Partialy prepare surface cut

This commit is contained in:
Filip Sykala 2022-03-16 16:21:04 +01:00
parent 87f22765ba
commit 84bde2163d
3 changed files with 565 additions and 225 deletions

View File

@ -9,10 +9,9 @@
#include "TriangleMesh.hpp" // its_merge #include "TriangleMesh.hpp" // its_merge
#include "Utils.hpp" // next_highest_power_of_2 #include "Utils.hpp" // next_highest_power_of_2
namespace priv { using namespace Slic3r;
namespace CGALProc = CGAL::Polygon_mesh_processing; namespace priv {
namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel; using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using CutMesh = CGAL::Surface_mesh<EpicKernel::Point_3>; using CutMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
@ -23,6 +22,11 @@ using DynamicEdgeProperty = CGAL::dynamic_edge_property_t<bool>;
using SMPM = boost::property_map<priv::CutMesh, DynamicEdgeProperty>::SMPM; using SMPM = boost::property_map<priv::CutMesh, DynamicEdgeProperty>::SMPM;
using EcmType = CGAL::internal::Dynamic<priv::CutMesh, SMPM>; using EcmType = CGAL::internal::Dynamic<priv::CutMesh, SMPM>;
using VI = CGAL::SM_Vertex_index;
using HI = CGAL::SM_Halfedge_index;
using EI = CGAL::SM_Edge_index;
using FI = CGAL::SM_Face_index;
/// <summary> /// <summary>
/// IntersectingElement /// IntersectingElement
/// ///
@ -46,6 +50,12 @@ using EcmType = CGAL::internal::Dynamic<priv::CutMesh, SMPM>;
/// V1,V1' .. projected 2d point to 3d /// V1,V1' .. projected 2d point to 3d
/// V2,V2' .. projected 2d point to 3d /// V2,V2' .. projected 2d point to 3d
/// ///
/// Vertex indexing
/// V1 .. i (vertex_base + 2x index of point in polygon)
/// V1' .. i + 1
/// V2 .. j = i + 2 || 0 (for last i in polygon)
/// V2' .. j + 1
///
/// f1 .. text_face_1 (triangle face made by side of shape contour) /// f1 .. text_face_1 (triangle face made by side of shape contour)
/// f2 .. text_face_2 /// f2 .. text_face_2
/// e1 .. text_edge_1 (edge on side of face made by side of shape contour) /// e1 .. text_edge_1 (edge on side of face made by side of shape contour)
@ -58,10 +68,13 @@ struct IntersectingElement
// There are two vertices (front and rear) created for each contour, // There are two vertices (front and rear) created for each contour,
// thus there are 2x more vertices in text mesh than the number of contour points. // thus there are 2x more vertices in text mesh than the number of contour points.
// a.k.a offset of vertex inside vertices // a.k.a offset of vertex inside vertices
int32_t vertex_base{-1}; uint32_t vertex_base{std::numeric_limits<uint32_t>::max()};
// index of point in Polygon contour // index of point in Polygon contour
int32_t point_index{-1}; uint32_t point_index{std::numeric_limits<uint32_t>::max()};
// store together type, is_first, is_last
unsigned char attr;
// vertex or edge ID, where edge ID is the index of the source point. // vertex or edge ID, where edge ID is the index of the source point.
