Refactored perimeter generation code into a new separate class for easier unit testing

This commit is contained in:
Alessandro Ranellucci 2015-01-07 16:04:53 +01:00
parent 6962b8dddd
commit 82ec03fc23
3 changed files with 468 additions and 413 deletions

View file

@ -58,6 +58,7 @@ use Slic3r::GCode::VibrationLimit;
use Slic3r::Geometry qw(PI);
use Slic3r::Geometry::Clipper;
use Slic3r::Layer;
use Slic3r::Layer::PerimeterGenerator;
use Slic3r::Layer::Region;
use Slic3r::Line;
use Slic3r::Model;

View file

@ -0,0 +1,447 @@
package Slic3r::Layer::PerimeterGenerator;
use Moo;
use Slic3r::ExtrusionLoop ':roles';
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(scale unscale chained_path);
use Slic3r::Geometry::Clipper qw(union_ex diff diff_ex intersection_ex offset offset2
offset_ex offset2_ex union_pt intersection_ppl diff_ppl);
use Slic3r::Surface ':types';
has 'slices' => (is => 'ro', required => 1);
has 'lower_slices' => (is => 'ro', required => 0);
has 'layer_height' => (is => 'ro', required => 1);
has 'layer_id' => (is => 'ro', required => 0, default => sub { -1 });
has 'perimeter_flow' => (is => 'ro', required => 1);
has 'ext_perimeter_flow' => (is => 'ro', required => 1);
has 'overhang_flow' => (is => 'ro', required => 1);
has 'solid_infill_flow' => (is => 'ro', required => 1);
has 'config' => (is => 'ro', default => sub { Slic3r::Config::Region->new });
has 'print_config' => (is => 'ro', default => sub { Slic3r::Config::Print->new });
# generated loops will be put here
has 'loops' => (is => 'ro', default => sub { Slic3r::ExtrusionPath::Collection->new });
# generated gap fills will be put here
has 'gap_fill' => (is => 'ro', default => sub { Slic3r::ExtrusionPath::Collection->new });
# generated fill surfaces will be put here
has 'fill_surfaces' => (is => 'ro', default => sub { Slic3r::Surface::Collection->new });
sub process {
my ($self) = @_;
# other perimeters
my $mm3_per_mm = $self->perimeter_flow->mm3_per_mm;
my $pwidth = $self->perimeter_flow->scaled_width;
my $pspacing = $self->perimeter_flow->scaled_spacing;
# external perimeters
my $ext_mm3_per_mm = $self->ext_perimeter_flow->mm3_per_mm;
my $ext_pwidth = $self->ext_perimeter_flow->scaled_width;
my $ext_pspacing = scale($self->ext_perimeter_flow->spacing_to($self->perimeter_flow));
# overhang perimeters
my $mm3_per_mm_overhang = $self->overhang_flow->mm3_per_mm;
# solid infill
my $ispacing = $self->solid_infill_flow->scaled_spacing;
my $gap_area_threshold = $pwidth ** 2;
