Removed various Point::ccw() and Point::ccw_angle() methods, they were
provided for Perl bindings and their semantic was confusing. Implemented free function angle() to measure angle between two vectors. Reworked Polygon::convex/concave_points(), changed the meaning of their angle threshold parameter. Removed some unused methods from Perl bindings and tests. Reworked the "wipe inside at the external perimeter" function after Point::ccw_angle() was removed.
This commit is contained in:
parent
156a60017d
commit
7d02647ebf
@ -2596,18 +2596,19 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
|
||||
// the side depends on the original winding order of the polygon (left for contours, right for holes)
|
||||
//FIXME improve the algorithm in case the loop is tiny.
|
||||
//FIXME improve the algorithm in case the loop is split into segments with a low number of points (see the Point b query).
|
||||
Point a = paths.front().polyline.points[1]; // second point
|
||||
Point b = *(paths.back().polyline.points.end()-3); // second to last point
|
||||
// Angle from the 2nd point to the last point.
|
||||
double angle_inside = angle(paths.front().polyline.points[1] - paths.front().first_point(),
|
||||
*(paths.back().polyline.points.end()-3) - paths.front().first_point());
|
||||
assert(angle_inside >= -M_PI && angle_inside <= M_PI);
|
||||
// 3rd of this angle will be taken, thus make the angle monotonic before interpolation.
|
||||
if (was_clockwise) {
|
||||
// swap points
|
||||
Point c = a; a = b; b = c;
|
||||
if (angle_inside > 0)
|
||||
angle_inside -= 2.0 * M_PI;
|
||||
} else {
|
||||
if (angle_inside < 0)
|
||||
angle_inside += 2.0 * M_PI;
|
||||
}
|
||||
|
||||
double angle = paths.front().first_point().ccw_angle(a, b) / 3;
|
||||
|
||||
// turn left if contour, turn right if hole
|
||||
if (was_clockwise) angle *= -1;
|
||||
|
||||
// create the destination point along the first segment and rotate it
|
||||
// we make sure we don't exceed the segment length because we don't know
|
||||
// the rotation of the second segment so we might cross the object boundary
|
||||
@ -2619,7 +2620,8 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
|
||||
// Shift by no more than a nozzle diameter.
|
||||
//FIXME Hiding the seams will not work nicely for very densely discretized contours!
|
||||
Point pt = ((nd * nd >= l2) ? p2 : (p1 + v * (nd / sqrt(l2)))).cast<coord_t>();
|
||||
pt.rotate(angle, paths.front().polyline.points.front());
|
||||
// Rotate pt inside around the seam point.
|
||||
pt.rotate(angle_inside / 3., paths.front().polyline.points.front());
|
||||
// generate the travel move
|
||||
gcode += m_writer.travel_to_xy(this->point_to_gcode(pt), "move inwards before travel");
|
||||
}
|
||||
|
@ -36,9 +36,9 @@ enum Orientation
|
||||
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
{
|
||||
static_assert(sizeof(coord_t) * 2 == sizeof(int64_t), "orient works with 32 bit coordinates");
|
||||
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
|
||||
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
|
||||
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
|
||||
int64_t u = int64_t(b.x()) * int64_t(c.y()) - int64_t(b.y()) * int64_t(c.x());
|
||||
int64_t v = int64_t(a.x()) * int64_t(c.y()) - int64_t(a.y()) * int64_t(c.x());
|
||||
int64_t w = int64_t(a.x()) * int64_t(b.y()) - int64_t(a.y()) * int64_t(b.x());
|
||||
int64_t d = u - v + w;
|
||||
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "libslic3r.h"
|
||||
#include "ConvexHull.hpp"
|
||||
#include "BoundingBox.hpp"
|
||||
#include "../Geometry.hpp"
|
||||
|
||||
#include <boost/multiprecision/integer.hpp>
|
||||
|
||||
@ -19,13 +20,13 @@ Polygon convex_hull(Points pts)
|
||||
hull.points.resize(2 * n);
|
||||
// Build lower hull
|
||||
for (int i = 0; i < n; ++ i) {
|
||||
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
while (k >= 2 && Geometry::orient(pts[i], hull[k-2], hull[k-1]) != Geometry::ORIENTATION_CCW)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
