This commit is contained in:
Enrico Turri 2020-01-03 14:43:02 +01:00
commit 80ef0e0334
8 changed files with 158 additions and 137 deletions

View file

@ -122,21 +122,21 @@ Polygons AvoidCrossingPerimeters::collect_contours_all_layers(const PrintObjectP
const Layer* layer1 = object->layers()[i * 2];
const Layer* layer2 = object->layers()[i * 2 + 1];
Polygons polys;
polys.reserve(layer1->slices.size() + layer2->slices.size());
for (const ExPolygon &expoly : layer1->slices)
polys.reserve(layer1->lslices.size() + layer2->lslices.size());
for (const ExPolygon &expoly : layer1->lslices)
//FIXME no holes?
polys.emplace_back(expoly.contour);
for (const ExPolygon &expoly : layer2->slices)
for (const ExPolygon &expoly : layer2->lslices)
//FIXME no holes?
polys.emplace_back(expoly.contour);
polygons_per_layer[i] = union_(polys);
}
});
}
});
if (object->layers().size() & 1) {
const Layer *layer = object->layers().back();
Polygons polys;
polys.reserve(layer->slices.size());
for (const ExPolygon &expoly : layer->slices)
polys.reserve(layer->lslices.size());
for (const ExPolygon &expoly : layer->lslices)
//FIXME no holes?
polys.emplace_back(expoly.contour);
polygons_per_layer.back() = union_(polys);
@ -2006,8 +2006,8 @@ void GCode::process_layer(
// - for each island, we extrude perimeters first, unless user set the infill_first
// option
// (Still, we have to keep track of regions because we need to apply their config)
size_t n_slices = layer.slices.size();
const std::vector<BoundingBox> &layer_surface_bboxes = layer.slices_bboxes;
size_t n_slices = layer.lslices.size();
const std::vector<BoundingBox> &layer_surface_bboxes = layer.lslices_bboxes;
// Traverse the slices in an increasing order of bounding box size, so that the islands inside another islands are tested first,
// so we can just test a point inside ExPolygon::contour and we may skip testing the holes.
std::vector<size_t> slices_test_order;
@ -2023,7 +2023,7 @@ void GCode::process_layer(
const BoundingBox &bbox = layer_surface_bboxes[i];
return point(0) >= bbox.min(0) && point(0) < bbox.max(0) &&
point(1) >= bbox.min(1) && point(1) < bbox.max(1) &&
layer.slices[i].contour.contains(point);
layer.lslices[i].contour.contains(point);
};
for (size_t region_id = 0; region_id < print.regions().size(); ++ region_id) {
@ -2155,7 +2155,7 @@ void GCode::process_layer(
m_config.apply(instance_to_print.print_object.config(), true);
m_layer = layers[instance_to_print.layer_id].layer();
if (m_config.avoid_crossing_perimeters)
m_avoid_crossing_perimeters.init_layer_mp(union_ex(m_layer->slices, true));
m_avoid_crossing_perimeters.init_layer_mp(union_ex(m_layer->lslices, true));
if (this->config().gcode_label_objects)
gcode += std::string("; printing object ") + instance_to_print.print_object.model_object()->name + " id:" + std::to_string(instance_to_print.layer_id) + " copy " + std::to_string(instance_to_print.instance_id) + "\n";
@ -2476,7 +2476,7 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
// Create the distance field for a layer below.
const coord_t distance_field_resolution = coord_t(scale_(1.) + 0.5);
*lower_layer_edge_grid = make_unique<EdgeGrid::Grid>();
(*lower_layer_edge_grid)->create(m_layer->lower_layer->slices, distance_field_resolution);
(*lower_layer_edge_grid)->create(m_layer->lower_layer->lslices, distance_field_resolution);
(*lower_layer_edge_grid)->calculate_sdf();
#if 0
{

View file

@ -47,8 +47,8 @@ void Layer::make_slices()
slices = union_ex(slices_p);
}
this->slices.clear();
this->slices.reserve(slices.size());
this->lslices.clear();
this->lslices.reserve(slices.size());
// prepare ordering points
Points ordering_points;
@ -61,19 +61,21 @@ void Layer::make_slices()
// populate slices vector
for (size_t i : order)
this->slices.push_back(std::move(slices[i]));
this->lslices.emplace_back(std::move(slices[i]));
}
// Merge typed slices into untyped slices. This method is used to revert the effects of detect_surfaces_type() called for posPrepareInfill.
void Layer::merge_slices()
{
if (m_regions.size() == 1) {
if (m_regions.size() == 1 && (this->id() > 0 || this->object()->config().elefant_foot_compensation.value == 0)) {
// Optimization, also more robust. Don't merge classified pieces of layerm->slices,
// but use the non-split islands of a layer. For a single region print, these shall be equal.
m_regions.front()->slices.set(this->slices, stInternal);
// Don't use this optimization on 1st layer with Elephant foot compensation applied, as this->lslices are uncompensated,
// while regions are compensated.
m_regions.front()->slices.set(this->lslices, stInternal);
} else {
for (LayerRegion *layerm : m_regions)
// without safety offset, artifacts are generated (GH #2494)
// without safety offset, artifacts are generated (upstream Slic3r GH #2494)
layerm->slices.set(union_ex(to_polygons(std::move(layerm->slices.surfaces)), true), stInternal);
}
}