# Calculate the minimum required spacing between two adjacent traces.
# This should be equal to the nominal flow spacing but we experiment
# with some tolerance in order to avoid triggering medial axis when
# some squishing might work. Loops are still spaced by the entire
# flow spacing; this only applies to collapsing parts.
my $min_spacing = $pspacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
my $ext_min_spacing = $ext_pspacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
my @contours = (); # array of Polygons with ccw orientation
my @holes = (); # array of Polygons with cw orientation
my @thin_walls = (); # array of ExPolygons
# we need to process each island separately because we might have different
# extra perimeters for each one
foreach my $surface (@{$self->slices}) {
# detect how many perimeters must be generated for this island
my $loop_number = $self->config->perimeters + ($surface->extra_perimeters || 0);
my @last = @{$surface->expolygon};
my @gaps = (); # array of ExPolygons
if ($loop_number > 0) {
# we loop one time more than needed in order to find gaps after the last perimeter was applied
for my $i (1 .. ($loop_number+1)) { # outer loop is 1
my @offsets = ();
if ($i == 1) {
# the minimum thickness of a single loop is:
# ext_width/2 + ext_spacing/2 + spacing/2 + width/2
if ($self->config->thin_walls) {
@offsets = @{offset2(
\@last,
-(0.5*$ext_pwidth + 0.5*$ext_min_spacing - 1),
+(0.5*$ext_min_spacing - 1),
)};
} else {
@offsets = @{offset(
\@last,
-0.5*$ext_pwidth,
)};
}
# look for thin walls
if ($self->config->thin_walls) {
my $diff = diff_ex(
\@last,
offset(\@offsets, +0.5*$ext_pwidth),
1, # medial axis requires non-overlapping geometry
);
push @thin_walls, @$diff;
}
} else {
my $distance = ($i == 2) ? $ext_pspacing : $pspacing;
if ($self->config->thin_walls) {
@offsets = @{offset2(
\@last,
-($distance + 0.5*$min_spacing - 1),
+(0.5*$min_spacing - 1),
)};
} else {
@offsets = @{offset(
\@last,
-$distance,
)};
}
# look for gaps
if ($self->config->gap_fill_speed > 0 && $self->config->fill_density > 0) {
# not using safety offset here would "detect" very narrow gaps
# (but still long enough to escape the area threshold) that gap fill
# won't be able to fill but we'd still remove from infill area
my $diff = diff_ex(
offset(\@last, -0.5*$pspacing),
offset(\@offsets, +0.5*$pspacing + 10), # safety offset
);
push @gaps, grep abs($_->area) >= $gap_area_threshold, @$diff;
}
}
last if !@offsets;
last if $i > $loop_number; # we were only looking for gaps this time
# clone polygons because these ExPolygons will go out of scope very soon
@last = @offsets;
foreach my $polygon (@offsets) {
if ($polygon->is_counter_clockwise) {
push @contours, $polygon;
} else {
push @holes, $polygon;
}
}
}
}
# fill gaps
if (@gaps) {
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"gaps.svg",
expolygons => \@gaps,
);
}
# where $pwidth < thickness < 2*$pspacing, infill with width = 1.5*$pwidth
# where 0.5*$pwidth < thickness < $pwidth, infill with width = 0.5*$pwidth
my @gap_sizes = (
[ $pwidth, 2*$pspacing, unscale 1.5*$pwidth ],
[ 0.5*$pwidth, $pwidth, unscale 0.5*$pwidth ],
);
foreach my $gap_size (@gap_sizes) {
my @gap_fill = $self->_fill_gaps(@$gap_size, \@gaps);
$self->gap_fill->append($_) for @gap_fill;
# Make sure we don't infill narrow parts that are already gap-filled
# (we only consider this surface's gaps to reduce the diff() complexity).
# Growing actual extrusions ensures that gaps not filled by medial axis
# are not subtracted from fill surfaces (they might be too short gaps
# that medial axis skips but infill might join with other infill regions
# and use zigzag).
my $w = $gap_size->[2];
my @filled = map {
@{($_->isa('Slic3r::ExtrusionLoop') ? $_->polygon->split_at_first_point : $_->polyline)
->grow(scale $w/2)};
} @gap_fill;
@last = @{diff(\@last, \@filled)};
}
}
# create one more offset to be used as boundary for fill
# we offset by half the perimeter spacing (to get to the actual infill boundary)
# and then we offset back and forth by half the infill spacing to only consider the
# non-collapsing regions
my $min_perimeter_infill_spacing = $ispacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
$self->fill_surfaces->append($_)
for map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), # use a bogus surface type
@{offset2_ex(
[ map @{$_->simplify_p(&Slic3r::SCALED_RESOLUTION)}, @{union_ex(\@last)} ],
-($pspacing/2 + $min_perimeter_infill_spacing/2),
+$min_perimeter_infill_spacing/2,
)};
}