// Build upper hull
|
||||
for (int i = n-2, t = k+1; i >= 0; i--) {
|
||||
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
while (k >= t && Geometry::orient(pts[i], hull[k-2], hull[k-1]) != Geometry::ORIENTATION_CCW)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
@ -58,7 +59,7 @@ Pointf3s convex_hull(Pointf3s points)
|
||||
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
|
||||
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
|
||||
|
||||
if (p.ccw(k2, k1) <= 0)
|
||||
if (Geometry::orient(p, k2, k1) != Geometry::ORIENTATION_CCW)
|
||||
--k;
|
||||
else
|
||||
break;
|
||||
@ -76,7 +77,7 @@ Pointf3s convex_hull(Pointf3s points)
|
||||
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
|
||||
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
|
||||
|
||||
if (p.ccw(k2, k1) <= 0)
|
||||
if (Geometry::orient(p, k2, k1) != Geometry::ORIENTATION_CCW)
|
||||
--k;
|
||||
else
|
||||
break;
|
||||
|
@ -113,7 +113,6 @@ public:
|
||||
Vector vector() const { return this->b - this->a; }
|
||||
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
|
||||
bool intersection(const Line& line, Point* intersection) const;
|
||||
double ccw(const Point& point) const { return point.ccw(*this); }
|
||||
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
|
||||
bool clip_with_bbox(const BoundingBox &bbox);
|
||||
// Extend the line from both sides by an offset.
|
||||
|
@ -108,38 +108,6 @@ bool Point::nearest_point(const Points &points, Point* point) const
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
|
||||
* ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
|
||||
* gives the signed area of the triangle formed by p1, p2 and this point.
|
||||
* In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
|
||||
* z-component of their 3D cross product.
|
||||
* We return double because it must be big enough to hold 2*max(|coordinate|)^2
|
||||
*/
|
||||
double Point::ccw(const Point &p1, const Point &p2) const
|
||||
{
|
||||
static_assert(sizeof(coord_t) == 4, "Point::ccw() requires a 32 bit coord_t");
|
||||
return cross2((p2 - p1).cast<int64_t>(), (*this - p1).cast<int64_t>());
|
||||
// return cross2((p2 - p1).cast<double>(), (*this - p1).cast<double>());
|
||||
}
|
||||
|
||||
double Point::ccw(const Line &line) const
|
||||
{
|
||||
return this->ccw(line.a, line.b);
|
||||
}
|
||||
|
||||
// returns the CCW angle between this-p1 and this-p2
|
||||
// i.e. this assumes a CCW rotation from p1 to p2 around this
|
||||
double Point::ccw_angle(const Point &p1, const Point &p2) const
|
||||
{
|
||||
const Point v1 = *this - p1;
|
||||
const Point v2 = p2 - *this;
|
||||
int64_t dot = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1));
|
||||
int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v1(1)) * int64_t(v2(0));
|
||||
float angle = float(atan2(float(cross), float(dot)));
|
||||
// we only want to return only positive angles
|
||||
return angle <= 0 ? angle + 2*PI : angle;
|
||||
}
|
||||
|
||||
Point Point::projection_onto(const MultiPoint &poly) const
|
||||
{
|
||||
Point running_projection = poly.first_point();
|
||||
|
@ -79,24 +79,35 @@ inline const auto &identity3d = identity<3, double>;
|
||||
|
||||
inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs.x() < rhs.x() || (lhs.x() == rhs.x() && lhs.y() < rhs.y()); }
|
||||
|
||||
template<int Options>
|
||||
int32_t cross2(const Eigen::MatrixBase<Eigen::Matrix<int32_t, 2, 1, Options>> &v1, const Eigen::MatrixBase<Eigen::Matrix<int32_t, 2, 1, Options>> &v2) = delete;
|
||||
|
||||
template<typename T, int Options>
|
||||
inline T cross2(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> &v1, const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> &v2)
|
||||
{
|
||||
return v1.x() * v2.y() - v1.y() * v2.x();
|
||||
}
|
||||
|
||||
// Cross product of two 2D vectors.
|
||||
// None of the vectors may be of int32_t type as the result would overflow.
