Refactored the ModelVolume bounding box to Eigen::AlignedBox<float>,

separated splitting of LayerRegions by MMU segmentation to its own
function.
This commit is contained in:
Vojtech Bubnik 2021-05-27 16:10:58 +02:00
parent f1754e538e
commit 818cb703ed
3 changed files with 177 additions and 158 deletions

View file

@ -16,6 +16,8 @@
#include "libslic3r.h"
#include <Eigen/Geometry>
#include <functional>
#include <set>
@ -164,9 +166,12 @@ class PrintObjectRegions
public:
// Bounding box of a ModelVolume transformed into the working space of a PrintObject, possibly
// clipped by a layer range modifier.
// Only Eigen types of Nx16 size are vectorized. This bounding box will not be vectorized.
static_assert(sizeof(Eigen::AlignedBox<float, 3>) == 24, "Eigen::AlignedBox<float, 3> is not being vectorized, thus it does not need to be aligned");
using BoundingBox = Eigen::AlignedBox<float, 3>;
struct VolumeExtents {
ObjectID volume_id;
BoundingBoxf3 bbox;
ObjectID volume_id;
BoundingBox bbox;
};
struct VolumeRegion
@ -178,7 +183,7 @@ public:
// Pointer to PrintObjectRegions::all_regions, null for a negative volume.
PrintRegion *region { nullptr };
// Pointer to VolumeExtents::bbox.
const BoundingBoxf3 *bbox { nullptr };
const BoundingBox *bbox { nullptr };
// To speed up merging of same regions.
const VolumeRegion *prev_same_region { nullptr };
};
@ -307,6 +312,7 @@ public:
const PrintRegion& printing_region(size_t idx) const throw() { return *m_shared_regions->all_regions[idx].get(); }
//FIXME returing all possible regions before slicing, thus some of the regions may not be slicing at the end.
std::vector<std::reference_wrapper<const PrintRegion>> all_regions() const;
const PrintObjectRegions* shared_regions() const throw() { return m_shared_regions; }
bool has_support() const { return m_config.support_material || m_config.support_material_enforce_layers > 0; }
bool has_raft() const { return m_config.raft_layers > 0; }

View file

@ -484,32 +484,40 @@ static inline bool trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(const
return std::abs(d * d) < EPSILON * lx2 * ly2;
}
static BoundingBoxf3 transformed_its_bbox2d(const indexed_triangle_set &its, const Transform3f &m, float offset)
static PrintObjectRegions::BoundingBox transformed_its_bbox2d(const indexed_triangle_set &its, const Transform3f &m, float offset)
{
BoundingBoxf3 bbox;
assert(! its.indices.empty());
PrintObjectRegions::BoundingBox bbox(m * its.vertices[its.indices.front()(0)]);
for (const stl_triangle_vertex_indices &tri : its.indices)
for (int i = 0; i < 3; ++ i)
bbox.merge((m * its.vertices[tri(i)]).cast<double>());
bbox.min.x() -= offset;
bbox.min.y() -= offset;
bbox.min.x() += offset;
bbox.min.y() += offset;
bbox.extend(m * its.vertices[tri(i)]);
bbox.min() -= Vec3f(offset, offset, float(EPSILON));
bbox.max() += Vec3f(offset, offset, float(EPSILON));
return bbox;
}
static void transformed_its_bboxes_in_z_ranges(
const indexed_triangle_set &its,
const Transform3f &m,
const std::vector<t_layer_height_range> &z_ranges,
std::vector<BoundingBoxf3> &bboxes,
const float offset)
const indexed_triangle_set &its,
const Transform3f &m,
const std::vector<t_layer_height_range> &z_ranges,
std::vector<std::pair<PrintObjectRegions::BoundingBox, bool>> &bboxes,
const float offset)
{
bboxes.assign(z_ranges.size(), BoundingBoxf3());
bboxes.assign(z_ranges.size(), std::make_pair(PrintObjectRegions::BoundingBox, false));
for (const stl_triangle_vertex_indices &tri : its.indices) {
const Vec3f pts[3] = { m * its.vertices[tri(0)], m * its.vertices[tri(1)], m * its.vertices[tri(2)] };
for (size_t irange = 0; irange < z_ranges.size(); ++ irange) {
const t_layer_height_range &z_range = z_ranges[irange];
BoundingBoxf3 &bbox = bboxes[irange];
const t_layer_height_range &z_range = z_ranges[irange];
std::pair<PrintObjectRegions::BoundingBox, bool> &bbox = bboxes[irange];
auto bbox_extend = [&bbox](const Vec3f& p) {
if (bbox.second) {
bbox.first.extend(p);
} else {
bbox.first.min() = bbox.first.max() = p;
bbox.second = true;
}
};
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
const Vec3f *p1 = &pts[iprev];
@ -527,36 +535,34 @@ static void transformed_its_bboxes_in_z_ranges(
float t2 = (z_range.second - p1->z()) / zspan;
Vec2f p = to_2d(*p1);
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge((to_3d((p + v * t1).eval(), float(z_range.first))).cast<double>());
bbox.merge((to_3d((p + v * t2).eval(), float(z_range.second))).cast<double>());
bbox_extend(to_3d((p + v * t1).eval(), float(z_range.first)));
bbox_extend(to_3d((p + v * t2).eval(), float(z_range.second)));
} else {
// Single intersection with the lower limit.