# process thin walls by collapsing slices to single passes
my @thin_wall_polylines = ();
if (@thin_walls) {
# the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
# (actually, something larger than that still may exist due to mitering or other causes)
my $min_width = $pwidth / 4;
@thin_walls = @{offset2_ex([ map @$_, @thin_walls ], -$min_width/2, +$min_width/2)};
# the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
@thin_wall_polylines = map @{$_->medial_axis($pwidth + $pspacing, $min_width)}, @thin_walls;
Slic3r::debugf " %d thin walls detected\n", scalar(@thin_wall_polylines) if $Slic3r::debug;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"medial_axis.svg",
no_arrows => 1,
expolygons => \@thin_walls,
green_polylines => [ map $_->polygon->split_at_first_point, @{$self->perimeters} ],
red_polylines => \@thin_wall_polylines,
);
}
}
# find nesting hierarchies separately for contours and holes
my $contours_pt = union_pt(\@contours);
my $holes_pt = union_pt(\@holes);
# prepare grown lower layer slices for overhang detection
my $lower_slices = Slic3r::ExPolygon::Collection->new;
if ($self->lower_slices && $self->config->overhangs) {
# We consider overhang any part where the entire nozzle diameter is not supported by the
# lower layer, so we take lower slices and offset them by half the nozzle diameter used
# in the current layer
my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $self->config->perimeter_extruder-1);
$lower_slices->append($_)
for @{offset_ex([ map @$_, @{$self->lower_slices} ], scale +$nozzle_diameter/2)};
}
my $lower_slices_p = $lower_slices->polygons;
# prepare a coderef for traversing the PolyTree object
# external contours are root items of $contours_pt
# internal contours are the ones next to external
my $traverse;
$traverse = sub {
my ($polynodes, $depth, $is_contour) = @_;
# convert all polynodes to ExtrusionLoop objects
my $collection = Slic3r::ExtrusionPath::Collection->new; # temporary collection
my @children = ();
foreach my $polynode (@$polynodes) {
my $polygon = ($polynode->{outer} // $polynode->{hole})->clone;
my $role = EXTR_ROLE_PERIMETER;
my $loop_role = EXTRL_ROLE_DEFAULT;
my $root_level = $depth == 0;
my $no_children = !@{ $polynode->{children} };
my $is_external = $is_contour ? $root_level : $no_children;
my $is_internal = $is_contour ? $no_children : $root_level;
if ($is_contour && $is_internal) {
# internal perimeters are root level in case of holes
# and items with no children in case of contours
# Note that we set loop role to ContourInternalPerimeter
# also when loop is both internal and external (i.e.
# there's only one contour loop).
$loop_role = EXTRL_ROLE_CONTOUR_INTERNAL_PERIMETER;
}
if ($is_external) {
# external perimeters are root level in case of contours
# and items with no children in case of holes
$role = EXTR_ROLE_EXTERNAL_PERIMETER;
}
# detect overhanging/bridging perimeters
my @paths = ();
if ($self->config->overhangs && $self->layer_id > 0) {
# get non-overhang paths by intersecting this loop with the grown lower slices
foreach my $polyline (@{ intersection_ppl([ $polygon ], $lower_slices_p) }) {
push @paths, Slic3r::ExtrusionPath->new(
polyline => $polyline,
role => $role,
mm3_per_mm => ($is_external ? $ext_mm3_per_mm : $mm3_per_mm),
width => ($is_external ? $self->ext_perimeter_flow->width : $self->perimeter_flow->width),
height => $self->layer_height,
);
}
# get overhang paths by checking what parts of this loop fall
# outside the grown lower slices (thus where the distance between
# the loop centerline and original lower slices is >= half nozzle diameter
foreach my $polyline (@{ diff_ppl([ $polygon ], $lower_slices_p) }) {
push @paths, Slic3r::ExtrusionPath->new(
polyline => $polyline,
role => EXTR_ROLE_OVERHANG_PERIMETER,
mm3_per_mm => $mm3_per_mm_overhang,
width => $self->overhang_flow->width,
height => $self->layer_height,
);
}
# reapply the nearest point search for starting point
# (clone because the collection gets DESTROY'ed)
# We allow polyline reversal because Clipper may have randomly
# reversed polylines during clipping.
my $collection = Slic3r::ExtrusionPath::Collection->new(@paths); # temporary collection
@paths = map $_->clone, @{$collection->chained_path(0)};
} else {
push @paths, Slic3r::ExtrusionPath->new(
polyline => $polygon->split_at_first_point,
role => $role,
mm3_per_mm => $mm3_per_mm,
width => $self->perimeter_flow->width,
height => $self->layer_height,
);
}
my $loop = Slic3r::ExtrusionLoop->new_from_paths(@paths);
$loop->role($loop_role);