|
||||
template<typename Derived, typename Derived2>
|
||||
inline typename Derived::Scalar cross2(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
|
||||
{
|
||||
static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
|
||||
static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
|
||||
static_assert(! std::is_same<typename Derived::Scalar, int32_t>::value, "cross2(): Scalar type must not be int32_t, otherwise the cross product would overflow.");
|
||||
static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
|
||||
return v1.x() * v2.y() - v1.y() * v2.x();
|
||||
}
|
||||
|
||||
template<typename T, int Options>
|
||||
inline Eigen::Matrix<T, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> &v) { return Eigen::Matrix<T, 2, 1, Eigen::DontAlign>(- v.y(), v.x()); }
|
||||
// 2D vector perpendicular to the argument.
|
||||
template<typename Derived>
|
||||
inline Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Derived> &v)
|
||||
{
|
||||
static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "perp(): parameter is not a 2D vector");
|
||||
return { - v.y(), v.x() };
|
||||
}
|
||||
|
||||
// Angle from v1 to v2, returning double atan2(y, x) normalized to <-PI, PI>.
|
||||
template<typename Derived, typename Derived2>
|
||||
inline double angle(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2) {
|
||||
static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "angle(): first parameter is not a 2D vector");
|
||||
static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "angle(): second parameter is not a 2D vector");
|
||||
auto v1d = v1.cast<double>();
|
||||
auto v2d = v2.cast<double>();
|
||||
return atan2(cross2(v1d, v2d), v1d.dot(v2d));
|
||||
}
|
||||
|
||||
template<class T, int N, int Options>
|
||||
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Eigen::Matrix<T, N, 1, Options>> &ptN) { return { ptN.x(), ptN.y() }; }
|
||||
@ -168,9 +179,6 @@ public:
|
||||
int nearest_point_index(const PointConstPtrs &points) const;
|
||||
int nearest_point_index(const PointPtrs &points) const;
|
||||
bool nearest_point(const Points &points, Point* point) const;
|
||||
double ccw(const Point &p1, const Point &p2) const;
|
||||
double ccw(const Line &line) const;
|
||||
double ccw_angle(const Point &p1, const Point &p2) const;
|
||||
Point projection_onto(const MultiPoint &poly) const;
|
||||
Point projection_onto(const Line &line) const;
|
||||
};
|
||||
|
@ -171,50 +171,56 @@ Point Polygon::centroid() const
|
||||
return Point(Vec2d(c / (3. * area_sum)));
|
||||
}
|
||||
|
||||
// find all concave vertices (i.e. having an internal angle greater than the supplied angle)
|
||||
// (external = right side, thus we consider ccw orientation)
|
||||
Points Polygon::concave_points(double angle) const
|
||||
// Filter points from poly to the output with the help of FilterFn.
|
||||
// filter function receives two vectors:
|
||||
// v1: this_point - previous_point
|
||||
// v2: next_point - this_point
|
||||
// and returns true if the point is to be copied to the output.
|
||||
template<typename FilterFn>
|
||||
Points filter_points_by_vectors(const Points &poly, FilterFn filter)
|
||||
{
|
||||
Points points;
|
||||
angle = 2. * PI - angle + EPSILON;
|
||||
|
||||
// check whether first point forms a concave angle
|
||||
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle)
|
||||
points.push_back(this->points.front());
|
||||
|
||||
// check whether points 1..(n-1) form concave angles
|
||||
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++ p)
|
||||
if (p->ccw_angle(*(p-1), *(p+1)) <= angle)
|
||||
points.push_back(*p);
|
||||
|
||||
// check whether last point forms a concave angle
|
||||
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle)
|
||||
points.push_back(this->points.back());
|
||||
|
||||
return points;
|
||||
}
|
||||
// Last point is the first point visited.
|
||||
Point p1 = poly.back();
|
||||
// Previous vector to p1.
|
||||
Vec2d v1 = (p1 - *(poly.end() - 2)).cast<double>();
|
||||
|
||||
// find all convex vertices (i.e. having an internal angle smaller than the supplied angle)
|
||||
// (external = right side, thus we consider ccw orientation)
|
||||
Points Polygon::convex_points(double angle) const
|
||||
{
|
||||
Points points;
|
||||
angle = 2*PI - angle - EPSILON;
|
||||
|
||||
// check whether first point forms a convex angle
|
||||
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle)
|
||||
points.push_back(this->points.front());
|
||||
|
||||
// check whether points 1..(n-1) form convex angles
|
||||
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
|
||||
if (p->ccw_angle(*(p-1), *(p+1)) >= angle) points.push_back(*p);
|
||||
Points out;
|
||||
for (Point p2 : poly) {
|
||||
// p2 is next point to the currently visited point p1.
