Ported PrintObject::prepare_infill & combine_infill from Perl to C++.

This commit is contained in:
bubnikv 2017-08-02 14:24:32 +02:00
parent 933d5b261a
commit 777023c7a8
10 changed files with 526 additions and 591 deletions

View File

@ -52,7 +52,6 @@ sub slice {
die "No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n"
if !@{$self->layers};
$self->set_typed_slices(0);
$self->set_step_done(STEP_SLICE);
}
@ -81,105 +80,7 @@ sub prepare_infill {
$self->set_step_started(STEP_PREPARE_INFILL);
$self->print->status_cb->(30, "Preparing infill");
# This will assign a type (top/bottom/internal) to $layerm->slices.
# Then the classifcation of $layerm->slices is transfered onto
# the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
# by the cummulative area of the previous $layerm->fill_surfaces.
$self->detect_surfaces_type;
# Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
$self->set_typed_slices(1);
# Decide what surfaces are to be filled.
# Here the S_TYPE_TOP / S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is turned to just S_TYPE_INTERNAL if zero top / bottom infill layers are configured.
# Also tiny S_TYPE_INTERNAL surfaces are turned to S_TYPE_INTERNAL_SOLID.
# BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces...";
$_->prepare_fill_surfaces for map @{$_->regions}, @{$self->layers};
# this will detect bridges and reverse bridges
# and rearrange top/bottom/internal surfaces
# It produces enlarged overlapping bridging areas.
#
# 1) S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
# 2) S_TYPE_TOP is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
# 3) Clip the internal surfaces by the grown top/bottom surfaces.
# 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
#FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
$self->process_external_surfaces;
# Add solid fills to ensure the shell vertical thickness.
$self->discover_vertical_shells;
# Debugging output.
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
for my $region_id (0 .. ($self->print->region_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
$layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
$layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
} # for each layer
} # for each region
}
# Detect, which fill surfaces are near external layers.
# They will be split in internal and internal-solid surfaces.
# The purpose is to add a configurable number of solid layers to support the TOP surfaces
# and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
# to close these surfaces reliably.
#FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
$self->discover_horizontal_shells;
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
# Debugging output.
for my $region_id (0 .. ($self->print->region_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
$layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
$layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
} # for each layer
} # for each region
}
# Only active if config->infill_only_where_needed. This step trims the sparse infill,
# so it acts as an internal support. It maintains all other infill types intact.
# Here the internal surfaces and perimeters have to be supported by the sparse infill.
#FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
# Likely the sparse infill will not be anchored correctly, so it will not work as intended.
# Also one wishes the perimeters to be supported by a full infill.
$self->clip_fill_surfaces;
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
# Debugging output.
for my $region_id (0 .. ($self->print->region_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
$layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
$layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
} # for each layer
} # for each region
}
# the following step needs to be done before combination because it may need
# to remove only half of the combined infill
$self->bridge_over_infill;
# combine fill surfaces to honor the "infill every N layers" option
$self->combine_infill;
# Debugging output.
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
for my $region_id (0 .. ($self->print->region_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
$layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
$layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} # for each layer
} # for each region
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layer = $self->get_layer($i);
$layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
$layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} # for each layer
}
$self->_prepare_infill;
$self->set_step_done(STEP_PREPARE_INFILL);
}
@ -214,430 +115,4 @@ sub generate_support_material {
$self->print->status_cb->(85, $stats);
}
# Idempotence of this method is guaranteed by the fact that we don't remove things from
# fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
sub clip_fill_surfaces {
my $self = shift;
return unless $self->config->infill_only_where_needed;
# We only want infill under ceilings; this is almost like an
# internal support material.
# proceed top-down skipping bottom layer
my $upper_internal = [];
for my $layer_id (reverse 1..($self->layer_count - 1)) {
my $layer = $self->get_layer($layer_id);
my $lower_layer = $self->get_layer($layer_id-1);
# detect things that we need to support
my $overhangs = []; # Polygons
# we need to support any solid surface
push @$overhangs, map $_->p,
grep $_->is_solid, map @{$_->fill_surfaces}, @{$layer->regions};
# we also need to support perimeters when there's at least one full
# unsupported loop
{
# get perimeters area as the difference between slices and fill_surfaces
my $perimeters = diff(
[ map @$_, @{$layer->slices} ],
[ map $_->p, map @{$_->fill_surfaces}, @{$layer->regions} ],
);
# only consider the area that is not supported by lower perimeters
$perimeters = intersection(
$perimeters,
[ map $_->p, map @{$_->fill_surfaces}, @{$lower_layer->regions} ],
1,
);
# only consider perimeter areas that are at least one extrusion width thick
#FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
#Should the $pw not be half of the current value?
my $pw = min(map $_->flow(FLOW_ROLE_PERIMETER)->scaled_width, @{$layer->regions});
$perimeters = offset2($perimeters, -$pw, +$pw);
# append such thick perimeters to the areas that need support
push @$overhangs, @$perimeters;
}
# find new internal infill
$upper_internal = my $new_internal = intersection(
[
@$overhangs,
@$upper_internal,
],
[
# our current internal fill boundaries
map $_->p,
grep $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALVOID,
map @{$_->fill_surfaces}, @{$lower_layer->regions}
],
);
# apply new internal infill to regions
foreach my $layerm (@{$lower_layer->regions}) {
