Iterative, not recursive, version of the Douglas-Peucker-Ramer algorithm

based on the work by @fuchstraumer
https://github.com/slic3r/Slic3r/pull/3825
https://gist.github.com/fuchstraumer/9421573fc281b946e5f561758961212a
which was based on
http://anis-moussa.blogspot.com/2014/03/ramer-douglas-peucker-algorithm-for.html
This commit is contained in:
bubnikv 2018-12-14 19:29:58 +01:00
parent 780b5667f3
commit 77d37f108c
3 changed files with 58 additions and 49 deletions

View File

@ -34,23 +34,22 @@ bool Line::intersection_infinite(const Line &other, Point* point) const
return true;
}
/* distance to the closest point of line */
double Line::distance_to(const Point &point) const
// Distance to the closest point of line.
double Line::distance_to_squared(const Point &point, const Point &a, const Point &b)
{
const Line &line = *this;
const Vec2d v = (line.b - line.a).cast<double>();
const Vec2d va = (point - line.a).cast<double>();
const Vec2d v = (b - a).cast<double>();
const Vec2d va = (point - a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
// line.a == line.b case
return va.norm();
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
// a == b case
return va.squaredNorm();
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
return (t * v - va).norm();
if (t < 0.0) return va.squaredNorm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - b).cast<double>().squaredNorm(); // beyond the 'b' end of the segment
return (t * v - va).squaredNorm();
}
double Line::perp_distance_to(const Point &point) const

View File

@ -31,7 +31,8 @@ public:
Point midpoint() const { return (this->a + this->b) / 2; }
bool intersection_infinite(const Line &other, Point* point) const;
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
double distance_to(const Point &point) const;
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
double perp_distance_to(const Point &point) const;
bool parallel_to(double angle) const;
bool parallel_to(const Line &line) const { return this->parallel_to(line.direction()); }
@ -43,6 +44,9 @@ public:
bool intersection(const Line& line, Point* intersection) const;
double ccw(const Point& point) const { return point.ccw(*this); }
static double distance_to_squared(const Point &point, const Point &a, const Point &b);
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
Point a;
Point b;
};

View File

@ -162,45 +162,51 @@ bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
return found;
}
//FIXME This is very inefficient in term of memory use.
// The recursive algorithm shall run in place, not allocating temporary data in each recursion.
Points
MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
std::vector<Point> MultiPoint::_douglas_peucker(const std::vector<Point>& pts, const double tolerance)
{
assert(points.size() >= 2);
Points results;
double dmax = 0;
size_t index = 0;
Line full(points.front(), points.back());
for (Points::const_iterator it = points.begin() + 1; it != points.end(); ++it) {
// we use shortest distance, not perpendicular distance
double d = full.distance_to(*it);
if (d > dmax) {
index = it - points.begin();
dmax = d;
std::vector<Point> result_pts;
if (! pts.empty()) {
const Point *anchor = &pts.front();
size_t anchor_idx = 0;
const Point *floater = &pts.back();
size_t floater_idx = pts.size() - 1;
result_pts.reserve(pts.size());
result_pts.emplace_back(*anchor);
if (anchor_idx != floater_idx) {
assert(pts.size() > 1);
std::vector<size_t> dpStack;
dpStack.reserve(pts.size());
dpStack.emplace_back(floater_idx);
for (;;) {
double max_distSq = 0.0;
size_t furthest_idx = anchor_idx;
// find point furthest from line seg created by (anchor, floater) and note it
for (size_t i = anchor_idx + 1; i < floater_idx; ++ i) {
double dist = Line::distance_to_squared(pts[i], *anchor, *floater);
if (dist > max_distSq) {
max_distSq = dist;
furthest_idx = i;
}
}
// remove point if less than tolerance
if (max_distSq <= tolerance) {
result_pts.emplace_back(*floater);
anchor_idx = floater_idx;
anchor = floater;
assert(dpStack.back() == floater_idx);
dpStack.pop_back();
if (dpStack.empty())
break;
floater_idx = dpStack.back();
} else {
floater_idx = furthest_idx;
dpStack.emplace_back(floater_idx);
}
floater = &pts[floater_idx];
}
}
}
if (dmax >= tolerance) {
Points dp0;
dp0.reserve(index + 1);
dp0.insert(dp0.end(), points.begin(), points.begin() + index + 1);
// Recursive call.
Points dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
results.reserve(results.size() + dp1.size() - 1);
results.insert(results.end(), dp1.begin(), dp1.end() - 1);
dp0.clear();
dp0.reserve(points.size() - index);
dp0.insert(dp0.end(), points.begin() + index, points.end());
// Recursive call.
dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
results.reserve(results.size() + dp1.size());
results.insert(results.end(), dp1.begin(), dp1.end());
} else {
results.push_back(points.front());
results.push_back(points.back());
}
return results;
return result_pts;
}
// Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825