float t = (z_range.first - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge((to_3d((to_2d(*p1) + v * t).eval(), float(z_range.first))).cast<double>());
bbox.merge(p2->cast<double>());
bbox_extend(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.first)));
bbox_extend(*p2);
}
} else if (p2->z() > z_range.second) {
// Single intersection with the upper limit.
float t = (z_range.second - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge((to_3d((to_2d(*p1) + v * t).eval(), float(z_range.second)).cast<double>()));
bbox.merge(p1->cast<double>());
bbox_extend(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.second)));
bbox_extend(*p1);
} else {
// Both points are inside.
bbox.merge(p1->cast<double>());
bbox.merge(p2->cast<double>());
bbox_extend(*p1);
bbox_extend(*p2);
}
iprev = iedge;
}
}
}
for (BoundingBoxf3 &bbox : bboxes) {
bbox.min.x() -= offset;
bbox.min.y() -= offset;
bbox.min.x() += offset;
bbox.min.y() += offset;
for (std::pair<PrintObjectRegions::BoundingBox, bool> &bbox : bboxes) {
bbox.first.min() -= Vec3f(offset, offset, float(EPSILON));
bbox.first.max() += Vec3f(offset, offset, float(EPSILON));
}
}
@ -590,7 +596,7 @@ void print_objects_regions_invalidate_keep_some_volumes(PrintObjectRegions &prin
print_object_regions.cached_volume_ids.erase(print_object_regions.cached_volume_ids.begin() + last, print_object_regions.cached_volume_ids.end());
}
const BoundingBoxf3* find_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const ModelVolume &volume)
const PrintObjectRegions::BoundingBox* find_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const ModelVolume &volume)
{
auto it = lower_bound_by_predicate(layer_range.volumes.begin(), layer_range.volumes.end(), [&volume](const PrintObjectRegions::VolumeExtents &l){ return l.volume_id < volume.id(); });
return it != layer_range.volumes.end() && it->volume_id == volume.id() ? &it->bbox : nullptr;
@ -727,8 +733,8 @@ void update_volume_bboxes(
volumes_old.emplace_back(std::move(layer_range.volumes));
}
std::vector<BoundingBoxf3> bboxes;
std::vector<t_layer_height_range> ranges;
std::vector<std::pair<PrintObjectRegions::BoundingBox, bool>> bboxes;
std::vector<t_layer_height_range> ranges;
ranges.reserve(layer_ranges.size());
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
t_layer_height_range r = layer_range.layer_height_range;
@ -748,7 +754,8 @@ void update_volume_bboxes(
} else {
transformed_its_bboxes_in_z_ranges(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), ranges, bboxes, offset);
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
layer_range.volumes.push_back({ model_volume->id(), bboxes[&layer_range - layer_ranges.data()] });
if (auto &bbox = bboxes[&layer_range - layer_ranges.data()]; bbox.second)
layer_range.volumes.push_back({ model_volume->id(), bbox.first });
}
}
}
@ -820,7 +827,7 @@ static PrintObjectRegions* generate_print_object_regions(
const ModelVolume &volume = *model_volumes[volume_id];
if (model_volume_solid_or_modifier(volume)) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions)
if (const BoundingBoxf3 *bbox = find_volume_extents(layer_range, volume); bbox) {
if (const PrintObjectRegions::BoundingBox *bbox = find_volume_extents(layer_range, volume); bbox) {
if (volume.is_model_part()) {
// Add a model volume, assign an existing region or generate a new one.
