Bugfix: when processing with fill_density = 0, top/bottom solid shells were missing regions thinner than 3 * extrusion width. Includes regression test. #1602

This commit is contained in:
Alessandro Ranellucci 2014-02-07 01:48:47 +01:00
parent cfbbb539a5
commit 7be042567d
3 changed files with 78 additions and 25 deletions

View file

@ -584,7 +584,8 @@ sub discover_horizontal_shells {
next if $n < 0 || $n > $#{$self->layers};
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
my $neighbor_fill_surfaces = $self->layers->[$n]->regions->[$region_id]->fill_surfaces;
my $neighbor_layerm = $self->layers->[$n]->regions->[$region_id];
my $neighbor_fill_surfaces = $neighbor_layerm->fill_surfaces;
my @neighbor_fill_surfaces = map $_->clone, @$neighbor_fill_surfaces; # clone because we will use these surfaces even after clearing the collection
# find intersection between neighbor and current layer's surfaces
@ -603,26 +604,41 @@ sub discover_horizontal_shells {
);
next EXTERNAL if !@$new_internal_solid;
# make sure the new internal solid is wide enough, as it might get collapsed when
# spacing is added in Fill.pm
if ($self->config->fill_density == 0) {
# if we're printing a hollow object we discard any solid shell thinner
# than a perimeter width, since it's probably just crossing a sloping wall
# and it's not wanted in a hollow print even if it would make sense when
# obeying the solid shell count option strictly (DWIM!)
my $margin = $neighbor_layerm->perimeter_flow->scaled_width;
my $too_narrow = diff(
$new_internal_solid,
offset2($new_internal_solid, -$margin, +$margin, CLIPPER_OFFSET_SCALE, JT_MITER, 5),
1,
);
$new_internal_solid = $solid = diff(
$new_internal_solid,
$too_narrow,
) if @$too_narrow;
}
# make sure the new internal solid is wide enough, as it might get collapsed
# when spacing is added in Fill.pm
{
my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size
# we use a higher miterLimit here to handle areas with acute angles
# in those cases, the default miterLimit would cut the corner and we'd
# get a triangle in $too_narrow; if we grow it below then the shell
# would have a different shape from the external surface and we'd still
# have the same angle, so the next shell would be grown even more and so on.
my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size
my $too_narrow = diff(
$new_internal_solid,
offset2($new_internal_solid, -$margin, +$margin, CLIPPER_OFFSET_SCALE, JT_MITER, 5),
1,
);
# if some parts are going to collapse, use a different strategy according to fill density
if (@$too_narrow) {
if ($self->config->fill_density > 0) {
# if we have internal infill, grow the collapsing parts and add the extra area to
# the neighbor layer as well as to our original surfaces so that we support this
# grow the collapsing parts and add the extra area to the neighbor layer
# as well as to our original surfaces so that we support this
# additional area in the next shell too
# make sure our grown surfaces don't exceed the fill area
@ -631,13 +647,6 @@ sub discover_horizontal_shells {
[ map $_->p, @neighbor_fill_surfaces ],
)};
$new_internal_solid = $solid = [ @grown, @$new_internal_solid ];
} else {
# if we're printing a hollow object, we discard such small parts
$new_internal_solid = $solid = diff(
$new_internal_solid,
$too_narrow,
);
}
}
}

File diff suppressed because one or more lines are too long

View file

@ -2,7 +2,7 @@ use Test::More;
use strict;
use warnings;
plan tests => 40;
plan tests => 41;
BEGIN {
use FindBin;
@ -13,7 +13,7 @@ use List::Util qw(first);
use Math::ConvexHull::MonotoneChain qw(convex_hull);
use Slic3r;
use Slic3r::Geometry qw(scale X Y);
use Slic3r::Geometry::Clipper qw(diff_ex);
use Slic3r::Geometry::Clipper qw(union diff_ex);
use Slic3r::Surface qw(:types);
use Slic3r::Test;
@ -208,4 +208,41 @@ for my $pattern (qw(rectilinear honeycomb hilbertcurve concentric)) {
"solid_infill_below_area and solid_infill_every_layers are ignored when fill_density is 0";
}
{
my $config = Slic3r::Config->new_from_defaults;
$config->set('skirts', 0);
$config->set('perimeters', 3);
$config->set('fill_density', 0);
$config->set('layer_height', 0.2);
$config->set('first_layer_height', 0.2);
$config->set('nozzle_diameter', [0.35]);
$config->set('infill_extruder', 2);
$config->set('infill_extrusion_width', 0.52);
my $print = Slic3r::Test::init_print('A', config => $config);
my %infill = (); # Z => [ Line, Line ... ]
my $tool = undef;
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
my ($self, $cmd, $args, $info) = @_;
if ($cmd =~ /^T(\d+)/) {
$tool = $1;
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
if ($tool == $config->infill_extruder-1) {
my $z = 1 * $self->Z;
$infill{$z} ||= [];
push @{$infill{$z}}, Slic3r::Line->new_scale(
[ $self->X, $self->Y ],
[ $info->{new_X}, $info->{new_Y} ],
);
}
}
});
my $grow_d = scale($config->infill_extrusion_width)/2;
my $layer0_infill = union([ map $_->grow($grow_d), @{ $infill{0.2} } ]);
my $layer1_infill = union([ map $_->grow($grow_d), @{ $infill{0.4} } ]);
my $diff = [ grep $_->area >= 2*$grow_d**2, @{diff_ex($layer0_infill, $layer1_infill)} ];
is scalar(@$diff), 0, 'no missing parts in solid shell when fill_density is 0';
}
__END__