// There are 4 consecutive indices generated for a single contour edge: // There are 4 consecutive indices generated for a single contour edge:
@ -70,24 +83,26 @@ struct IntersectingElement
// 2nd - 2nd text edge (diagonal) // 2nd - 2nd text edge (diagonal)
// 3th - 2nd text face // 3th - 2nd text face
// Type of intersecting element from extruded shape( 3d ) // Type of intersecting element from extruded shape( 3d )
enum class Type { // NOTE: type must be storable to 3bit -> max value is 7
enum class Type: unsigned char {
edge_1 = 0, edge_1 = 0,
face_1 = 1, face_1 = 1,
edge_2 = 2, edge_2 = 2,
face_2 = 3, face_2 = 3,
undefined = 4 undefined = 4
} type = Type::undefined; };
// order of point in polygon for detect place between first and last point
bool is_first{false};
bool is_last{false};
IntersectingElement &set_type(Type t) IntersectingElement &set_type(Type t)
{ {
type = t; attr = static_cast<unsigned char>(
attr + (int) t - (int) get_type());
return *this; return *this;
} }
void set_is_first(){ attr += 8; }
void set_is_last(){ attr += 16; }
Type get_type() const { return static_cast<Type>(attr % 8);}
bool is_first() const { return 8 <= attr && attr < 16; }
bool is_last() const { return attr >= 16; }
}; };
/// <summary> /// <summary>
@ -98,6 +113,7 @@ struct IntersectingElement
/// <returns>CGAL mesh - half edge mesh</returns> /// <returns>CGAL mesh - half edge mesh</returns>
CutMesh to_cgal(const indexed_triangle_set &its); CutMesh to_cgal(const indexed_triangle_set &its);
using Project = Emboss::IProject;
/// <summary> /// <summary>
/// Covert 2d shape (e.g. Glyph) to CGAL model /// Covert 2d shape (e.g. Glyph) to CGAL model
/// </summary> /// </summary>
@ -106,83 +122,29 @@ CutMesh to_cgal(const indexed_triangle_set &its);
/// <param name="edge_shape_map_name">Name of property map to store conversion from edge to contour</param> /// <param name="edge_shape_map_name">Name of property map to store conversion from edge to contour</param>
/// <param name="face_shape_map_name">Name of property map to store conversion from face to contour</param> /// <param name="face_shape_map_name">Name of property map to store conversion from face to contour</param>
/// <returns>CGAL model of extruded shape</returns> /// <returns>CGAL model of extruded shape</returns>
CutMesh to_cgal(const Slic3r::ExPolygons &shapes, CutMesh to_cgal(const ExPolygons &shapes,
const Slic3r::Emboss::IProject &projection, const Project &projection,
const std::string &edge_shape_map_name, const std::string &edge_shape_map_name,
const std::string &face_shape_map_name); const std::string &face_shape_map_name);
enum class FaceType {
// face inside of the cutted shape
inside,
// face outside of the cutted shape
outside,
// face without constrained edge (In or Out)
not_constrained
};
using FaceTypeMap = CutMesh::Property_map<CutMesh::Face_index, FaceType>;
using VertexShapeMap = CutMesh::Property_map<CutMesh::Vertex_index, IntersectingElement>;
/// <summary>
///
/// </summary>
/// <param name="mesh">Mesh to process</param>
/// <param name="face_type_map">Output map with type of faces</param>
/// <param name="vertex_shape_map">Keep information about source element of Face type</param>
/// <param name="ecm"></param>
/// <param name="project">projection of opoint</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
void set_face_type(const CutMesh &mesh,
FaceTypeMap &face_type_map,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const Slic3r::Emboss::IProject &project,
const CutMesh &shape_mesh);
void flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map);
/// <summary>
/// Debug purpose store of mesh with colored face by face type
/// </summary>
/// <param name="mesh">Input mesh, could add property color</param>
/// <param name="face_type_map">Keep face type</param>
/// <param name="file">File to store</param>
void store(CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string& file)
{
auto color_prop = mesh.property_map<priv::CutMesh::Face_index, CGAL::Color>("f:color");
if (!color_prop.second)
color_prop = mesh.add_property_map<priv::CutMesh::Face_index, CGAL::Color>("f:color");
auto face_colors = color_prop.first;
for (auto fi : mesh.faces()) {
auto &color = face_colors[fi];
switch (face_type_map[fi]) {
case FaceType::inside: color = CGAL::Color{255, 0, 0}; break;
case FaceType::outside: color = CGAL::Color{255, 0, 255}; break;
case FaceType::not_constrained: color = CGAL::Color{0, 255, 0}; break;
}
}
CGAL::IO::write_OFF(file, mesh);
}
using VertexShapeMap = CutMesh::Property_map<VI, const IntersectingElement *>;
/// <summary> /// <summary>
/// Track source of intersection /// Track source of intersection
/// Anotate inner and outer face, not anotated face should be not not constrained /// Help for anotate inner and outer faces
/// </summary> /// </summary>
struct Visitor { struct Visitor {
const CutMesh &object; const CutMesh &object;
const CutMesh &shape; const CutMesh &shape;
// Properties of the shape mesh: // Properties of the shape mesh:
CutMesh::Property_map<CutMesh::Edge_index, IntersectingElement> edge_shape_map; CutMesh::Property_map<EI, IntersectingElement> edge_shape_map;
CutMesh::Property_map<CutMesh::Face_index, IntersectingElement> face_shape_map; CutMesh::Property_map<FI, IntersectingElement> face_shape_map;
// Properties of the object mesh. // Properties of the object mesh.
