Edges now smoothed on the sides.

This commit is contained in:
tamasmeszaros 2018-08-21 13:20:43 +02:00
parent 0909059c54
commit 8194f9fb96

View file

@ -118,35 +118,6 @@ inline Contour3D walls(const ExPolygon& floor_plate, const ExPolygon& ceiling,
return ret;
}
/// Generating the concave part of the 3D pool with the bottom plate and the
/// side walls.
inline Contour3D inner_bed(const ExPolygon& poly, coord_t depth) {
Polygons triangles;
poly.triangulate_p2t(&triangles);
auto bottom = convert(triangles, -depth, false);
auto lines = poly.lines();
// Generate outer walls
auto fp = [](const Point& p, Point::coord_type z) {
return Pointf3::new_unscale(x(p), y(p), z);
};
for(auto& l : lines) {
auto s = coord_t(bottom.points.size());
bottom.points.emplace_back(fp(l.a, -depth));
bottom.points.emplace_back(fp(l.b, -depth));
bottom.points.emplace_back(fp(l.a, 0));
bottom.points.emplace_back(fp(l.b, 0));
bottom.indices.emplace_back(s, s + 1, s + 3);
bottom.indices.emplace_back(s, s + 3, s + 2);
}
return bottom;
}
/// Mesh from an existing contour.
inline TriangleMesh mesh(const Contour3D& ctour) {
return {ctour.points, ctour.indices};
@ -211,6 +182,89 @@ inline void offset(ExPolygon& sh, coord_t distance) {
}
}
template<class ExP, class D>
inline Contour3D round_edges(const ExPolygon& base_plate,
double radius_mm,
double degrees,
double ceilheight_mm,
bool dir,
ExP&& last_offset = ExP(), D&& last_height = D())
{
auto ob = base_plate;
auto ob_prev = ob;
double wh = ceilheight_mm, wh_prev = wh;
Contour3D curvedwalls;
const size_t steps = 6; // steps for 180 degrees
degrees = std::fmod(degrees, 180);
const int portion = int(steps*degrees / 90);
const double ystep_mm = radius_mm/steps;
coord_t s = dir? 1 : -1;
for(int i = 0; i < portion; i++) {
ob = base_plate;
// The offset is given by the equation: x = sqrt(r^2 - y^2)
// which can be derived from the circle equation. y is the current
// height for which the offset is calculated and x is the offset itself
// r is the radius of the circle that is used to smooth the edges
double r2 = radius_mm * radius_mm;
double y2 = steps*ystep_mm - i*ystep_mm;
y2 *= y2;
double xx = sqrt(r2 - y2);
offset(ob, s*mm(xx));
wh = ceilheight_mm - i*ystep_mm;
Contour3D pwalls;
pwalls = walls(ob, ob_prev, wh, wh_prev);
curvedwalls.merge(pwalls);
ob_prev = ob;
wh_prev = wh;
}
last_offset = std::move(ob);
last_height = wh;
return curvedwalls;
}
/// Generating the concave part of the 3D pool with the bottom plate and the
/// side walls.
inline Contour3D inner_bed(const ExPolygon& poly, double depth_mm,
double begin_h_mm = 0) {
Polygons triangles;
poly.triangulate_p2t(&triangles);
coord_t depth = mm(depth_mm);
coord_t begin_h = mm(begin_h_mm);
auto bottom = convert(triangles, -depth + begin_h, false);
auto lines = poly.lines();
// Generate outer walls
auto fp = [](const Point& p, Point::coord_type z) {
return Pointf3::new_unscale(x(p), y(p), z);
};
for(auto& l : lines) {
auto s = coord_t(bottom.points.size());
bottom.points.emplace_back(fp(l.a, -depth + begin_h));
bottom.points.emplace_back(fp(l.b, -depth + begin_h));
bottom.points.emplace_back(fp(l.a, begin_h));
bottom.points.emplace_back(fp(l.b, begin_h));
bottom.indices.emplace_back(s, s + 1, s + 3);
bottom.indices.emplace_back(s, s + 3, s + 2);
}
return bottom;
}
/// Unification of polygons (with clipper) preserving holes as well.