my (@internal, @other) = ();
foreach my $surface (map $_->clone, @{$layerm->fill_surfaces}) {
if ($surface->surface_type == S_TYPE_INTERNAL || $surface->surface_type == S_TYPE_INTERNALVOID) {
push @internal, $surface;
} else {
push @other, $surface;
}
}
my @new = map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNAL,
),
@{intersection_ex(
[ map $_->p, @internal ],
$new_internal,
1,
)};
push @other, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALVOID,
),
@{diff_ex(
[ map $_->p, @internal ],
$new_internal,
1,
)};
# If there are voids it means that our internal infill is not adjacent to
# perimeters. In this case it would be nice to add a loop around infill to
# make it more robust and nicer. TODO.
$layerm->fill_surfaces->clear;
$layerm->fill_surfaces->append($_) for (@new, @other);
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
$layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
}
}
}
}
sub discover_horizontal_shells {
my $self = shift;
Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n";
for my $region_id (0 .. ($self->print->region_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
if ($layerm->region->config->solid_infill_every_layers && $layerm->region->config->fill_density > 0
&& ($i % $layerm->region->config->solid_infill_every_layers) == 0) {
# This is the layer to put the sparse infill in. Mark S_TYPE_INTERNAL surfaces as S_TYPE_INTERNALSOLID or S_TYPE_INTERNALBRIDGE.
# If the sparse infill is not active, the internal surfaces are of type S_TYPE_INTERNAL.
my $type = $layerm->region->config->fill_density == 100 ? S_TYPE_INTERNALSOLID : S_TYPE_INTERNALBRIDGE;
$_->surface_type($type) for @{$layerm->fill_surfaces->filter_by_type(S_TYPE_INTERNAL)};
}
# If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
next if ($layerm->region->config->ensure_vertical_shell_thickness);
EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM, S_TYPE_BOTTOMBRIDGE) {
# find slices of current type for current layer
# use slices instead of fill_surfaces because they also include the perimeter area
# which needs to be propagated in shells; we need to grow slices like we did for
# fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
# not work in some situations, as there won't be any grown region in the perimeter
# area (this was seen in a model where the top layer had one extra perimeter, thus
# its fill_surfaces were thinner than the lower layer's infill), however it's the best
# solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
# too much solid infill inside nearly-vertical slopes.
my $solid = [
# Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
# (not covered by a layer above / below).
# This does not contain the areas covered by perimeters!
(map $_->p, @{$layerm->slices->filter_by_type($type)}),
# Infill areas (slices without the perimeters).
(map $_->p, @{$layerm->fill_surfaces->filter_by_type($type)}),
];
next if !@$solid;
Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
my $solid_layers = ($type == S_TYPE_TOP)
? $layerm->region->config->top_solid_layers
: $layerm->region->config->bottom_solid_layers;
NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
abs($n - $i) < $solid_layers;
($type == S_TYPE_TOP) ? $n-- : $n++) {
next if $n < 0 || $n >= $self->layer_count;
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
# Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
my $neighbor_layerm = $self->get_layer($n)->regions->[$region_id];
# Reference to the neighbour fill surfaces.
my $neighbor_fill_surfaces = $neighbor_layerm->fill_surfaces;
# Clone because we will use these surfaces even after clearing the collection.
my @neighbor_fill_surfaces = map $_->clone, @$neighbor_fill_surfaces;
# find intersection between neighbor and current layer's surfaces
# intersections have contours and holes
# we update $solid so that we limit the next neighbor layer to the areas that were
# found on this one - in other words, solid shells on one layer (for a given external surface)
# are always a subset of the shells found on the previous shell layer
# this approach allows for DWIM in hollow sloping vases, where we want bottom
# shells to be generated in the base but not in the walls (where there are many
# narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
# upper perimeter as an obstacle and shell will not be propagated to more upper layers
#FIXME How does it work for S_TYPE_INTERNALBRIDGE? This is set for sparse infill. Likely this does not work.
my $new_internal_solid = $solid = intersection(
$solid,
[ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ],
1,
);
next EXTERNAL if !@$new_internal_solid;
if ($layerm->region->config->fill_density == 0) {
# if we're printing a hollow object we discard any solid shell thinner
# than a perimeter width, since it's probably just crossing a sloping wall
# and it's not wanted in a hollow print even if it would make sense when
# obeying the solid shell count option strictly (DWIM!)
my $margin = $neighbor_layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width;
my $regularized = offset2($new_internal_solid, -$margin, +$margin, JT_MITER, 5);
my $too_narrow = diff(
$new_internal_solid,
$regularized,
1,
);
# Trim the regularized region by the original region.
$new_internal_solid = $solid = intersection(
$new_internal_solid,
$regularized,
) if @$too_narrow;
}
# make sure the new internal solid is wide enough, as it might get collapsed
# when spacing is added in Fill.pm
if ($layerm->region->config->ensure_vertical_shell_thickness) {
# The possible thin sickles of top / bottom surfaces on steeply sloping surfaces touch
# the projections of top / bottom perimeters, therefore they will be sufficiently inflated by
# merging them with the projections of the top / bottom perimeters.
} else {
#FIXME Vojtech: Disable this and you will be sorry.
# https://github.com/prusa3d/Slic3r/issues/26 bottom
my $margin = 3 * $layerm->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width; # require at least this size
# we use a higher miterLimit here to handle areas with acute angles
# in those cases, the default miterLimit would cut the corner and we'd
# get a triangle in $too_narrow; if we grow it below then the shell
# would have a different shape from the external surface and we'd still
# have the same angle, so the next shell would be grown even more and so on.
my $too_narrow = diff(
$new_internal_solid,
offset2($new_internal_solid, -$margin, +$margin, JT_MITER, 5),
1,
);
if (@$too_narrow) {
# grow the collapsing parts and add the extra area to the neighbor layer
# as well as to our original surfaces so that we support this
# additional area in the next shell too
# make sure our grown surfaces don't exceed the fill area
my @grown = @{intersection(
offset($too_narrow, +$margin),