View file

@ -106,12 +106,16 @@ public:
coordf_t print_z; // Z used for printing in unscaled coordinates
coordf_t height; // layer height in unscaled coordinates
// collection of expolygons generated by slicing the original geometry;
// also known as 'islands' (all regions and surface types are merged here)
// The slices are chained by the shortest traverse distance and this traversal
// order will be recovered by the G-code generator.
ExPolygons slices;
std::vector<BoundingBox> slices_bboxes;
// Collection of expolygons generated by slicing the possibly multiple meshes of the source geometry
// (with possibly differing extruder ID and slicing parameters) and merged.
// For the first layer, if the ELephant foot compensation is applied, this lslice is uncompensated, therefore
// it includes the Elephant foot effect, thus it corresponds to the shape of the printed 1st layer.
// These lslices aka islands are chained by the shortest traverse distance and this traversal
// order will be applied by the G-code generator to the extrusions fitting into these lslices.
// These lslices are also used to detect overhangs and overlaps between successive layers, therefore it is important
// that the 1st lslice is not compensated by the Elephant foot compensation algorithm.
ExPolygons lslices;
std::vector<BoundingBox> lslices_bboxes;
size_t region_count() const { return m_regions.size(); }
const LayerRegion* get_region(int idx) const { return m_regions.at(idx); }

View file

@ -72,7 +72,7 @@ void LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollec
if (this->layer()->lower_layer != nullptr)
// Cummulative sum of polygons over all the regions.
g.lower_slices = &this->layer()->lower_layer->slices;
g.lower_slices = &this->layer()->lower_layer->lslices;
g.layer_id = (int)this->layer()->id();
g.ext_perimeter_flow = this->flow(frExternalPerimeter);
@ -139,7 +139,7 @@ void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Poly
// Remove voids from fill_boundaries, that are not supported by the layer below.
if (lower_layer_covered == nullptr) {
lower_layer_covered = &lower_layer_covered_tmp;
lower_layer_covered_tmp = to_polygons(lower_layer->slices);
lower_layer_covered_tmp = to_polygons(lower_layer->lslices);
}
if (! lower_layer_covered->empty())
voids = diff(voids, *lower_layer_covered);
@ -260,7 +260,7 @@ void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Poly
// of very thin (but still working) anchors, the grown expolygon would go beyond them
BridgeDetector bd(
initial,
lower_layer->slices,
lower_layer->lslices,
this->flow(frInfill, true).scaled_width()
);
#ifdef SLIC3R_DEBUG

View file

@ -1658,7 +1658,7 @@ void Print::_make_skirt()
for (const Layer *layer : object->m_layers) {
if (layer->print_z > skirt_height_z)
break;
for (const ExPolygon &expoly : layer->slices)
for (const ExPolygon &expoly : layer->lslices)
// Collect the outer contour points only, ignore holes for the calculation of the convex hull.
append(object_points, expoly.contour.points);
}
@ -1787,7 +1787,7 @@ void Print::_make_brim()
Polygons islands;
for (PrintObject *object : m_objects) {
Polygons object_islands;
for (ExPolygon &expoly : object->m_layers.front()->slices)
for (ExPolygon &expoly : object->m_layers.front()->lslices)
object_islands.push_back(expoly.contour);
if (! object->support_layers().empty())
object->support_layers().front()->support_fills.polygons_covered_by_spacing(object_islands, float(SCALED_EPSILON));

View file

@ -182,7 +182,7 @@ private:
void _slice(const std::vector<coordf_t> &layer_height_profile);
std::string _fix_slicing_errors();
void _simplify_slices(double distance);
void simplify_slices(double distance);
bool has_support_material() const;
void detect_surfaces_type();
void process_external_surfaces();