inline ExPolygons unify(const ExPolygons& shapes) {
ExPolygons retv;
@ -361,116 +415,127 @@ void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,
double min_wall_thickness_mm,
double min_wall_height_mm)
{
Contour3D pool;
auto& poly = ground_layer.front();
auto floor_poly = poly;
offset(floor_poly, mm(5));
Polygons floor_plate;
floor_poly.triangulate_p2t(&floor_plate);
auto floor_mesh = convert(floor_plate, mm(20), false);
pool.merge(floor_mesh);
Polygons ceil_plate;
poly.triangulate_p2t(&ceil_plate);
auto ceil_mesh = convert(ceil_plate, mm(0), true);
pool.merge(ceil_mesh);
auto ob = floor_poly;
auto ob_prev = ob;
double wh = 20, wh_prev = wh;
Contour3D curvedwalls;
const size_t steps = 6;
const double radius_mm = 1;
const double ystep_mm = radius_mm/steps;
const double ceilheight_mm = 20;
for(int i = 0; i < 1.5*steps; i++) {
ob = floor_poly;
// The offset is given by the equation: x = sqrt(r^2 - y^2)
// which can be derived from the circle equation. y is the current
// height for which the offset is calculated and x is the offset itself
// r is the radius of the circle that is used to smooth the edges
double r2 = radius_mm * radius_mm;
double y2 = steps*ystep_mm - i*ystep_mm;
y2 *= y2;
double x = sqrt(r2 - y2);
offset(ob, mm(x));
wh = ceilheight_mm - i*ystep_mm;
Contour3D pwalls;
pwalls = walls(ob, ob_prev, wh, wh_prev);
curvedwalls.merge(pwalls);
ob_prev = ob;
wh_prev = wh;
}
auto w = walls(ob, poly, wh, 0);
pool.merge(w);
pool.merge(curvedwalls);
out = mesh(pool);
// auto concaveh = concave_hull(ground_layer);
// if(concaveh.contour.points.empty()) return;
// concaveh.holes.clear();
// BoundingBox bb(concaveh);
// coord_t w = bb.max.x - bb.min.x;
// coord_t h = bb.max.y - bb.min.y;
// auto wall_thickness = coord_t(std::pow((w+h)*0.1, 0.8));
// const coord_t WALL_THICKNESS = mm(min_wall_thickness_mm) + wall_thickness;
// const coord_t WALL_DISTANCE = coord_t(0.3*WALL_THICKNESS);
// const coord_t HEIGHT = mm(min_wall_height_mm);
// auto outer_base = concaveh;
// offset(outer_base, WALL_THICKNESS+WALL_DISTANCE);
// auto inner_base = outer_base;
// offset(inner_base, -WALL_THICKNESS);
// inner_base.holes.clear(); outer_base.holes.clear();
// ExPolygon top_poly;
// top_poly.contour = outer_base.contour;
// top_poly.holes.emplace_back(inner_base.contour);
// auto& tph = top_poly.holes.back().points;
// std::reverse(tph.begin(), tph.end());
// Contour3D pool;
// auto pwalls = walls(outer_base, inner_base, 0, - min_wall_height_mm);
// pool.merge(pwalls);
//// auto ob = outer_base;
//// auto ob_prev = ob;
//// double wh = 0, wh_prev = h;
//// for(int i = 1; i <= 4; i++) {
//// offset(ob, mm(0.0002));
//// wh = wh_prev - 0.0002;
//// auto poolwalls = walls(ob, ob_prev, wh, wh_prev);
//// pool.merge(poolwalls);
//// ob_prev = ob;
//// wh_prev = wh;
//// }
// auto& poly = ground_layer.front();
// auto floor_poly = poly;
// offset(floor_poly, mm(5));
// Polygons top_triangles, bottom_triangles;
// top_poly.triangulate_p2t(&top_triangles);
// inner_base.triangulate_p2t(&bottom_triangles);
// auto top_plate = convert(top_triangles, 0, false);
// auto bottom_plate = convert(bottom_triangles, -HEIGHT, true);