# Discard bridges as they are grown for anchoring and we can't
# remove such anchors. (This may happen when a bridge is being
# anchored onto a wall where little space remains after the bridge
# is grown, and that little space is an internal solid shell so
# it triggers this too_narrow logic.)
[ map $_->p, grep { $_->is_internal && !$_->is_bridge } @neighbor_fill_surfaces ],
)};
$new_internal_solid = $solid = [ @grown, @$new_internal_solid ];
}
}
# internal-solid are the union of the existing internal-solid surfaces
# and new ones
my $internal_solid = union_ex([
( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ),
@$new_internal_solid,
]);
# subtract intersections from layer surfaces to get resulting internal surfaces
my $internal = diff_ex(
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ],
[ map @$_, @$internal_solid ],
1,
);
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
scalar(@$internal_solid), scalar(@$internal);
# assign resulting internal surfaces to layer
$neighbor_fill_surfaces->clear;
$neighbor_fill_surfaces->append($_)
for map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL),
@$internal;
# assign new internal-solid surfaces to layer
$neighbor_fill_surfaces->append($_)
for map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNALSOLID),
@$internal_solid;
# assign top and bottom surfaces to layer
foreach my $s (@{Slic3r::Surface::Collection->new(grep { ($_->surface_type == S_TYPE_TOP) || $_->is_bottom } @neighbor_fill_surfaces)->group}) {
my $solid_surfaces = diff_ex(
[ map $_->p, @$s ],
[ map @$_, @$internal_solid, @$internal ],
1,
);
$neighbor_fill_surfaces->append($_)
for map $s->[0]->clone(expolygon => $_), @$solid_surfaces;
}
}
} # foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM, S_TYPE_BOTTOMBRIDGE)
} # for each layer
} # for each region
# Debugging output.
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
for my $region_id (0 .. ($self->print->region_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
$layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
$layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
} # for each layer
} # for each region
}
}
# combine fill surfaces across layers to honor the "infill every N layers" option
# Idempotence of this method is guaranteed by the fact that we don't remove things from
# fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
sub combine_infill {
my $self = shift;
# define the type used for voids
my %voidtype = (
&S_TYPE_INTERNAL() => S_TYPE_INTERNALVOID,
);
# work on each region separately
for my $region_id (0 .. ($self->print->region_count-1)) {
my $region = $self->print->get_region($region_id);
my $every = $region->config->infill_every_layers;
next unless $every > 1 && $region->config->fill_density > 0;
# limit the number of combined layers to the maximum height allowed by this regions' nozzle
my $nozzle_diameter = min(
$self->print->config->get_at('nozzle_diameter', $region->config->infill_extruder-1),
$self->print->config->get_at('nozzle_diameter', $region->config->solid_infill_extruder-1),
);
# define the combinations
my %combine = (); # layer_idx => number of additional combined lower layers
{
my $current_height = my $layers = 0;
for my $layer_idx (0 .. ($self->layer_count-1)) {
my $layer = $self->get_layer($layer_idx);
next if $layer->id == 0; # skip first print layer (which may not be first layer in array because of raft)
my $height = $layer->height;
# check whether the combination of this layer with the lower layers' buffer
# would exceed max layer height or max combined layer count
if ($current_height + $height >= $nozzle_diameter + epsilon || $layers >= $every) {
# append combination to lower layer
$combine{$layer_idx-1} = $layers;
$current_height = $layers = 0;
}
$current_height += $height;
$layers++;
}
# append lower layers (if any) to uppermost layer
$combine{$self->layer_count-1} = $layers;
}
# loop through layers to which we have assigned layers to combine
for my $layer_idx (sort keys %combine) {
next unless $combine{$layer_idx} > 1;
# get all the LayerRegion objects to be combined
my @layerms = map $self->get_layer($_)->get_region($region_id),
($layer_idx - ($combine{$layer_idx}-1) .. $layer_idx);
# only combine internal infill
for my $type (S_TYPE_INTERNAL) {
# we need to perform a multi-layer intersection, so let's split it in pairs
# initialize the intersection with the candidates of the lowest layer
my $intersection = [ map $_->expolygon, @{$layerms[0]->fill_surfaces->filter_by_type($type)} ];
# start looping from the second layer and intersect the current intersection with it
for my $layerm (@layerms[1 .. $#layerms]) {
$intersection = intersection_ex(
[ map @$_, @$intersection ],
[ map @{$_->expolygon}, @{$layerm->fill_surfaces->filter_by_type($type)} ],
);
}
my $area_threshold = $layerms[0]->infill_area_threshold;
@$intersection = grep $_->area > $area_threshold, @$intersection;
next if !@$intersection;
Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
scalar(@$intersection),
($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
$layer_idx-($every-1), $layer_idx;
# $intersection now contains the regions that can be combined across the full amount of layers
# so let's remove those areas from all layers
my @intersection_with_clearance = map @{$_->offset(
$layerms[-1]->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width / 2
+ $layerms[-1]->flow(FLOW_ROLE_PERIMETER)->scaled_width / 2
# Because fill areas for rectilinear and honeycomb are grown
# later to overlap perimeters, we need to counteract that too.
+ (($type == S_TYPE_INTERNALSOLID || $region->config->fill_pattern =~ /(rectilinear|grid|line|honeycomb)/)
? $layerms[-1]->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width
: 0)
)}, @$intersection;
foreach my $layerm (@layerms) {
my @this_type = @{$layerm->fill_surfaces->filter_by_type($type)};
my @other_types = map $_->clone, grep $_->surface_type != $type, @{$layerm->fill_surfaces};
my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type),
@{diff_ex(
[ map $_->p, @this_type ],
[ @intersection_with_clearance ],
)};
# apply surfaces back with adjusted depth to the uppermost layer
if ($layerm->layer->id == $self->get_layer($layer_idx)->id) {
push @new_this_type,
map Slic3r::Surface->new(
expolygon => $_,
surface_type => $type,
thickness => sum(map $_->layer->height, @layerms),
thickness_layers => scalar(@layerms),
),
@$intersection;
} else {
# save void surfaces
push @new_this_type,
map Slic3r::Surface->new(expolygon => $_, surface_type => $voidtype{$type}),
@{intersection_ex(
[ map @{$_->expolygon}, @this_type ],
[ @intersection_with_clearance ],
)};
}
$layerm->fill_surfaces->clear;
$layerm->fill_surfaces->append($_) for (@new_this_type, @other_types);
}
}
}
}
}
1;