|
||||
Vec2d v2 = (p2 - p1).cast<double>();
|
||||
if (filter(v1, v2))
|
||||
out.emplace_back(p2);
|
||||
v1 = v2;
|
||||
p1 = p2;
|
||||
}
|
||||
|
||||
// check whether last point forms a convex angle
|
||||
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) >= angle)
|
||||
points.push_back(this->points.back());
|
||||
|
||||
return points;
|
||||
return out;
|
||||
}
|
||||
|
||||
template<typename ConvexConcaveFilterFn>
|
||||
Points filter_convex_concave_points_by_angle_threshold(const Points &poly, double angle_threshold, ConvexConcaveFilterFn convex_concave_filter)
|
||||
{
|
||||
assert(angle_threshold >= 0.);
|
||||
if (angle_threshold < EPSILON) {
|
||||
double cos_angle = cos(angle_threshold);
|
||||
return filter_points_by_vectors(poly, [convex_concave_filter, cos_angle](const Vec2d &v1, const Vec2d &v2){
|
||||
return convex_concave_filter(v1, v2) && v1.normalized().dot(v2.normalized()) < cos_angle;
|
||||
});
|
||||
} else {
|
||||
return filter_points_by_vectors(poly, [convex_concave_filter](const Vec2d &v1, const Vec2d &v2){
|
||||
return convex_concave_filter(v1, v2);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
Points Polygon::convex_points(double angle_threshold) const
|
||||
{
|
||||
return filter_convex_concave_points_by_angle_threshold(this->points, angle_threshold, [](const Vec2d &v1, const Vec2d &v2){ return cross2(v1, v2) > 0.; });
|
||||
}
|
||||
|
||||
Points Polygon::concave_points(double angle_threshold) const
|
||||
{
|
||||
return filter_convex_concave_points_by_angle_threshold(this->points, angle_threshold, [](const Vec2d &v1, const Vec2d &v2){ return cross2(v1, v2) < 0.; });
|
||||
}
|
||||
|
||||
// Projection of a point onto the polygon.
|
||||
|
@ -65,8 +65,11 @@ public:
|
||||
void densify(float min_length, std::vector<float>* lengths = nullptr);
|
||||
void triangulate_convex(Polygons* polygons) const;
|
||||
Point centroid() const;
|
||||
Points concave_points(double angle = PI) const;
|
||||
Points convex_points(double angle = PI) const;
|
||||
// Considering CCW orientation of this polygon, find all convex resp. concave points
|
||||
// with the angle at the vertex larger than a threshold.
|
||||
// Zero angle_threshold means to accept all convex resp. concave points.
|
||||
Points convex_points(double angle_threshold = 0.) const;
|
||||
Points concave_points(double angle_threshold = 0.) const;
|
||||
// Projection of a point onto the polygon.
|
||||
Point point_projection(const Point &point) const;
|
||||
std::vector<float> parameter_by_length() const;
|
||||
|
59
t/geometry.t
59
t/geometry.t
@ -2,7 +2,7 @@ use Test::More;
|
||||
use strict;
|
||||
use warnings;
|
||||
|
||||
plan tests => 42;
|
||||
plan tests => 30;
|
||||
|
||||
BEGIN {
|
||||
use FindBin;
|
||||
@ -189,63 +189,6 @@ my $polygons = [
|
||||
is +Slic3r::Point->new(10, 0)->distance_to_line($line), 0, 'distance_to';
|
||||
}
|
||||
|
||||
#==========================================================
|
||||
|
||||
{
|
||||
my $square = Slic3r::Polygon->new_scale(
|
||||
[100,100],
|
||||
[200,100],
|
||||
[200,200],
|
||||
[100,200],
|
||||
);
|
||||
is scalar(@{$square->concave_points(PI*4/3)}), 0, 'no concave vertices detected in ccw square';
|
||||
is scalar(@{$square->convex_points(PI*2/3)}), 4, 'four convex vertices detected in ccw square';
|
||||
|
||||
$square->make_clockwise;
|
||||
is scalar(@{$square->concave_points(PI*4/3)}), 4, 'fuor concave vertices detected in cw square';
|
||||
is scalar(@{$square->convex_points(PI*2/3)}), 0, 'no convex vertices detected in cw square';
|
||||
}
|
||||
|
||||
{
|
||||
my $square = Slic3r::Polygon->new_scale(
|
||||
[150,100],
|
||||
[200,100],
|