View file

@ -117,7 +117,7 @@ void PrintObject::slice()
BOOST_LOG_TRIVIAL(info) << warning;
// Simplify slices if required.
if (m_print->config().resolution)
this->_simplify_slices(scale_(this->print()->config().resolution));
this->simplify_slices(scale_(this->print()->config().resolution));
// Update bounding boxes
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
@ -125,10 +125,10 @@ void PrintObject::slice()
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[layer_idx];
layer.slices_bboxes.clear();
layer.slices_bboxes.reserve(layer.slices.size());
for (const ExPolygon &expoly : layer.slices)
layer.slices_bboxes.emplace_back(get_extents(expoly));
layer.lslices_bboxes.clear();
layer.lslices_bboxes.reserve(layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
layer.lslices_bboxes.emplace_back(get_extents(expoly));
}
});
if (m_layers.empty())
@ -242,13 +242,6 @@ void PrintObject::make_perimeters()
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
/*
simplify slices (both layer and region slices),
we only need the max resolution for perimeters
### This makes this method not-idempotent, so we keep it disabled for now.
###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
*/
this->set_done(posPerimeters);
}
@ -692,7 +685,7 @@ void PrintObject::detect_surfaces_type()
if (upper_layer) {
Polygons upper_slices = interface_shells ?
to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) :
to_polygons(upper_layer->slices);
to_polygons(upper_layer->lslices);
surfaces_append(top,
//FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
@ -721,7 +714,7 @@ void PrintObject::detect_surfaces_type()
surfaces_append(
bottom,
offset2_ex(
diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true),
diff(layerm_slices_surfaces, to_polygons(lower_layer->lslices), true),
-offset, offset),
surface_type_bottom_other);
// if user requested internal shells, we need to identify surfaces
@ -733,7 +726,7 @@ void PrintObject::detect_surfaces_type()
bottom,
offset2_ex(
diff(
intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported
intersection(layerm_slices_surfaces, to_polygons(lower_layer->lslices)), // supported
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces),
true),
-offset, offset),
@ -879,7 +872,7 @@ void PrintObject::process_external_surfaces()
// Shrink the holes, let the layer above expand slightly inside the unsupported areas.
polygons_append(voids, offset(surface.expolygon, unsupported_width));
}
surfaces_covered[layer_idx] = diff(to_polygons(this->m_layers[layer_idx]->slices), voids);
surfaces_covered[layer_idx] = diff(to_polygons(this->m_layers[layer_idx]->lslices), voids);
}
}
);
@ -985,8 +978,8 @@ void PrintObject::discover_vertical_shells()
cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
// For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
if (perimeter_offset > 0.) {
// The layer.slices are forced to merge by expanding them first.
polygons_append(cache.holes, offset(offset_ex(layer.slices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
// The layer.lslices are forced to merge by expanding them first.
polygons_append(cache.holes, offset(offset_ex(layer.lslices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.slices));
@ -1762,78 +1755,101 @@ end:
;
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, upscaled, clipped](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
float delta = float(scale_(m_config.xy_size_compensation.value));
//FIXME only apply the compensation if no raft is enabled.
float elephant_foot_compensation = 0.f;
if (layer_id == 0 && m_config.raft_layers == 0)
// Only enable Elephant foot compensation if printing directly on the print bed.
elephant_foot_compensation = float(scale_(m_config.elefant_foot_compensation.value));
if (layer->m_regions.size() == 1) {
// Optimized version for a single region layer.
if (layer_id == 0) {
if (delta > elephant_foot_compensation) {
delta -= elephant_foot_compensation;
elephant_foot_compensation = 0.f;
} else if (delta > 0)
elephant_foot_compensation -= delta;
}
if (delta != 0.f || elephant_foot_compensation > 0.f) {
// Single region, growing or shrinking.
LayerRegion *layerm = layer->m_regions.front();
// Apply the XY compensation.
ExPolygons expolygons = (delta == 0.f) ?
to_expolygons(std::move(layerm->slices.surfaces)) :
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), delta);
// Apply the elephant foot compensation.
if (elephant_foot_compensation > 0)
expolygons = union_ex(Slic3r::elephant_foot_compensation(expolygons, layerm->flow(frExternalPerimeter), unscale<double>(elephant_foot_compensation)));
layerm->slices.set(std::move(expolygons), stInternal);
}
} else {
bool upscale = ! upscaled && delta > 0.f;
bool clip = ! clipped && m_config.clip_multipart_objects.value;
if (upscale || clip) {
// Multiple regions, growing or just clipping one region by the other.
// When clipping the regions, priority is given to the first regions.
Polygons processed;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
if (upscale)
slices = offset_ex(std::move(slices), delta);
if (region_id > 0 && clip)
// Trim by the slices of already processed regions.
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (clip && (region_id + 1 < layer->m_regions.size()))