View File

@ -505,13 +505,8 @@ inline ClipperLib::PolyTree _clipper_do_polytree2(const ClipperLib::ClipType cli
ClipperLib::Paths input_clip = Slic3rMultiPoints_to_ClipperPaths(clip);
// perform safety offset
if (safety_offset_) {
if (clipType == ClipperLib::ctUnion) {
safety_offset(&input_subject);
} else {
safety_offset(&input_clip);
}
}
if (safety_offset_)
safety_offset((clipType == ClipperLib::ctUnion) ? &input_subject : &input_clip);
ClipperLib::Clipper clipper;
clipper.AddPaths(input_subject, ClipperLib::ptSubject, true);
@ -528,8 +523,7 @@ inline ClipperLib::PolyTree _clipper_do_polytree2(const ClipperLib::ClipType cli
return retval;
}
ClipperLib::PolyTree
_clipper_do_pl(const ClipperLib::ClipType clipType, const Polylines &subject,
ClipperLib::PolyTree _clipper_do_pl(const ClipperLib::ClipType clipType, const Polylines &subject,
const Polygons &clip, const ClipperLib::PolyFillType fillType,
const bool safety_offset_)
{
@ -554,33 +548,25 @@ _clipper_do_pl(const ClipperLib::ClipType clipType, const Polylines &subject,
return retval;
}
Polygons
_clipper(ClipperLib::ClipType clipType, const Polygons &subject,
const Polygons &clip, bool safety_offset_)
Polygons _clipper(ClipperLib::ClipType clipType, const Polygons &subject, const Polygons &clip, bool safety_offset_)
{
return ClipperPaths_to_Slic3rPolygons(_clipper_do<ClipperLib::Paths>(clipType, subject, clip, ClipperLib::pftNonZero, safety_offset_));
}
ExPolygons
_clipper_ex(ClipperLib::ClipType clipType, const Polygons &subject,
const Polygons &clip, bool safety_offset_)
ExPolygons _clipper_ex(ClipperLib::ClipType clipType, const Polygons &subject, const Polygons &clip, bool safety_offset_)
{
ClipperLib::PolyTree polytree = _clipper_do_polytree2(clipType, subject, clip, ClipperLib::pftNonZero, safety_offset_);
return PolyTreeToExPolygons(polytree);
}
Polylines
_clipper_pl(ClipperLib::ClipType clipType, const Polylines &subject,
const Polygons &clip, bool safety_offset_)
Polylines _clipper_pl(ClipperLib::ClipType clipType, const Polylines &subject, const Polygons &clip, bool safety_offset_)
{
ClipperLib::Paths output;
ClipperLib::PolyTreeToPaths(_clipper_do_pl(clipType, subject, clip, ClipperLib::pftNonZero, safety_offset_), output);
return ClipperPaths_to_Slic3rPolylines(output);
}
Polylines
_clipper_pl(ClipperLib::ClipType clipType, const Polygons &subject,
const Polygons &clip, bool safety_offset_)
Polylines _clipper_pl(ClipperLib::ClipType clipType, const Polygons &subject, const Polygons &clip, bool safety_offset_)
{
// transform input polygons into polylines
Polylines polylines;

View File

@ -185,32 +185,27 @@ inline Slic3r::Lines intersection_ln(const Slic3r::Line &subject, const Slic3r::
}
// union
inline Slic3r::Polygons
union_(const Slic3r::Polygons &subject, bool safety_offset_ = false)
inline Slic3r::Polygons union_(const Slic3r::Polygons &subject, bool safety_offset_ = false)
{
return _clipper(ClipperLib::ctUnion, subject, Slic3r::Polygons(), safety_offset_);
}
inline Slic3r::Polygons
union_(const Slic3r::Polygons &subject, const Slic3r::Polygons &subject2, bool safety_offset_ = false)
inline Slic3r::Polygons union_(const Slic3r::Polygons &subject, const Slic3r::Polygons &subject2, bool safety_offset_ = false)
{
return _clipper(ClipperLib::ctUnion, subject, subject2, safety_offset_);
}
inline Slic3r::ExPolygons
union_ex(const Slic3r::Polygons &subject, bool safety_offset_ = false)
inline Slic3r::ExPolygons union_ex(const Slic3r::Polygons &subject, bool safety_offset_ = false)
{
return _clipper_ex(ClipperLib::ctUnion, subject, Slic3r::Polygons(), safety_offset_);
}
inline Slic3r::ExPolygons
union_ex(const Slic3r::ExPolygons &subject, bool safety_offset_ = false)
inline Slic3r::ExPolygons union_ex(const Slic3r::ExPolygons &subject, bool safety_offset_ = false)
{
return _clipper_ex(ClipperLib::ctUnion, to_polygons(subject), Slic3r::Polygons(), safety_offset_);
}
inline Slic3r::ExPolygons
union_ex(const Slic3r::Surfaces &subject, bool safety_offset_ = false)
inline Slic3r::ExPolygons union_ex(const Slic3r::Surfaces &subject, bool safety_offset_ = false)
{
return _clipper_ex(ClipperLib::ctUnion, to_polygons(subject), Slic3r::Polygons(), safety_offset_);
}