||||
[200,200],
|
||||
[100,200],
|
||||
[100,100],
|
||||
);
|
||||
is scalar(@{$square->concave_points(PI*4/3)}), 0, 'no concave vertices detected in convex polygon';
|
||||
is scalar(@{$square->convex_points(PI*2/3)}), 4, 'four convex vertices detected in square';
|
||||
}
|
||||
|
||||
{
|
||||
my $square = Slic3r::Polygon->new_scale(
|
||||
[200,200],
|
||||
[100,200],
|
||||
[100,100],
|
||||
[150,100],
|
||||
[200,100],
|
||||
);
|
||||
is scalar(@{$square->concave_points(PI*4/3)}), 0, 'no concave vertices detected in convex polygon';
|
||||
is scalar(@{$square->convex_points(PI*2/3)}), 4, 'four convex vertices detected in square';
|
||||
}
|
||||
|
||||
{
|
||||
my $triangle = Slic3r::Polygon->new(
|
||||
[16000170,26257364], [714223,461012], [31286371,461008],
|
||||
);
|
||||
is scalar(@{$triangle->concave_points(PI*4/3)}), 0, 'no concave vertices detected in triangle';
|
||||
is scalar(@{$triangle->convex_points(PI*2/3)}), 3, 'three convex vertices detected in triangle';
|
||||
}
|
||||
|
||||
{
|
||||
my $triangle = Slic3r::Polygon->new(
|
||||
[16000170,26257364], [714223,461012], [20000000,461012], [31286371,461012],
|
||||
);
|
||||
is scalar(@{$triangle->concave_points(PI*4/3)}), 0, 'no concave vertices detected in triangle having collinear point';
|
||||
is scalar(@{$triangle->convex_points(PI*2/3)}), 3, 'three convex vertices detected in triangle having collinear point';
|
||||
}
|
||||
|
||||
{
|
||||
my $triangle = Slic3r::Polygon->new(
|
||||
[16000170,26257364], [714223,461012], [31286371,461008],
|
||||
|
@ -373,7 +373,43 @@ SCENARIO("Line distances", "[Geometry]"){
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO("Calculating angles", "[Geometry]")
|
||||
{
|
||||
GIVEN(("Vectors 30 degrees apart"))
|
||||
{
|
||||
std::vector<std::pair<Point, Point>> pts {
|
||||
{ {1000, 0}, { 866, 500 } },
|
||||
{ { 866, 500 }, { 500, 866 } },
|
||||
{ { 500, 866 }, { 0, 1000 } },
|
||||
{ { -500, 866 }, { -866, 500 } }
|
||||
};
|
||||
|
||||
THEN("Angle detected is 30 degrees")
|
||||
{
|
||||
for (auto &p : pts)
|
||||
REQUIRE(is_approx(angle(p.first, p.second), M_PI / 6.));
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN(("Vectors 30 degrees apart"))
|
||||
{
|
||||
std::vector<std::pair<Point, Point>> pts {
|
||||
{ { 866, 500 }, {1000, 0} },
|
||||
{ { 500, 866 }, { 866, 500 } },
|
||||
{ { 0, 1000 }, { 500, 866 } },
|
||||
{ { -866, 500 }, { -500, 866 } }
|
||||
};
|
||||
|
||||
THEN("Angle detected is -30 degrees")
|
||||
{
|
||||
for (auto &p : pts)
|
||||
REQUIRE(is_approx(angle(p.first, p.second), - M_PI / 6.));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
static constexpr const double angle_threshold = M_PI / 3.;
|
||||
GIVEN(("A Square with dimension 100")){
|
||||
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
||||
Point(100,100),
|
||||
@ -381,13 +417,13 @@ SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
Point(200,200),
|
||||
Point(100,200)}));
|
||||
THEN("It has 4 convex points counterclockwise"){
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
||||
REQUIRE(square.concave_points(angle_threshold).size() == 0);
|
||||
REQUIRE(square.convex_points(angle_threshold).size() == 4);
|
||||
}
|
||||
THEN("It has 4 concave points clockwise"){
|
||||
square.make_clockwise();
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 4);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 0);
|
||||
REQUIRE(square.concave_points(angle_threshold).size() == 4);
|
||||
REQUIRE(square.convex_points(angle_threshold).size() == 0);
|
||||
}
|
||||
}
|
||||
GIVEN("A Square with an extra colinearvertex"){
|
||||
@ -398,8 +434,8 @@ SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