// auto innerbed = inner_bed(inner_base, HEIGHT/2);
// Polygons floor_plate;
// floor_poly.triangulate_p2t(&floor_plate);
// auto floor_mesh = convert(floor_plate, mm(20), false);
// pool.merge(floor_mesh);
// pool.merge(top_plate);
// pool.merge(bottom_plate);
// pool.merge(innerbed);
// Polygons ceil_plate;
// poly.triangulate_p2t(&ceil_plate);
// auto ceil_mesh = convert(ceil_plate, mm(0), true);
// pool.merge(ceil_mesh);
// auto ob = floor_poly;
// auto ob_prev = ob;
// double wh = 20, wh_prev = wh;
// Contour3D curvedwalls;
// const size_t steps = 6;
// const double radius_mm = 1;
// const double ystep_mm = radius_mm/steps;
// const double ceilheight_mm = 20;
// for(int i = 0; i < 1.5*steps; i++) {
// ob = floor_poly;
// // The offset is given by the equation: x = sqrt(r^2 - y^2)
// // which can be derived from the circle equation. y is the current
// // height for which the offset is calculated and x is the offset itself
// // r is the radius of the circle that is used to smooth the edges
// double r2 = radius_mm * radius_mm;
// double y2 = steps*ystep_mm - i*ystep_mm;
// y2 *= y2;
// double x = sqrt(r2 - y2);
// offset(ob, mm(x));
// wh = ceilheight_mm - i*ystep_mm;
// Contour3D pwalls;
// pwalls = walls(ob, ob_prev, wh, wh_prev);
// curvedwalls.merge(pwalls);
// ob_prev = ob;
// wh_prev = wh;
// }
// auto w = walls(ob, poly, wh, 0);
// pool.merge(w);
// pool.merge(curvedwalls);
// out = mesh(pool);
auto concaveh = concave_hull(ground_layer);
if(concaveh.contour.points.empty()) return;
concaveh.holes.clear();
BoundingBox bb(concaveh);
coord_t w = bb.max.x - bb.min.x;
coord_t h = bb.max.y - bb.min.y;
auto wall_thickness = coord_t(std::pow((w+h)*0.1, 0.8));
const coord_t WALL_THICKNESS = mm(min_wall_thickness_mm) + wall_thickness;
const coord_t WALL_DISTANCE = coord_t(0.3*WALL_THICKNESS);
const coord_t HEIGHT = mm(min_wall_height_mm);
auto outer_base = concaveh;
offset(outer_base, WALL_THICKNESS+WALL_DISTANCE);
auto inner_base = outer_base;
offset(inner_base, -WALL_THICKNESS);
inner_base.holes.clear(); outer_base.holes.clear();
ExPolygon top_poly;
top_poly.contour = outer_base.contour;
top_poly.holes.emplace_back(inner_base.contour);
auto& tph = top_poly.holes.back().points;
std::reverse(tph.begin(), tph.end());
Contour3D pool;
ExPolygon ob = outer_base; double wh = 0;
auto curvedwalls = round_edges(ob,
1, // radius 1 mm
170, // 170 degrees
0, // z position of the input plane
true,
ob, wh);
pool.merge(curvedwalls);
ExPolygon ob_contr = ob;
ob_contr.holes.clear();
auto pwalls = walls(ob_contr, inner_base, wh, -min_wall_height_mm);
pool.merge(pwalls);
Polygons top_triangles, bottom_triangles;
top_poly.triangulate_p2t(&top_triangles);
inner_base.triangulate_p2t(&bottom_triangles);
auto top_plate = convert(top_triangles, 0, false);
auto bottom_plate = convert(bottom_triangles, -HEIGHT, true);
ob = inner_base; wh = 0;
curvedwalls = round_edges(ob,
1, // radius 1 mm
90, // 170 degrees
0, // z position of the input plane
false,
ob, wh);
pool.merge(curvedwalls);
auto innerbed = inner_bed(ob, min_wall_height_mm/2 + wh, wh);
pool.merge(top_plate);
pool.merge(bottom_plate);
pool.merge(innerbed);
out = mesh(pool);
}
}