layer_range.volume_regions.push_back({
@ -837,9 +844,9 @@ static PrintObjectRegions* generate_print_object_regions(
for (int parent_region_id = int(layer_range.volume_regions.size()) - 1; parent_region_id >= 0; -- parent_region_id)
if (const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) {
const BoundingBoxf3 *parent_bbox = find_volume_extents(layer_range, *parent_region.model_volume);
const PrintObjectRegions::BoundingBox *parent_bbox = find_volume_extents(layer_range, *parent_region.model_volume);
assert(parent_bbox != nullptr);
if (parent_bbox->overlap(*bbox))
if (parent_bbox->intersects(*bbox))
layer_range.volume_regions.push_back({
&volume, parent_region_id,
get_create_region(region_config_from_model_volume(parent_region.region->config(), nullptr, volume, num_extruders)),

View file

@ -220,11 +220,10 @@ static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &
return *it;
}
static inline bool overlap_in_xy(const BoundingBoxf3 &l, const BoundingBoxf3 &r)
static inline bool overlap_in_xy(const PrintObjectRegions::BoundingBox &l, const PrintObjectRegions::BoundingBox &r)
{
assert(l.defined && r.defined);
return ! (l.max.x() < r.min.x() || l.min.x() > r.max.x() ||
l.max.y() < r.min.y() || l.min.y() > r.max.y());
return ! (l.max().x() < r.min().x() || l.min().x() > r.max().x() ||
l.max().y() < r.min().y() || l.min().y() > r.max().y());
}
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_first(const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges, double z)
@ -288,14 +287,14 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
bool complex = false;
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.bbox->min.z() <= z && region.bbox->max.z() >= z) {
if (region.bbox->min().z() <= z && region.bbox->max().z() >= z) {
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
idx_first_printable_region = idx_region;
else if (idx_first_printable_region != -1) {
// Test for overlap with some other region.
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
if (region2.bbox->min.z() <= z && region2.bbox->max.z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
if (region2.bbox->min().z() <= z && region2.bbox->max().z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
complex = true;
break;
}
@ -552,6 +551,123 @@ void PrintObject::slice()
this->set_done(posSlice);
}
template<typename ThrowOnCancel>
static inline void apply_mm_segmentation(PrintObject &print_object, ThrowOnCancel throw_on_cancel)
{
// Returns MMU segmentation based on painting in MMU segmentation gizmo
std::vector<std::vector<std::pair<ExPolygon, size_t>>> segmentation = multi_material_segmentation_by_painting(print_object);
assert(segmentation.size() == print_object.layer_count());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, segmentation.size(), std::max(segmentation.size() / 128, size_t(1))),
[&print_object, &segmentation, throw_on_cancel](const tbb::blocked_range<size_t> &range) {
const auto &layer_ranges = print_object.shared_regions()->layer_ranges;
double z = print_object.get_layer(range.begin())->slice_z;
auto it_layer_range = layer_range_first(layer_ranges, z);
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size();
struct ByExtruder {
ExPolygons expolygons;
BoundingBox bbox;
};
std::vector<ByExtruder> by_extruder;
struct ByRegion {
ExPolygons expolygons;
bool needs_merge { false };
};
std::vector<ByRegion> by_region;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
throw_on_cancel();
Layer *layer = print_object.get_layer(layer_id);
it_layer_range = layer_range_next(layer_ranges, it_layer_range, layer->slice_z);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
// Gather per extruder expolygons.