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
layerm->slices.set(std::move(slices), stInternal);
}
}
if (delta < 0.f || elephant_foot_compensation > 0.f) {
// Apply the negative XY compensation.
Polygons trimming;
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
if (elephant_foot_compensation > 0.f) {
trimming = to_polygons(Slic3r::elephant_foot_compensation(offset_ex(layer->merged(eps), std::min(delta, 0.f) - eps),
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elephant_foot_compensation)));
} else
trimming = offset(layer->merged(float(SCALED_EPSILON)), delta - float(SCALED_EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->trim_surfaces(trimming);
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
layer->make_slices();
}
});
{
// Compensation value, scaled.
const float xy_compensation_scaled = float(scale_(m_config.xy_size_compensation.value));
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
// Only enable Elephant foot compensation if printing directly on the print bed.
float(scale_(m_config.elefant_foot_compensation.value)) :
0.f;
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
ExPolygons lslices_1st_layer;
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, upscaled, clipped, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
(const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
if (layer->m_regions.size() == 1) {
assert(! upscaled);
assert(! clipped);
// Optimized version for a single region layer.
// Single region, growing or shrinking.
LayerRegion *layerm = layer->m_regions.front();
if (elfoot > 0) {
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
float delta = xy_compensation_scaled;
if (delta > elfoot) {
delta -= elfoot;
elfoot = 0.f;
} else if (delta > 0)
elfoot -= delta;
layerm->slices.set(
union_ex(
Slic3r::elephant_foot_compensation(
(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta),
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
stInternal);
if (xy_compensation_scaled != 0.f)
lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
} else if (xy_compensation_scaled != 0.f) {
// Apply the XY compensation.
layerm->slices.set(
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
stInternal);
}
} else {
bool upscale = ! upscaled && xy_compensation_scaled > 0.f;
bool clip = ! clipped && m_config.clip_multipart_objects.value;
if (upscale || clip) {
// Multiple regions, growing or just clipping one region by the other.
// When clipping the regions, priority is given to the first regions.
Polygons processed;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
if (upscale)
slices = offset_ex(std::move(slices), xy_compensation_scaled);
if (region_id > 0 && clip)
// Trim by the slices of already processed regions.
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (clip && (region_id + 1 < layer->m_regions.size()))
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
layerm->slices.set(std::move(slices), stInternal);
}
}
if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
// Apply the negative XY compensation.
Polygons trimming;
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
if (elfoot > 0.f) {
lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
} else
trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->trim_surfaces(trimming);
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
layer->make_slices();
}
});
if (elephant_foot_compensation_scaled > 0.f) {
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
// Store the uncompensated value there.
assert(! m_layers.empty());
assert(m_layers.front()->id() == 0);
m_layers.front()->lslices = std::move(lslices_1st_layer);
}
}
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
}
@ -2131,7 +2147,7 @@ std::string PrintObject::_fix_slicing_errors()
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! m_layers.empty() && m_layers.front()->slices.empty()) {
while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
delete m_layers.front();
m_layers.erase(m_layers.begin());
m_layers.front()->lower_layer = nullptr;
@ -2147,7 +2163,7 @@ std::string PrintObject::_fix_slicing_errors()
// Simplify the sliced model, if "resolution" configuration parameter > 0.
// The simplification is problematic, because it simplifies the slices independent from each other,
// which makes the simplified discretization visible on the object surface.
void PrintObject::_simplify_slices(double distance)
void PrintObject::simplify_slices(double distance)
{
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
tbb::parallel_for(
@ -2160,9 +2176,9 @@ void PrintObject::_simplify_slices(double distance)
layer->m_regions[region_idx]->slices.simplify(distance);
{
ExPolygons simplified;
for (const ExPolygon& expoly : layer->slices)
for (const ExPolygon &expoly : layer->lslices)
expoly.simplify(distance, &simplified);
layer->slices = std::move(simplified);
layer->lslices = std::move(simplified);
}
}
});
@ -2194,7 +2210,7 @@ void PrintObject::clip_fill_surfaces()
// Detect things that we need to support.
// Cummulative slices.
Polygons slices;
polygons_append(slices, layer->slices);
polygons_append(slices, layer->lslices);
// Cummulative fill surfaces.
Polygons fill_surfaces;
// Solid surfaces to be supported.