# return ccw contours and cw holes
# GCode.pm will convert all of them to ccw, but it needs to know
# what the holes are in order to compute the correct inwards move
# We do this on the final Loop object instead of the polygon because
# overhang clipping might have reversed its order since Clipper does
# not preserve polyline orientation.
if ($is_contour) {
$loop->make_counter_clockwise;
} else {
$loop->make_clockwise;
}
$collection->append($loop);
# save the children
push @children, $polynode->{children};
}
# if we're handling the top-level contours, add thin walls as candidates too
# in order to include them in the nearest-neighbor search
if ($is_contour && $depth == 0) {
foreach my $polyline (@thin_wall_polylines) {
$collection->append(Slic3r::ExtrusionPath->new(
polyline => $polyline,
role => EXTR_ROLE_EXTERNAL_PERIMETER,
mm3_per_mm => $mm3_per_mm,
width => $self->perimeter_flow->width,
height => $self->layer_height,
));
}
}
# use a nearest neighbor search to order these children
# TODO: supply second argument to chained_path() too?
# (We used to skip this chiained_path() when $is_contour &&
# $depth == 0 because slices are ordered at G_code export
# time, but multiple top-level perimeters might belong to
# the same slice actually, so that was a broken optimization.)
my $sorted_collection = $collection->chained_path_indices(0);
my @orig_indices = @{$sorted_collection->orig_indices};
my @loops = ();
foreach my $loop (@$sorted_collection) {
my $orig_index = shift @orig_indices;
if ($loop->isa('Slic3r::ExtrusionPath')) {
push @loops, $loop->clone;
} else {
# if this is an external contour find all holes belonging to this contour(s)
# and prepend them
if ($is_contour && $depth == 0) {
# $loop is the outermost loop of an island
my @holes = ();
for (my $i = 0; $i <= $#$holes_pt; $i++) {
if ($loop->polygon->contains_point($holes_pt->[$i]{outer}->first_point)) {
push @holes, splice @$holes_pt, $i, 1; # remove from candidates to reduce complexity
$i--;
}
}
# order holes efficiently
@holes = @holes[@{chained_path([ map {($_->{outer} // $_->{hole})->first_point} @holes ])}];
push @loops, reverse map $traverse->([$_], 0, 0), @holes;
}
# traverse children and prepend them to this loop
push @loops, $traverse->($children[$orig_index], $depth+1, $is_contour);
push @loops, $loop->clone;
}
}
return @loops;
};
# order loops from inner to outer (in terms of object slices)
my @loops = $traverse->($contours_pt, 0, 1);
# if brim will be printed, reverse the order of perimeters so that
# we continue inwards after having finished the brim
# TODO: add test for perimeter order
@loops = reverse @loops
if $self->config->external_perimeters_first
|| ($self->layer_id == 0 && $self->print_config->brim_width > 0);
# append perimeters
$self->loops->append($_) for @loops;
}
sub _fill_gaps {
my ($self, $min, $max, $w, $gaps) = @_;
my $this = diff_ex(
offset2([ map @$_, @$gaps ], -$min/2, +$min/2),
offset2([ map @$_, @$gaps ], -$max/2, +$max/2),
1,
);
my @polylines = map @{$_->medial_axis($max, $min/2)}, @$this;
return if !@polylines;
Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @$this, $w
if @$this;
#my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w);
my $flow = Slic3r::Flow->new(
width => $w,
height => $self->layer_height,
nozzle_diameter => $self->solid_infill_flow->nozzle_diameter,
);
my %path_args = (
role => EXTR_ROLE_GAPFILL,
mm3_per_mm => $flow->mm3_per_mm,
width => $flow->width,
height => $self->layer_height,
);
my @entities = ();
foreach my $polyline (@polylines) {
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
# my $loop = Slic3r::ExtrusionLoop->new;
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
# $polylines[$i] = $loop;
if ($polyline->is_valid && $polyline->first_point->coincides_with($polyline->last_point)) {