View File

@ -11,6 +11,7 @@
#include "FillPlanePath.hpp"
#include "FillRectilinear.hpp"
#include "FillRectilinear2.hpp"
#include "FillRectilinear3.hpp"
namespace Slic3r {
@ -31,7 +32,7 @@ Fill* Fill::new_from_type(const InfillPattern type)
case ipArchimedeanChords: return new FillArchimedeanChords();
case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral();
default: CONFESS("unknown type"); return NULL;
default: CONFESS("unknown type"); return nullptr;
}
}
@ -39,7 +40,7 @@ Fill* Fill::new_from_type(const std::string &type)
{
static t_config_enum_values enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
t_config_enum_values::const_iterator it = enum_keys_map.find(type);
return (it == enum_keys_map.end()) ? NULL : new_from_type(InfillPattern(it->second));
return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
}
Polylines Fill::fill_surface(const Surface *surface, const FillParams &params)

View File

@ -35,9 +35,7 @@ public:
Point(int _x, int _y): x(_x), y(_y) {};
Point(long long _x, long long _y): x(coord_t(_x)), y(coord_t(_y)) {}; // for Clipper
Point(double x, double y);
static Point new_scale(coordf_t x, coordf_t y) {
return Point(scale_(x), scale_(y));
};
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
bool operator==(const Point& rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
@ -182,9 +180,10 @@ private:
class Point3 : public Point
{
public:
public:
coord_t z;
explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), z(_z) {};
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
};
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);

View File

@ -191,6 +191,7 @@ public:
void _slice();
std::string _fix_slicing_errors();
void _simplify_slices(double distance);
void _prepare_infill();
bool has_support_material() const;
void detect_surfaces_type();
void process_external_surfaces();
@ -198,6 +199,9 @@ public:
void bridge_over_infill();
void _make_perimeters();
void _infill();
void clip_fill_surfaces();
void discover_horizontal_shells();
void combine_infill();
void _generate_support_material();
private:

View File

@ -68,7 +68,7 @@ PrintConfigDef::PrintConfigDef()
def = this->add("bridge_angle", coFloat);
def->label = "Bridging angle";
def->category = "Infill";
def->tooltip = "Bridging angle override. If left to zero, the bridging angle will be calculated automatically. Otherwise the provided angle will be used for all bridges, use 180° for zero angle.";
def->tooltip = "Bridging angle override. If left to zero, the bridging angle will be calculated automatically. Otherwise the provided angle will be used for all bridges. Use 180° for zero angle.";
def->sidetext = "°";
def->cli = "bridge-angle=f";
def->min = 0;