by_extruder.assign(num_extruders, ByExtruder());
by_region.assign(layer->region_count(), ByRegion());
bool layer_split = false;
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id) {
ByExtruder &region = by_extruder[extruder_id];
for (const std::pair<ExPolygon, size_t> &colored_polygon : segmentation[layer_id])
if (colored_polygon.second == extruder_id)
region.expolygons.emplace_back(std::move(colored_polygon.first));
if (! region.expolygons.empty()) {
region.bbox = get_extents(region.expolygons);
layer_split = true;
}
}
if (! layer_split)
continue;
// Split LayerRegions by by_extruder regions.
auto it_painted_region = layer_range.painted_regions.begin();
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id)
if (LayerRegion &layerm = *layer->get_region(region_id); ! layerm.slices.surfaces.empty()) {
const BoundingBox bbox = get_extents(layerm.slices.surfaces);
assert(it_painted_region < layer_range.painted_regions.end());
for (; layer_range.volume_regions[it_painted_region->parent].region->print_object_region_id() < region_id; ++ it_painted_region)
assert(it_painted_region < layer_range.painted_regions.end());
assert(&layerm.region() == it_painted_region->region && layerm.region().print_object_region_id() == region_id);
// 1-based extruder ID
bool self_trimmed = false;
size_t self_extruder_id;
for (size_t extruder_id = 1; extruder_id <= by_extruder.size(); ++ extruder_id)
if (ByExtruder &segmented = by_extruder[extruder_id - 1]; segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
// Find the target region.
for (; it_painted_region->extruder_id < extruder_id; ++ it_painted_region)
assert(it_painted_region < layer_range.painted_regions.end());
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region() && it_painted_region->extruder_id == extruder_id);
//FIXME Don't trim by self, it is not reliable.
if (&layerm.region() == it_painted_region->region) {
self_extruder_id = extruder_id;
continue;
}
// Steal from this region.
int target_region_id = it_painted_region->region->print_object_region_id();
ExPolygons stolen = intersection_ex(layerm.slices.surfaces, segmented.expolygons);
if (! stolen.empty()) {
ByRegion &dst = by_region[target_region_id];
if (dst.expolygons.empty()) {
dst.expolygons = std::move(stolen);
} else {
append(dst.expolygons, std::move(stolen));
dst.needs_merge = true;
}
}
#if 0
if (&layerm.region() == it_painted_region->region)
// Slices of this LayerRegion were trimmed by a MMU region of the same PrintRegion.
self_trimmed = true;
#endif
}
if (! self_trimmed) {
// Trim slices of this LayerRegion with all the MMU regions.
Polygons mine = to_polygons(std::move(layerm.slices.surfaces));
for (auto &segmented : by_extruder)
if (&segmented - by_extruder.data() + 1 != self_extruder_id && segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
mine = diff(mine, segmented.expolygons);
if (mine.empty())
break;
}
if (! mine.empty()) {
ByRegion &dst = by_region[layerm.region().print_object_region_id()];
if (dst.expolygons.empty()) {
dst.expolygons = union_ex(mine);
} else {
append(dst.expolygons, union_ex(mine));
dst.needs_merge = true;
}
}
}
}
// Re-create Surfaces of LayerRegions.
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
ByRegion &src = by_region[region_id];
if (src.needs_merge)
// Multiple regions were merged into one.
src.expolygons = offset2_ex(src.expolygons, float(scale_(EPSILON)), - float(scale_(EPSILON)));
layer->get_region(region_id)->slices.set(std::move(src.expolygons), stInternal);
}
}
});
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
@ -605,123 +721,13 @@ void PrintObject::slice_volumes()
m_print->throw_if_canceled();
// Is any ModelVolume MMU painted?
if (const auto &volumes = this->model_object()->volumes;
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume *v) { return ! v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
if (const auto& volumes = this->model_object()->volumes;
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume* v) { return !v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - MMU segmentation";
// Returns MMU segmentation based on painting in MMU segmentation gizmo
std::vector<std::vector<std::pair<ExPolygon, size_t>>> segmentation = multi_material_segmentation_by_painting(*this);
assert(segmentation.size() == m_layers.size());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, segmentation.size(), std::max(segmentation.size() / 128, size_t(1))),
[this, &segmentation](const tbb::blocked_range<size_t> &range) {
const auto &layer_ranges = this->m_shared_regions->layer_ranges;
double z = m_layers[range.begin()]->slice_z;
auto it_layer_range = layer_range_first(layer_ranges, z);
const size_t num_extruders = this->print()->config().nozzle_diameter.size();
struct ByExtruder {
ExPolygons expolygons;
BoundingBox bbox;
};
std::vector<ByExtruder> by_extruder;
struct ByRegion {
ExPolygons expolygons;
bool needs_merge { false };
};
std::vector<ByRegion> by_region;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
it_layer_range = layer_range_next(layer_ranges, it_layer_range, layer->slice_z);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
// Gather per extruder expolygons.
