);
|
||||||
|
|
||||||
|
check_opt_result(result_min.score, -1., 1e-2, 1e-4);
|
||||||
|
check_opt_result(result_max.score, 1., 1e-2, 1e-4);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Opt> void test_sphere_func(Opt &&opt)
|
||||||
|
{
|
||||||
|
using namespace Slic3r::opt;
|
||||||
|
|
||||||
|
Result result = opt.to_min().optimize([](const auto &in) {
|
||||||
|
auto [x, y] = in;
|
||||||
|
|
||||||
|
return x * x + y * y + 1.;
|
||||||
|
}, initvals({.6, -0.2}), bounds({{-1., 1.}, {-1., 1.}}));
|
||||||
|
|
||||||
|
check_opt_result(result.score, 1., 1e-2, 1e-4);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_CASE("Test brute force optimzer for basic 1D and 2D functions", "[Opt]") {
|
||||||
|
using namespace Slic3r::opt;
|
||||||
|
|
||||||
|
Optimizer<AlgBruteForce> opt;
|
||||||
|
|
||||||
|
test_sin(opt);
|
||||||
|
test_sphere_func(opt);
|
||||||
|
}
|
|
@ -5,6 +5,7 @@
|
||||||
#include "sla_test_utils.hpp"
|
#include "sla_test_utils.hpp"
|
||||||
|
|
||||||
#include <libslic3r/SLA/SupportTreeMesher.hpp>
|
#include <libslic3r/SLA/SupportTreeMesher.hpp>
|
||||||
|
#include <libslic3r/SLA/Concurrency.hpp>
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
|
|
||||||
|
@ -239,3 +240,14 @@ TEST_CASE("halfcone test", "[halfcone]") {
|
||||||
m.require_shared_vertices();
|
m.require_shared_vertices();
|
||||||
m.WriteOBJFile("Halfcone.obj");
|
m.WriteOBJFile("Halfcone.obj");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_CASE("Test concurrency")
|
||||||
|
{
|
||||||
|
std::vector<double> vals = grid(0., 100., 10.);
|
||||||
|
|
||||||
|
double ref = std::accumulate(vals.begin(), vals.end(), 0.);
|
||||||
|
|
||||||
|
double s = sla::ccr_par::reduce(vals.begin(), vals.end(), 0., std::plus<double>{});
|
||||||
|
|
||||||
|
REQUIRE(s == Approx(ref));
|
||||||
|
}
|
||||||
|
|
Loading…
Add table
Reference in a new issue