View File

@ -3,6 +3,7 @@
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "SupportMaterial.hpp"
#include "Surface.hpp"
#include <utility>
#include <boost/log/trivial.hpp>
@ -32,8 +33,8 @@
namespace Slic3r {
PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox)
: typed_slices(false),
PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox) :
typed_slices(false),
_print(print),
_model_object(model_object),
layer_height_profile_valid(false)
@ -46,12 +47,10 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
this->_copies_shift = Point(
scale_(modobj_bbox.min.x), scale_(modobj_bbox.min.y));
this->_copies_shift = Point::new_scale(modobj_bbox.min.x, modobj_bbox.min.y);
// Scale the object size and store it
Pointf3 size = modobj_bbox.size();
this->size = Point3(scale_(size.x), scale_(size.y), scale_(size.z));
this->size = Point3::new_scale(size.x, size.y, size.z);
}
this->reload_model_instances();
@ -283,6 +282,105 @@ bool PrintObject::has_support_material() const
|| this->config.support_material_enforce_layers > 0;
}
void PrintObject::_prepare_infill()
{
// This will assign a type (top/bottom/internal) to $layerm->slices.
// Then the classifcation of $layerm->slices is transfered onto
// the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
// by the cummulative area of the previous $layerm->fill_surfaces.
this->detect_surfaces_type();
// Decide what surfaces are to be filled.
// Here the S_TYPE_TOP / S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is turned to just S_TYPE_INTERNAL if zero top / bottom infill layers are configured.
// Also tiny S_TYPE_INTERNAL surfaces are turned to S_TYPE_INTERNAL_SOLID.
BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces...";
for (auto *layer : this->layers)
for (auto *region : layer->regions)
region->prepare_fill_surfaces();
// this will detect bridges and reverse bridges
// and rearrange top/bottom/internal surfaces
// It produces enlarged overlapping bridging areas.
//
// 1) S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
// 2) S_TYPE_TOP is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
// 3) Clip the internal surfaces by the grown top/bottom surfaces.
// 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
//FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
this->process_external_surfaces();
// Add solid fills to ensure the shell vertical thickness.
this->discover_vertical_shells();
// Debugging output.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
for (const Layer *layer : this->layers) {
LayerRegion *layerm = layer->regions[region_id];
layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Detect, which fill surfaces are near external layers.
// They will be split in internal and internal-solid surfaces.
// The purpose is to add a configurable number of solid layers to support the TOP surfaces
// and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
// to close these surfaces reliably.
//FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
this->discover_horizontal_shells();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
for (const Layer *layer : this->layers) {
LayerRegion *layerm = layer->regions[region_id];
layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
this->clip_fill_surfaces();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
for (const Layer *layer : this->layers) {
LayerRegion *layerm = layer->regions[region_id];
layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// the following step needs to be done before combination because it may need
// to remove only half of the combined infill
this->bridge_over_infill();
// combine fill surfaces to honor the "infill every N layers" option
this->combine_infill();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
for (const Layer *layer : this->layers) {
LayerRegion *layerm = layer->regions[region_id];
layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
} // for each region
for (const Layer *layer : this->layers) {
layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
// This function analyzes slices of a region (SurfaceCollection slices).
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
// Initially all slices are of type stInternal.
@ -334,8 +432,8 @@ void PrintObject::detect_surfaces_type()
LayerRegion *layerm = layer->get_region(idx_region);
// comparison happens against the *full* slices (considering all regions)
// unless internal shells are requested
Layer *upper_layer = idx_layer + 1 < this->layer_count() ? this->get_layer(idx_layer + 1) : nullptr;
Layer *lower_layer = idx_layer > 0 ? this->get_layer(idx_layer - 1) : nullptr;
Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? this->layers[idx_layer + 1] : nullptr;
Layer *lower_layer = (idx_layer > 0) ? this->layers[idx_layer - 1] : nullptr;
// collapse very narrow parts (using the safety offset in the diff is not enough)
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
@ -473,7 +571,10 @@ void PrintObject::detect_surfaces_type()
} // for each layer of a region
});
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
} // for each $self->print->region_count
} // for each this->print->region_count
// Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
this->typed_slices = true;
}
void PrintObject::process_external_surfaces()
@ -669,7 +770,6 @@ void PrintObject::discover_vertical_shells()
ExPolygons shell_ex;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
if (1)
{
PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
#if 0
@ -698,8 +798,7 @@ void PrintObject::discover_vertical_shells()
bool hole_first = true;
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n)
if (n >= 0 && n < (int)this->layers.size()) {
Layer &neighbor_layer = *this->layers[n];
LayerRegion &neighbor_region = *neighbor_layer.get_region(int(idx_region));
Layer &neighbor_layer = *this->layers[n];
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[n];
if (hole_first) {
hole_first = false;
@ -880,8 +979,7 @@ void PrintObject::discover_vertical_shells()
/* This method applies bridge flow to the first internal solid layer above
sparse infill */
void
PrintObject::bridge_over_infill()
void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill...";
@ -906,7 +1004,7 @@ PrintObject::bridge_over_infill()
if (layer_it == this->layers.begin()) continue;
Layer* layer = *layer_it;
LayerRegion* layerm = layer->get_region(region_id);
LayerRegion* layerm = layer->regions[region_id];
// extract the stInternalSolid surfaces that might be transformed into bridges
Polygons internal_solid;
@ -921,7 +1019,7 @@ PrintObject::bridge_over_infill()
// iterate through lower layers spanned by bridge_flow
double bottom_z = layer->print_z - bridge_flow.height;
for (int i = (layer_it - this->layers.begin()) - 1; i >= 0; --i) {
for (int i = int(layer_it - this->layers.begin()) - 1; i >= 0; --i) {
const Layer* lower_layer = this->layers[i];
// stop iterating if layer is lower than bottom_z
@ -941,7 +1039,7 @@ PrintObject::bridge_over_infill()
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
{
double min_width = bridge_flow.scaled_width() * 3;
float min_width = float(bridge_flow.scaled_width()) * 3.f;
to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
}
@ -1069,6 +1167,8 @@ void PrintObject::_slice()
{
BOOST_LOG_TRIVIAL(info) << "Slicing objects...";
this->typed_slices = false;
#if 0
// Disable parallelization for debugging purposes.
static tbb::task_scheduler_init *tbb_init = nullptr;
@ -1221,7 +1321,7 @@ std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::
// consider the first one
this->model_object()->instances.front()->transform_mesh(&mesh, true);
// align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
mesh.translate(- unscale(this->_copies_shift.x), - unscale(this->_copies_shift.y), -this->model_object()->bounding_box().min.z);
mesh.translate(- float(unscale(this->_copies_shift.x)), - float(unscale(this->_copies_shift.y)), -float(this->model_object()->bounding_box().min.z));