by_extruder.assign(num_extruders, ByExtruder());
by_region.assign(layer->m_regions.size(), ByRegion());
bool layer_split = false;
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id) {
ByExtruder &region = by_extruder[extruder_id];
for (const std::pair<ExPolygon, size_t> &colored_polygon : segmentation[layer_id])
if (colored_polygon.second == extruder_id)
region.expolygons.emplace_back(std::move(colored_polygon.first));
if (! region.expolygons.empty()) {
region.bbox = get_extents(region.expolygons);
layer_split = true;
}
}
if (! layer_split)
continue;
// Split LayerRegions by by_extruder regions.
auto it_painted_region = layer_range.painted_regions.begin();
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
if (LayerRegion &layerm = *layer->m_regions[region_id]; ! layerm.slices.surfaces.empty()) {
const BoundingBox bbox = get_extents(layerm.slices.surfaces);
assert(it_painted_region < layer_range.painted_regions.end());
for (; layer_range.volume_regions[it_painted_region->parent].region->print_object_region_id() < region_id; ++ it_painted_region)
assert(it_painted_region < layer_range.painted_regions.end());
assert(&layerm.region() == it_painted_region->region && layerm.region().print_object_region_id() == region_id);
// 1-based extruder ID
bool self_trimmed = false;
size_t self_extruder_id;
for (size_t extruder_id = 1; extruder_id <= by_extruder.size(); ++ extruder_id)
if (ByExtruder &segmented = by_extruder[extruder_id - 1]; segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
// Find the target region.
for (; it_painted_region->extruder_id < extruder_id; ++ it_painted_region)
assert(it_painted_region < layer_range.painted_regions.end());
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region() && it_painted_region->extruder_id == extruder_id);
//FIXME Don't trim by self, it is not reliable.
if (&layerm.region() == it_painted_region->region) {
self_extruder_id = extruder_id;
continue;
}
// Steal from this region.
int target_region_id = it_painted_region->region->print_object_region_id();
ExPolygons stolen = intersection_ex(layerm.slices.surfaces, segmented.expolygons);
if (! stolen.empty()) {
ByRegion &dst = by_region[target_region_id];
if (dst.expolygons.empty()) {
dst.expolygons = std::move(stolen);
} else {
append(dst.expolygons, std::move(stolen));
dst.needs_merge = true;
}
}
#if 0
if (&layerm.region() == it_painted_region->region)
// Slices of this LayerRegion were trimmed by a MMU region of the same PrintRegion.
self_trimmed = true;
#endif
}
if (! self_trimmed) {
// Trim slices of this LayerRegion with all the MMU regions.
Polygons mine = to_polygons(std::move(layerm.slices.surfaces));
for (auto &segmented : by_extruder)
if (&segmented - by_extruder.data() + 1 != self_extruder_id && segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
mine = diff(mine, segmented.expolygons);
if (mine.empty())
break;
}
if (! mine.empty()) {
ByRegion &dst = by_region[layerm.region().print_object_region_id()];
if (dst.expolygons.empty()) {
dst.expolygons = union_ex(mine);
} else {
append(dst.expolygons, union_ex(mine));
dst.needs_merge = true;
}
}
}
}
// Re-create Surfaces of LayerRegions.
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
ByRegion &src = by_region[region_id];
if (src.needs_merge)
// Multiple regions were merged into one.
src.expolygons = offset2_ex(src.expolygons, float(scale_(EPSILON)), - float(scale_(EPSILON)));
layer->m_regions[region_id]->slices.set(std::move(src.expolygons), stInternal);
}
}
});
apply_mm_segmentation(*this, [print]() { print->throw_if_canceled(); });
}
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
{
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.