Iterative, not recursive, version of the Douglas-Peucker-Ramer algorithm
based on the work by @fuchstraumer https://github.com/slic3r/Slic3r/pull/3825 https://gist.github.com/fuchstraumer/9421573fc281b946e5f561758961212a which was based on http://anis-moussa.blogspot.com/2014/03/ramer-douglas-peucker-algorithm-for.html
This commit is contained in:
parent
780b5667f3
commit
77d37f108c
@ -34,23 +34,22 @@ bool Line::intersection_infinite(const Line &other, Point* point) const
|
||||
return true;
|
||||
}
|
||||
|
||||
/* distance to the closest point of line */
|
||||
double Line::distance_to(const Point &point) const
|
||||
// Distance to the closest point of line.
|
||||
double Line::distance_to_squared(const Point &point, const Point &a, const Point &b)
|
||||
{
|
||||
const Line &line = *this;
|
||||
const Vec2d v = (line.b - line.a).cast<double>();
|
||||
const Vec2d va = (point - line.a).cast<double>();
|
||||
const Vec2d v = (b - a).cast<double>();
|
||||
const Vec2d va = (point - a).cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.0)
|
||||
// line.a == line.b case
|
||||
return va.norm();
|
||||
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
|
||||
// a == b case
|
||||
return va.squaredNorm();
|
||||
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
|
||||
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
|
||||
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
|
||||
return (t * v - va).norm();
|
||||
if (t < 0.0) return va.squaredNorm(); // beyond the 'a' end of the segment
|
||||
else if (t > 1.0) return (point - b).cast<double>().squaredNorm(); // beyond the 'b' end of the segment
|
||||
return (t * v - va).squaredNorm();
|
||||
}
|
||||
|
||||
double Line::perp_distance_to(const Point &point) const
|
||||
|
@ -31,7 +31,8 @@ public:
|
||||
Point midpoint() const { return (this->a + this->b) / 2; }
|
||||
bool intersection_infinite(const Line &other, Point* point) const;
|
||||
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
|
||||
double distance_to(const Point &point) const;
|
||||
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
|
||||
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
|
||||
double perp_distance_to(const Point &point) const;
|
||||
bool parallel_to(double angle) const;
|
||||
bool parallel_to(const Line &line) const { return this->parallel_to(line.direction()); }
|
||||
@ -43,6 +44,9 @@ public:
|
||||
bool intersection(const Line& line, Point* intersection) const;
|
||||
double ccw(const Point& point) const { return point.ccw(*this); }
|
||||
|
||||
static double distance_to_squared(const Point &point, const Point &a, const Point &b);
|
||||
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
|
||||
|
||||
Point a;
|
||||
Point b;
|
||||
};
|
||||
|
@ -162,45 +162,51 @@ bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
|
||||
return found;
|
||||
}
|
||||
|
||||
//FIXME This is very inefficient in term of memory use.
|
||||
// The recursive algorithm shall run in place, not allocating temporary data in each recursion.
|
||||
Points
|
||||
MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
|
||||
std::vector<Point> MultiPoint::_douglas_peucker(const std::vector<Point>& pts, const double tolerance)
|
||||
{
|
||||
assert(points.size() >= 2);
|
||||
Points results;
|
||||
double dmax = 0;
|
||||
size_t index = 0;
|
||||
Line full(points.front(), points.back());
|
||||
for (Points::const_iterator it = points.begin() + 1; it != points.end(); ++it) {
|
||||
// we use shortest distance, not perpendicular distance
|
||||
double d = full.distance_to(*it);
|
||||
if (d > dmax) {
|
||||
index = it - points.begin();
|
||||
dmax = d;
|
||||
std::vector<Point> result_pts;
|
||||
if (! pts.empty()) {
|
||||
const Point *anchor = &pts.front();
|
||||
size_t anchor_idx = 0;
|
||||
const Point *floater = &pts.back();
|
||||
size_t floater_idx = pts.size() - 1;
|
||||
result_pts.reserve(pts.size());
|
||||
result_pts.emplace_back(*anchor);
|
||||
if (anchor_idx != floater_idx) {
|
||||
assert(pts.size() > 1);
|
||||
std::vector<size_t> dpStack;
|
||||
dpStack.reserve(pts.size());
|
||||
dpStack.emplace_back(floater_idx);
|
||||
for (;;) {
|
||||
double max_distSq = 0.0;
|
||||
size_t furthest_idx = anchor_idx;
|
||||
// find point furthest from line seg created by (anchor, floater) and note it
|
||||
for (size_t i = anchor_idx + 1; i < floater_idx; ++ i) {
|
||||
double dist = Line::distance_to_squared(pts[i], *anchor, *floater);
|
||||
if (dist > max_distSq) {
|
||||
max_distSq = dist;
|
||||
furthest_idx = i;
|
||||
}
|
||||
}
|
||||
// remove point if less than tolerance
|
||||
if (max_distSq <= tolerance) {
|
||||
result_pts.emplace_back(*floater);
|
||||
anchor_idx = floater_idx;
|
||||
anchor = floater;
|
||||
assert(dpStack.back() == floater_idx);
|
||||
dpStack.pop_back();
|
||||
if (dpStack.empty())
|
||||
break;
|
||||
floater_idx = dpStack.back();
|
||||
} else {
|
||||
floater_idx = furthest_idx;
|
||||
dpStack.emplace_back(floater_idx);
|
||||
}
|
||||
floater = &pts[floater_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (dmax >= tolerance) {
|
||||
Points dp0;
|
||||
dp0.reserve(index + 1);
|
||||
dp0.insert(dp0.end(), points.begin(), points.begin() + index + 1);
|
||||
// Recursive call.
|
||||
Points dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
|
||||
results.reserve(results.size() + dp1.size() - 1);
|
||||
results.insert(results.end(), dp1.begin(), dp1.end() - 1);
|
||||
|
||||
dp0.clear();
|
||||
dp0.reserve(points.size() - index);
|
||||
dp0.insert(dp0.end(), points.begin() + index, points.end());
|
||||
// Recursive call.
|
||||
dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
|
||||
results.reserve(results.size() + dp1.size());
|
||||
results.insert(results.end(), dp1.begin(), dp1.end());
|
||||
} else {
|
||||
results.push_back(points.front());
|
||||
results.push_back(points.back());
|
||||
}
|
||||
return results;
|
||||
return result_pts;
|
||||
}
|
||||
|
||||
// Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
|
||||
|
Loading…
Reference in New Issue
Block a user