// perform actual slicing
TriangleMeshSlicer mslicer(&mesh);
mslicer.slice(z, &layers);
@ -1462,6 +1562,387 @@ void PrintObject::_infill()
this->state.set_done(posInfill);
}
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::clip_fill_surfaces()
{
if (! this->config.infill_only_where_needed.value ||
! std::any_of(this->print()->regions.begin(), this->print()->regions.end(),
[](const PrintRegion *region) { return region->config.fill_density > 0; }))
return;
// We only want infill under ceilings; this is almost like an
// internal support material.
// Proceed top-down, skipping the bottom layer.
Polygons upper_internal;
for (int layer_id = int(this->layers.size()) - 1; layer_id > 0; -- layer_id) {
Layer *layer = this->layers[layer_id];
Layer *lower_layer = this->layers[layer_id - 1];
// Detect things that we need to support.
// Cummulative slices.
Polygons slices;
for (const ExPolygon &expoly : layer->slices.expolygons)
polygons_append(slices, to_polygons(expoly));
// Cummulative fill surfaces.
Polygons fill_surfaces;
// Solid surfaces to be supported.
Polygons overhangs;
for (const LayerRegion *layerm : layer->regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.is_solid())
polygons_append(overhangs, polygons);
polygons_append(fill_surfaces, std::move(polygons));
}
Polygons lower_layer_fill_surfaces;
Polygons lower_layer_internal_surfaces;
for (const LayerRegion *layerm : lower_layer->regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(lower_layer_internal_surfaces, polygons);
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
}
// We also need to support perimeters when there's at least one full unsupported loop
{
// Get perimeters area as the difference between slices and fill_surfaces
// Only consider the area that is not supported by lower perimeters
Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
// Only consider perimeter areas that are at least one extrusion width thick.
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
//Should the pw not be half of the current value?
float pw = FLT_MAX;
for (const LayerRegion *layerm : layer->regions)
pw = std::min<float>(pw, layerm->flow(frPerimeter).scaled_width());
// Append such thick perimeters to the areas that need support
polygons_append(overhangs, offset2(perimeters, -pw, +pw));
}
// Find new internal infill.
polygons_append(overhangs, std::move(upper_internal));
upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
// Apply new internal infill to regions.
for (LayerRegion *layerm : lower_layer->regions) {
if (layerm->region()->config.fill_density.value == 0)
continue;
SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
Polygons internal;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(internal, std::move(surface.expolygon));
layerm->fill_surfaces.remove_types(internal_surface_types, 2);
layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid);
// If there are voids it means that our internal infill is not adjacent to
// perimeters. In this case it would be nice to add a loop around infill to
// make it more robust and nicer. TODO.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
#endif
}
}
}
void PrintObject::discover_horizontal_shells()
{
BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
for (int i = 0; i < int(this->layers.size()); ++ i) {
LayerRegion *layerm = this->layers[i]->regions[region_id];
PrintRegionConfig &region_config = layerm->region()->config;
if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
(i % region_config.solid_infill_every_layers) == 0) {
// Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal)
surface.surface_type = type;
}
// If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
if (region_config.ensure_vertical_shell_thickness.value)
continue;
for (int idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
// Find slices of current type for current layer.
// Use slices instead of fill_surfaces, because they also include the perimeter area,
// which needs to be propagated in shells; we need to grow slices like we did for
// fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
// not work in some situations, as there won't be any grown region in the perimeter
// area (this was seen in a model where the top layer had one extra perimeter, thus
// its fill_surfaces were thinner than the lower layer's infill), however it's the best
// solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
// too much solid infill inside nearly-vertical slopes.
// Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
// (not covered by a layer above / below).
// This does not contain the areas covered by perimeters!
Polygons solid;
for (const Surface &surface : layerm->slices.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
// Infill areas (slices without the perimeters).
for (const Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
if (solid.empty())
continue;
// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
size_t solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
for (int n = (type == stTop) ? i-1 : i+1; std::abs(n - i) < solid_layers; (type == stTop) ? -- n : ++ n) {
if (n < 0 || n >= int(this->layers.size()))
continue;
// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
// Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
LayerRegion *neighbor_layerm = this->layers[n]->regions[region_id];
// find intersection between neighbor and current layer's surfaces
// intersections have contours and holes
// we update $solid so that we limit the next neighbor layer to the areas that were
// found on this one - in other words, solid shells on one layer (for a given external surface)
// are always a subset of the shells found on the previous shell layer
// this approach allows for DWIM in hollow sloping vases, where we want bottom
// shells to be generated in the base but not in the walls (where there are many
// narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
// upper perimeter as an obstacle and shell will not be propagated to more upper layers
//FIXME How does it work for S_TYPE_INTERNALBRIDGE? This is set for sparse infill. Likely this does not work.
Polygons new_internal_solid;
{
Polygons internal;
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
polygons_append(internal, to_polygons(surface.expolygon));
new_internal_solid = intersection(solid, internal, true);
}
if (new_internal_solid.empty()) {
// No internal solid needed on this layer. In order to decide whether to continue
// searching on the next neighbor (thus enforcing the configured number of solid
// layers, use different strategies according to configured infill density:
if (region_config.fill_density.value == 0) {
// If user expects the object to be void (for example a hollow sloping vase),
// don't continue the search. In this case, we only generate the external solid
// shell if the object would otherwise show a hole (gap between perimeters of
// the two layers), and internal solid shells are a subset of the shells found
// on each previous layer.
goto EXTERNAL;
} else {
// If we have internal infill, we can generate internal solid shells freely.
continue;
}
}
if (region_config.fill_density.value == 0) {
// if we're printing a hollow object we discard any solid shell thinner
// than a perimeter width, since it's probably just crossing a sloping wall
// and it's not wanted in a hollow print even if it would make sense when
// obeying the solid shell count option strictly (DWIM!)
float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
Polygons too_narrow = diff(
new_internal_solid,
offset2(new_internal_solid, -margin, +margin, jtMiter, 5),
true);
// Trim the regularized region by the original region.
if (! too_narrow.empty())
new_internal_solid = solid = diff(new_internal_solid, too_narrow);
}
// make sure the new internal solid is wide enough, as it might get collapsed
// when spacing is added in Fill.pm
{