# since medial_axis() now returns only Polyline objects, detect loops here
push @entities, my $loop = Slic3r::ExtrusionLoop->new;
$loop->append(Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args));
} else {
push @entities, Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args);
}
}
return @entities;
}
1;

View file

@ -2,14 +2,11 @@ package Slic3r::Layer::Region;
use strict;
use warnings;
use List::Util qw(sum first);
use Slic3r::ExtrusionLoop ':roles';
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Flow ':roles';
use Slic3r::Geometry qw(PI A B scale unscale chained_path);
use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex
offset offset_ex offset2 offset2_ex union_pt diff intersection
union diff intersection_ppl diff_ppl);
use Slic3r::Geometry qw(scale);
use Slic3r::Geometry::Clipper qw(diff_ex intersection_ex
);
use Slic3r::Surface ':types';
@ -31,418 +28,28 @@ sub config { return $_[0]->region->config; }
sub make_perimeters {
my ($self, $slices, $fill_surfaces) = @_;
# other perimeters
my $perimeter_flow = $self->flow(FLOW_ROLE_PERIMETER);
my $mm3_per_mm = $perimeter_flow->mm3_per_mm;
my $pwidth = $perimeter_flow->scaled_width;
my $pspacing = $perimeter_flow->scaled_spacing;
# external perimeters
my $ext_perimeter_flow = $self->flow(FLOW_ROLE_EXTERNAL_PERIMETER);
my $ext_mm3_per_mm = $ext_perimeter_flow->mm3_per_mm;
my $ext_pwidth = $ext_perimeter_flow->scaled_width;
my $ext_pspacing = scale($ext_perimeter_flow->spacing_to($perimeter_flow));
# overhang perimeters
my $overhang_flow = $self->region->flow(FLOW_ROLE_PERIMETER, -1, 1, 0, -1, $self->layer->object);
my $mm3_per_mm_overhang = $overhang_flow->mm3_per_mm;
# solid infill
my $solid_infill_flow = $self->flow(FLOW_ROLE_SOLID_INFILL);
my $ispacing = $solid_infill_flow->scaled_spacing;
my $gap_area_threshold = $pwidth ** 2;
# Calculate the minimum required spacing between two adjacent traces.
# This should be equal to the nominal flow spacing but we experiment
# with some tolerance in order to avoid triggering medial axis when
# some squishing might work. Loops are still spaced by the entire
# flow spacing; this only applies to collapsing parts.
my $min_spacing = $pspacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
my $ext_min_spacing = $ext_pspacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
$self->perimeters->clear;
$self->thin_fills->clear;
my @contours = (); # array of Polygons with ccw orientation
my @holes = (); # array of Polygons with cw orientation
my @thin_walls = (); # array of ExPolygons
# we need to process each island separately because we might have different
# extra perimeters for each one
foreach my $surface (@$slices) {
# detect how many perimeters must be generated for this island
my $loop_number = $self->config->perimeters + ($surface->extra_perimeters || 0);
my $generator = Slic3r::Layer::PerimeterGenerator->new(
# input:
config => $self->config,
print_config => $self->layer->print->config,
layer_height => $self->height,
layer_id => $self->layer->id,
slices => $slices,
lower_slices => defined($self->layer->lower_layer) ? $self->layer->lower_layer->slices : undef,
perimeter_flow => $self->flow(FLOW_ROLE_PERIMETER),
ext_perimeter_flow => $self->flow(FLOW_ROLE_EXTERNAL_PERIMETER),
overhang_flow => $self->region->flow(FLOW_ROLE_PERIMETER, -1, 1, 0, -1, $self->layer->object),
solid_infill_flow => $self->flow(FLOW_ROLE_SOLID_INFILL),
my @last = @{$surface->expolygon};
my @gaps = (); # array of ExPolygons
if ($loop_number > 0) {
# we loop one time more than needed in order to find gaps after the last perimeter was applied
for my $i (1 .. ($loop_number+1)) { # outer loop is 1
my @offsets = ();
if ($i == 1) {
# the minimum thickness of a single loop is:
# ext_width/2 + ext_spacing/2 + spacing/2 + width/2
if ($self->config->thin_walls) {
@offsets = @{offset2(
\@last,