View file

@ -1,6 +1,5 @@
#include "ClipperUtils.hpp"
#include "ExtrusionEntityCollection.hpp"
#include "PerimeterGenerator.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "SupportMaterial.hpp"
@ -445,8 +444,8 @@ Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_t
Polygons collect_slices_outer(const Layer &layer)
{
Polygons out;
out.reserve(out.size() + layer.slices.size());
for (const ExPolygon &expoly : layer.slices)
out.reserve(out.size() + layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
out.emplace_back(expoly.contour);
return out;
}
@ -907,9 +906,9 @@ namespace SupportMaterialInternal {
polyline.extend_start(fw);
polyline.extend_end(fw);
// Is the straight perimeter segment supported at both sides?
for (size_t i = 0; i < lower_layer.slices.size(); ++ i)
if (lower_layer.slices_bboxes[i].contains(polyline.first_point()) && lower_layer.slices_bboxes[i].contains(polyline.last_point()) &&
lower_layer.slices[i].contains(polyline.first_point()) && lower_layer.slices[i].contains(polyline.last_point())) {
for (size_t i = 0; i < lower_layer.lslices.size(); ++ i)
if (lower_layer.lslices_bboxes[i].contains(polyline.first_point()) && lower_layer.lslices_bboxes[i].contains(polyline.last_point()) &&
lower_layer.lslices[i].contains(polyline.first_point()) && lower_layer.lslices[i].contains(polyline.last_point())) {
// Offset a polyline into a thick line.
polygons_append(bridges, offset(polyline, 0.5f * w + 10.f));
break;
@ -998,7 +997,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
// inflate the polygons over and over.
Polygons &covered = buildplate_covered[layer_id];
covered = buildplate_covered[layer_id - 1];
polygons_append(covered, offset(lower_layer.slices, scale_(0.01)));
polygons_append(covered, offset(lower_layer.lslices, scale_(0.01)));
covered = union_(covered, false); // don't apply the safety offset.
}
}
@ -1027,7 +1026,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
Polygons contact_polygons;
Polygons slices_margin_cached;
float slices_margin_cached_offset = -1.;
Polygons lower_layer_polygons = (layer_id == 0) ? Polygons() : to_polygons(object.layers()[layer_id-1]->slices);
Polygons lower_layer_polygons = (layer_id == 0) ? Polygons() : to_polygons(object.layers()[layer_id-1]->lslices);
// Offset of the lower layer, to trim the support polygons with to calculate dense supports.
float no_interface_offset = 0.f;
if (layer_id == 0) {
@ -1166,7 +1165,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
slices_margin_cached_offset = slices_margin_offset;
slices_margin_cached = (slices_margin_offset == 0.f) ?
lower_layer_polygons :
offset2(to_polygons(lower_layer.slices), - no_interface_offset * 0.5f, slices_margin_offset + no_interface_offset * 0.5f, SUPPORT_SURFACES_OFFSET_PARAMETERS);
offset2(to_polygons(lower_layer.lslices), - no_interface_offset * 0.5f, slices_margin_offset + no_interface_offset * 0.5f, SUPPORT_SURFACES_OFFSET_PARAMETERS);
if (! buildplate_covered.empty()) {
// Trim the inflated contact surfaces by the top surfaces as well.
polygons_append(slices_margin_cached, buildplate_covered[layer_id]);
@ -1573,7 +1572,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_conta
task_group.run([this, &projection, &projection_raw, &layer, &layer_support_area, layer_id] {
// Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
// Polygons trimming = union_(to_polygons(layer.slices), touching, true);
Polygons trimming = offset(layer.slices, float(SCALED_EPSILON));
Polygons trimming = offset(layer.lslices, float(SCALED_EPSILON));
projection = diff(projection_raw, trimming, false);
#ifdef SLIC3R_DEBUG
{
@ -2105,7 +2104,7 @@ void PrintObjectSupportMaterial::trim_support_layers_by_object(
const Layer &object_layer = *object.layers()[i];
if (object_layer.print_z - object_layer.height > support_layer.print_z + gap_extra_above - EPSILON)
break;
polygons_append(polygons_trimming, offset(object_layer.slices, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
polygons_append(polygons_trimming, offset(object_layer.lslices, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
}
if (! m_slicing_params.soluble_interface) {
// Collect all bottom surfaces, which will be extruded with a bridging flow.
@ -2218,7 +2217,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raf
// Expand the bases of the support columns in the 1st layer.
columns_base->polygons = diff(
offset(columns_base->polygons, inflate_factor_1st_layer),
offset(m_object->layers().front()->slices, (float)scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS));
offset(m_object->layers().front()->lslices, (float)scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS));
if (contacts != nullptr)
columns_base->polygons = diff(columns_base->polygons, interface_polygons);
}