//FIXME Vojtech: Disable this and you will be sorry.
// https://github.com/prusa3d/Slic3r/issues/26 bottom
float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(
new_internal_solid,
offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
true);
if (! too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
Polygons internal;
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.is_internal() && !surface.is_bridge())
polygons_append(internal, to_polygons(surface.expolygon));
polygons_append(new_internal_solid,
intersection(
offset(too_narrow, +margin),
// Discard bridges as they are grown for anchoring and we can't
// remove such anchors. (This may happen when a bridge is being
// anchored onto a wall where little space remains after the bridge
// is grown, and that little space is an internal solid shell so
// it triggers this too_narrow logic.)
internal));
solid = new_internal_solid;
}
}
// internal-solid are the union of the existing internal-solid surfaces
// and new ones
SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
ExPolygons internal_solid = union_ex(new_internal_solid, false);
// assign new internal-solid surfaces to layer
neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
// subtract intersections from layer surfaces to get resulting internal surfaces
Polygons polygons_internal = to_polygons(std::move(internal_solid));
ExPolygons internal = diff_ex(
to_polygons(backup.filter_by_type(stInternal)),
polygons_internal,
true);
// assign resulting internal surfaces to layer
neighbor_layerm->fill_surfaces.append(internal, stInternal);
polygons_append(polygons_internal, to_polygons(std::move(internal)));
// assign top and bottom surfaces to layer
SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
backup.keep_types(surface_types_solid, 3);
std::vector<SurfacesPtr> top_bottom_groups;
backup.group(&top_bottom_groups);
for (SurfacesPtr &group : top_bottom_groups)
neighbor_layerm->fill_surfaces.append(
diff_ex(to_polygons(group), polygons_internal),
group.front()->surface_type);
}
EXTERNAL:;
} // foreach type (stTop, stBottom, stBottomBridge)
} // for each layer
} // for each region
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
for (const Layer *layer : this->layers) {
const LayerRegion *layerm = layer->regions[region_id];
layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
// combine fill surfaces across layers to honor the "infill every N layers" option
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::combine_infill()
{
// Work on each region separately.
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
const PrintRegion *region = this->print()->regions[region_id];
const int every = region->config.infill_every_layers.value;
if (every < 2 || region->config.fill_density == 0.)
continue;
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
//FIXME limit the layer height to max_layer_height
double nozzle_diameter = std::min(
this->print()->config.nozzle_diameter.get_at(region->config.infill_extruder.value - 1),
this->print()->config.nozzle_diameter.get_at(region->config.solid_infill_extruder.value - 1));
// define the combinations
std::vector<size_t> combine(this->layers.size(), 0);
{
double current_height = 0.;
size_t num_layers = 0;
for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++ layer_idx) {
const Layer *layer = this->layers[layer_idx];
if (layer->id() == 0)
// Skip first print layer (which may not be first layer in array because of raft).
continue;
// Check whether the combination of this layer with the lower layers' buffer
// would exceed max layer height or max combined layer count.
if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
// Append combination to lower layer.
combine[layer_idx - 1] = num_layers;
current_height = 0.;
num_layers = 0;
}
current_height += layer->height;
++ num_layers;
}
// Append lower layers (if any) to uppermost layer.
combine[this->layers.size() - 1] = num_layers;
}
// loop through layers to which we have assigned layers to combine
for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++ layer_idx) {
size_t num_layers = combine[layer_idx];
if (num_layers <= 1)
continue;
// Get all the LayerRegion objects to be combined.
std::vector<LayerRegion*> layerms;
layerms.reserve(num_layers);
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
layerms.emplace_back(this->layers[i]->regions[region_id]);
// We need to perform a multi-layer intersection, so let's split it in pairs.
// Initialize the intersection with the candidates of the lowest layer.
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
// Start looping from the second layer and intersect the current intersection with it.
for (size_t i = 1; i < layerms.size(); ++ i)
intersection = intersection_ex(
to_polygons(intersection),
to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
false);
double area_threshold = layerms.front()->infill_area_threshold();
if (! intersection.empty() && area_threshold > 0.)
intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
intersection.end());
if (intersection.empty())
continue;
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
// scalar(@$intersection),
// ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
// $layer_idx-($every-1), $layer_idx;
// intersection now contains the regions that can be combined across the full amount of layers,
// so let's remove those areas from all layers.
Polygons intersection_with_clearance;
intersection_with_clearance.reserve(intersection.size());
float clearance_offset =
0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
// Because fill areas for rectilinear and honeycomb are grown
// later to overlap perimeters, we need to counteract that too.
((region->config.fill_pattern == ipRectilinear ||
region->config.fill_pattern == ipGrid ||
region->config.fill_pattern == ipLine ||
region->config.fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
layerms.back()->flow(frSolidInfill).scaled_width();
for (ExPolygon &expoly : intersection)
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
for (LayerRegion *layerm : layerms) {
Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
layerm->fill_surfaces.remove_type(stInternal);
layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
if (layerm == layerms.back()) {
// Apply surfaces back with adjusted depth to the uppermost layer.
Surface templ(stInternal, ExPolygon());
templ.thickness = 0.;
for (LayerRegion *layerm2 : layerms)
templ.thickness += layerm2->layer()->height;
templ.thickness_layers = (unsigned short)layerms.size();
layerm->fill_surfaces.append(intersection, templ);
} else {
// Save void surfaces.
layerm->fill_surfaces.append(
intersection_ex(internal, intersection_with_clearance, false),
stInternalVoid);
}
}
}
}
}
void PrintObject::_generate_support_material()
{
PrintObjectSupportMaterial support_material(this, PrintObject::slicing_parameters());

View File

@ -13,8 +13,8 @@ public:
Surfaces surfaces;
SurfaceCollection() {};
SurfaceCollection(const Surfaces &_surfaces)
: surfaces(_surfaces) {};
SurfaceCollection(const Surfaces &surfaces) : surfaces(surfaces) {};
SurfaceCollection(Surfaces &&surfaces) : surfaces(std::move(surfaces)) {};
operator Polygons() const;
operator ExPolygons() const;
void simplify(double tolerance);

View File

@ -65,11 +65,6 @@ _constant()
%code%{ RETVAL = &THIS->size; %};
Clone<BoundingBox> bounding_box();
bool typed_slices()
%code%{ RETVAL = THIS->typed_slices; %};
void set_typed_slices(bool value)
%code%{ THIS->typed_slices = value; %};
Points _shifted_copies()
%code%{ RETVAL = THIS->_shifted_copies; %};
void set_shifted_copies(Points value)
@ -108,10 +103,9 @@ _constant()
void _slice();
std::string _fix_slicing_errors();
void _simplify_slices(double distance);
void _prepare_infill();
void detect_surfaces_type();
void process_external_surfaces();
void discover_vertical_shells();
void bridge_over_infill();
void _make_perimeters();
void _infill();
void _generate_support_material();