-(0.5*$ext_pwidth + 0.5*$ext_min_spacing - 1),
+(0.5*$ext_min_spacing - 1),
)};
} else {
@offsets = @{offset(
\@last,
-0.5*$ext_pwidth,
)};
}
# look for thin walls
if ($self->config->thin_walls) {
my $diff = diff_ex(
\@last,
offset(\@offsets, +0.5*$ext_pwidth),
1, # medial axis requires non-overlapping geometry
);
push @thin_walls, @$diff;
}
} else {
my $distance = ($i == 2) ? $ext_pspacing : $pspacing;
if ($self->config->thin_walls) {
@offsets = @{offset2(
\@last,
-($distance + 0.5*$min_spacing - 1),
+(0.5*$min_spacing - 1),
)};
} else {
@offsets = @{offset(
\@last,
-$distance,
)};
}
# look for gaps
if ($self->region->config->gap_fill_speed > 0 && $self->config->fill_density > 0) {
# not using safety offset here would "detect" very narrow gaps
# (but still long enough to escape the area threshold) that gap fill
# won't be able to fill but we'd still remove from infill area
my $diff = diff_ex(
offset(\@last, -0.5*$pspacing),
offset(\@offsets, +0.5*$pspacing + 10), # safety offset
);
push @gaps, grep abs($_->area) >= $gap_area_threshold, @$diff;
}
}
last if !@offsets;
last if $i > $loop_number; # we were only looking for gaps this time
# clone polygons because these ExPolygons will go out of scope very soon
@last = @offsets;
foreach my $polygon (@offsets) {
if ($polygon->is_counter_clockwise) {
push @contours, $polygon;
} else {
push @holes, $polygon;
}
}
}
}
# fill gaps
if (@gaps) {
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"gaps.svg",
expolygons => \@gaps,
);
}
# where $pwidth < thickness < 2*$pspacing, infill with width = 1.5*$pwidth
# where 0.5*$pwidth < thickness < $pwidth, infill with width = 0.5*$pwidth
my @gap_sizes = (
[ $pwidth, 2*$pspacing, unscale 1.5*$pwidth ],
[ 0.5*$pwidth, $pwidth, unscale 0.5*$pwidth ],
);
foreach my $gap_size (@gap_sizes) {
my @gap_fill = $self->_fill_gaps(@$gap_size, \@gaps);
$self->thin_fills->append($_) for @gap_fill;
# Make sure we don't infill narrow parts that are already gap-filled
# (we only consider this surface's gaps to reduce the diff() complexity).
# Growing actual extrusions ensures that gaps not filled by medial axis
# are not subtracted from fill surfaces (they might be too short gaps
# that medial axis skips but infill might join with other infill regions
# and use zigzag).
my $w = $gap_size->[2];
my @filled = map {
@{($_->isa('Slic3r::ExtrusionLoop') ? $_->polygon->split_at_first_point : $_->polyline)
->grow(scale $w/2)};
} @gap_fill;
@last = @{diff(\@last, \@filled)};
}
}
# create one more offset to be used as boundary for fill
# we offset by half the perimeter spacing (to get to the actual infill boundary)
# and then we offset back and forth by half the infill spacing to only consider the
# non-collapsing regions
my $min_perimeter_infill_spacing = $ispacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
$fill_surfaces->append($_)
for map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), # use a bogus surface type
@{offset2_ex(
[ map @{$_->simplify_p(&Slic3r::SCALED_RESOLUTION)}, @{union_ex(\@last)} ],
-($pspacing/2 + $min_perimeter_infill_spacing/2),
+$min_perimeter_infill_spacing/2,
)};
}
# process thin walls by collapsing slices to single passes
my @thin_wall_polylines = ();
if (@thin_walls) {
# the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
# (actually, something larger than that still may exist due to mitering or other causes)
my $min_width = $pwidth / 4;
@thin_walls = @{offset2_ex([ map @$_, @thin_walls ], -$min_width/2, +$min_width/2)};
# the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
@thin_wall_polylines = map @{$_->medial_axis($pwidth + $pspacing, $min_width)}, @thin_walls;
Slic3r::debugf " %d thin walls detected\n", scalar(@thin_wall_polylines) if $Slic3r::debug;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"medial_axis.svg",
no_arrows => 1,
expolygons => \@thin_walls,