Point(100,200),
|
||||
Point(100,100)}));
|
||||
THEN("It has 4 convex points counterclockwise"){
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
||||
REQUIRE(square.concave_points(angle_threshold).size() == 0);
|
||||
REQUIRE(square.convex_points(angle_threshold).size() == 4);
|
||||
}
|
||||
}
|
||||
GIVEN("A Square with an extra collinear vertex in different order"){
|
||||
@ -410,8 +446,8 @@ SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
Point(150,100),
|
||||
Point(200,100)}));
|
||||
THEN("It has 4 convex points counterclockwise"){
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
||||
REQUIRE(square.concave_points(angle_threshold).size() == 0);
|
||||
REQUIRE(square.convex_points(angle_threshold).size() == 4);
|
||||
}
|
||||
}
|
||||
|
||||
@ -422,8 +458,8 @@ SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
Point(31286371,461008)
|
||||
}));
|
||||
THEN("it has three convex vertices"){
|
||||
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
||||
REQUIRE(triangle.concave_points(angle_threshold).size() == 0);
|
||||
REQUIRE(triangle.convex_points(angle_threshold).size() == 3);
|
||||
}
|
||||
}
|
||||
|
||||
@ -435,8 +471,8 @@ SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
Point(31286371,461012)
|
||||
}));
|
||||
THEN("it has three convex vertices"){
|
||||
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
||||
REQUIRE(triangle.concave_points(angle_threshold).size() == 0);
|
||||
REQUIRE(triangle.convex_points(angle_threshold).size() == 3);
|
||||
}
|
||||
}
|
||||
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
|
||||
@ -453,8 +489,8 @@ SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
||||
Point(38092663,692699),Point(52100125,692699)
|
||||
}));
|
||||
THEN("the correct number of points are detected"){
|
||||
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
|
||||
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
|
||||
REQUIRE(polygon.concave_points(angle_threshold).size() == 6);
|
||||
REQUIRE(polygon.convex_points(angle_threshold).size() == 10);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -41,7 +41,7 @@
|
||||
Clone<Point> normal();
|
||||
Clone<Point> vector();
|
||||
double ccw(Point* point)
|
||||
%code{% RETVAL = THIS->ccw(*point); %};
|
||||
%code{% RETVAL = cross2((THIS->a - *point).cast<double>(), (THIS->b - THIS->a).cast<double>()); %};
|
||||
%{
|
||||
|
||||
Line*
|
||||
|
@ -39,13 +39,7 @@
|
||||
double perp_distance_to_line(Line* line)
|
||||
%code{% RETVAL = line->perp_distance_to(*THIS); %};
|
||||
double ccw(Point* p1, Point* p2)
|
||||
%code{% RETVAL = THIS->ccw(*p1, *p2); %};
|
||||
double ccw_angle(Point* p1, Point* p2)
|
||||
%code{% RETVAL = THIS->ccw_angle(*p1, *p2); %};
|
||||
Point* projection_onto_polygon(Polygon* polygon)
|
||||
%code{% RETVAL = new Point(THIS->projection_onto(*polygon)); %};
|
||||
Point* projection_onto_polyline(Polyline* polyline)
|
||||
%code{% RETVAL = new Point(THIS->projection_onto(*polyline)); %};
|
||||
%code{% RETVAL = cross2((*p1 - *THIS).cast<double>(), (*p2 - *p1).cast<double>()); %};
|
||||
Point* projection_onto_line(Line* line)
|
||||
%code{% RETVAL = new Point(THIS->projection_onto(*line)); %};
|
||||
Point* negative()
|
||||
|
@ -39,8 +39,6 @@
|
||||
%code{% THIS->triangulate_convex(&RETVAL); %};
|
||||
Clone<Point> centroid();
|
||||
Clone<BoundingBox> bounding_box();
|
||||
Points concave_points(double angle);
|
||||
Points convex_points(double angle);
|
||||
Clone<Point> point_projection(Point* point)
|
||||
%code{% RETVAL = THIS->point_projection(*point); %};
|
||||
Clone<Point> intersection(Line* line)
|
||||
|
Loading…
Reference in New Issue
Block a user