green_polylines => [ map $_->polygon->split_at_first_point, @{$self->perimeters} ],
red_polylines => \@thin_wall_polylines,
);
}
}
# find nesting hierarchies separately for contours and holes
my $contours_pt = union_pt(\@contours);
my $holes_pt = union_pt(\@holes);
# prepare grown lower layer slices for overhang detection
my $lower_slices = Slic3r::ExPolygon::Collection->new;
if ($self->layer->lower_layer && $self->region->config->overhangs) {
# We consider overhang any part where the entire nozzle diameter is not supported by the
# lower layer, so we take lower slices and offset them by half the nozzle diameter used
# in the current layer
my $nozzle_diameter = $self->layer->print->config->get_at('nozzle_diameter', $self->region->config->perimeter_extruder-1);
$lower_slices->append($_)
for @{offset_ex([ map @$_, @{$self->layer->lower_layer->slices} ], scale +$nozzle_diameter/2)};
}
my $lower_slices_p = $lower_slices->polygons;
# prepare a coderef for traversing the PolyTree object
# external contours are root items of $contours_pt
# internal contours are the ones next to external
my $traverse;
$traverse = sub {
my ($polynodes, $depth, $is_contour) = @_;
# convert all polynodes to ExtrusionLoop objects
my $collection = Slic3r::ExtrusionPath::Collection->new; # temporary collection
my @children = ();
foreach my $polynode (@$polynodes) {
my $polygon = ($polynode->{outer} // $polynode->{hole})->clone;
my $role = EXTR_ROLE_PERIMETER;
my $loop_role = EXTRL_ROLE_DEFAULT;
my $root_level = $depth == 0;
my $no_children = !@{ $polynode->{children} };
my $is_external = $is_contour ? $root_level : $no_children;
my $is_internal = $is_contour ? $no_children : $root_level;
if ($is_contour && $is_internal) {
# internal perimeters are root level in case of holes
# and items with no children in case of contours
# Note that we set loop role to ContourInternalPerimeter
# also when loop is both internal and external (i.e.
# there's only one contour loop).
$loop_role = EXTRL_ROLE_CONTOUR_INTERNAL_PERIMETER;
}
if ($is_external) {
# external perimeters are root level in case of contours
# and items with no children in case of holes
$role = EXTR_ROLE_EXTERNAL_PERIMETER;
}
# detect overhanging/bridging perimeters
my @paths = ();
if ($self->region->config->overhangs && $self->layer->id > 0) {
# get non-overhang paths by intersecting this loop with the grown lower slices
foreach my $polyline (@{ intersection_ppl([ $polygon ], $lower_slices_p) }) {
push @paths, Slic3r::ExtrusionPath->new(
polyline => $polyline,
role => $role,
mm3_per_mm => ($is_external ? $ext_mm3_per_mm : $mm3_per_mm),
width => ($is_external ? $ext_perimeter_flow->width : $perimeter_flow->width),
height => $self->height,
);
}
# get overhang paths by checking what parts of this loop fall
# outside the grown lower slices (thus where the distance between
# the loop centerline and original lower slices is >= half nozzle diameter
foreach my $polyline (@{ diff_ppl([ $polygon ], $lower_slices_p) }) {
push @paths, Slic3r::ExtrusionPath->new(
polyline => $polyline,
role => EXTR_ROLE_OVERHANG_PERIMETER,
mm3_per_mm => $mm3_per_mm_overhang,
width => $overhang_flow->width,
height => $self->height,
);
}
# reapply the nearest point search for starting point
# (clone because the collection gets DESTROY'ed)
# We allow polyline reversal because Clipper may have randomly
# reversed polylines during clipping.
my $collection = Slic3r::ExtrusionPath::Collection->new(@paths); # temporary collection
@paths = map $_->clone, @{$collection->chained_path(0)};
} else {
push @paths, Slic3r::ExtrusionPath->new(
polyline => $polygon->split_at_first_point,
role => $role,
mm3_per_mm => $mm3_per_mm,
width => $perimeter_flow->width,
height => $self->height,
);
}
my $loop = Slic3r::ExtrusionLoop->new_from_paths(@paths);
$loop->role($loop_role);
# return ccw contours and cw holes
# GCode.pm will convert all of them to ccw, but it needs to know
# what the holes are in order to compute the correct inwards move
# We do this on the final Loop object instead of the polygon because
# overhang clipping might have reversed its order since Clipper does
# not preserve polyline orientation.
if ($is_contour) {
$loop->make_counter_clockwise;
} else {
$loop->make_clockwise;
}
$collection->append($loop);
# save the children
push @children, $polynode->{children};
}
# if we're handling the top-level contours, add thin walls as candidates too
# in order to include them in the nearest-neighbor search
if ($is_contour && $depth == 0) {
foreach my $polyline (@thin_wall_polylines) {
$collection->append(Slic3r::ExtrusionPath->new(
polyline => $polyline,
role => EXTR_ROLE_EXTERNAL_PERIMETER,
mm3_per_mm => $mm3_per_mm,
width => $perimeter_flow->width,
height => $self->height,
));
}
}
# use a nearest neighbor search to order these children
# TODO: supply second argument to chained_path() too?
# (We used to skip this chiained_path() when $is_contour &&
# $depth == 0 because slices are ordered at G_code export
# time, but multiple top-level perimeters might belong to
# the same slice actually, so that was a broken optimization.)
my $sorted_collection = $collection->chained_path_indices(0);
my @orig_indices = @{$sorted_collection->orig_indices};
my @loops = ();
foreach my $loop (@$sorted_collection) {
my $orig_index = shift @orig_indices;
if ($loop->isa('Slic3r::ExtrusionPath')) {
push @loops, $loop->clone;
} else {
# if this is an external contour find all holes belonging to this contour(s)
# and prepend them
if ($is_contour && $depth == 0) {
# $loop is the outermost loop of an island
my @holes = ();
for (my $i = 0; $i <= $#$holes_pt; $i++) {
if ($loop->polygon->contains_point($holes_pt->[$i]{outer}->first_point)) {
push @holes, splice @$holes_pt, $i, 1; # remove from candidates to reduce complexity
$i--;
}
}
# order holes efficiently
@holes = @holes[@{chained_path([ map {($_->{outer} // $_->{hole})->first_point} @holes ])}];
push @loops, reverse map $traverse->([$_], 0, 0), @holes;
}
# traverse children and prepend them to this loop
push @loops, $traverse->($children[$orig_index], $depth+1, $is_contour);
push @loops, $loop->clone;
}
}
return @loops;
};
# order loops from inner to outer (in terms of object slices)
my @loops = $traverse->($contours_pt, 0, 1);
# if brim will be printed, reverse the order of perimeters so that
# we continue inwards after having finished the brim
# TODO: add test for perimeter order
@loops = reverse @loops
if $self->region->config->external_perimeters_first
|| ($self->layer->id == 0 && $self->print->config->brim_width > 0);
# append perimeters
$self->perimeters->append($_) for @loops;
}
sub _fill_gaps {
my ($self, $min, $max, $w, $gaps) = @_;
my $this = diff_ex(
offset2([ map @$_, @$gaps ], -$min/2, +$min/2),
offset2([ map @$_, @$gaps ], -$max/2, +$max/2),
1,
# output:
loops => $self->perimeters,
gap_fill => $self->thin_fills,
fill_surfaces => $fill_surfaces,
);
my @polylines = map @{$_->medial_axis($max, $min/2)}, @$this;
return if !@polylines;
Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @$this, $w
if @$this;
my $flow = $self->flow(FLOW_ROLE_SOLID_INFILL, 0, $w);
my %path_args = (
role => EXTR_ROLE_GAPFILL,
mm3_per_mm => $flow->mm3_per_mm,
width => $flow->width,
height => $self->height,
);
my @entities = ();
foreach my $polyline (@polylines) {
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
# my $loop = Slic3r::ExtrusionLoop->new;
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
# $polylines[$i] = $loop;
if ($polyline->is_valid && $polyline->first_point->coincides_with($polyline->last_point)) {
# since medial_axis() now returns only Polyline objects, detect loops here
push @entities, my $loop = Slic3r::ExtrusionLoop->new;
$loop->append(Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args));
} else {
push @entities, Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args);
}
}
return @entities;
$generator->process;
}
sub prepare_fill_surfaces {