CutMesh::Property_map<CutMesh::Vertex_index, IntersectingElement> vert_shape_map; VertexShapeMap vert_shape_map;
using GT = boost::graph_traits<CutMesh>;
using halfedge_descriptor = GT::halfedge_descriptor;
// keep source of intersection for each intersection // keep source of intersection for each intersection
// used to copy data into vert_shape_map
std::vector<const IntersectingElement*> intersections; std::vector<const IntersectingElement*> intersections;
/// <summary> /// <summary>
@ -192,7 +154,7 @@ struct Visitor {
/// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f /// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f
/// </summary> /// </summary>
/// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param> /// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param>
/// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by hh_edge: /// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by edge(h_f):
/// 0 for vertex: target(h_e) /// 0 for vertex: target(h_e)
/// 1 for edge: h_e /// 1 for edge: h_e
/// 2 for the interior of face: face(h_e) </param> /// 2 for the interior of face: face(h_e) </param>
@ -212,74 +174,143 @@ struct Visitor {
/// @Vojta: source(h_f) is coplanar with face(made by h_e).</param> /// @Vojta: source(h_f) is coplanar with face(made by h_e).</param>
/// <param name="is_source_coplanar">True if the source of h_e is the intersection point /// <param name="is_source_coplanar">True if the source of h_e is the intersection point
/// @Vojta: target(h_f) is coplanar with face(h_e).</param> /// @Vojta: target(h_f) is coplanar with face(h_e).</param>
void intersection_point_detected(std::size_t i_id, void intersection_point_detected(std::size_t i_id,
int sdim, int sdim,
halfedge_descriptor h_f, HI h_f,
halfedge_descriptor h_e, HI h_e,
const CutMesh &tm_f, const CutMesh &tm_f,
const CutMesh &tm_e, const CutMesh &tm_e,
bool is_target_coplanar, bool is_target_coplanar,
bool is_source_coplanar) bool is_source_coplanar);
{
if (i_id <= intersections.size()) {
intersections.reserve(Slic3r::next_highest_power_of_2(i_id + 1));
intersections.resize(i_id + 1);
}
const IntersectingElement* intersection_ptr = nullptr; /// <summary>
if (&tm_e == &shape) { /// Fill vertex_shape_map by intersections
assert(&tm_f == &object); /// </summary>
switch (sdim) { /// <param name="i_id">Order number of intersection point</param>
case 1: /// <param name="v">New added vertex</param>
// edge x edge intersection /// <param name="tm">Affected mesh</param>
intersection_ptr = &edge_shape_map[shape.edge(h_e)]; void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm);
break;
case 2:
// edge x face intersection
intersection_ptr = &face_shape_map[shape.face(h_e)];
break;
default:
assert(false);
}
if (is_target_coplanar)
vert_shape_map[object.source(h_f)] = *intersection_ptr;
if (is_source_coplanar)
vert_shape_map[object.target(h_f)] = *intersection_ptr;
} else {
assert(&tm_f == &shape && &tm_e == &object);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
if (sdim == 0)
vert_shape_map[object.target(h_e)] = *intersection_ptr;
}
intersections[i_id] = intersection_ptr;
}
using vertex_descriptor = GT::vertex_descriptor; // Not used visitor functions
void new_vertex_added(std::size_t node_id, vertex_descriptor vh, const CutMesh &tm) void before_subface_creations(FI /* f_old */, CutMesh &/* mesh */){}
{ void after_subface_created(FI /* f_new */, CutMesh &/* mesh */) {}
assert(&tm == &object);
assert(node_id < intersections.size());
const IntersectingElement * intersection_ptr = intersections[node_id];
assert(intersection_ptr != nullptr);
assert(intersection_ptr->point_index != -1);
vert_shape_map[vh] = *intersection_ptr; // copy ?!?
}
using face_descriptor = GT::face_descriptor;
void before_subface_creations(face_descriptor /* f_old */, CutMesh &/* mesh */){}
void after_subface_created(face_descriptor /* f_new */, CutMesh &/* mesh */) {}
void after_subface_creations(CutMesh&) {} void after_subface_creations(CutMesh&) {}
void before_subface_created(CutMesh&) {} void before_subface_created(CutMesh&) {}
void before_edge_split(halfedge_descriptor /* h */, CutMesh& /* tm */) {} void before_edge_split(HI /* h */, CutMesh& /* tm */) {}
void edge_split(halfedge_descriptor /* hnew */, CutMesh& /* tm */) {} void edge_split(HI /* hnew */, CutMesh& /* tm */) {}
void after_edge_split() {} void after_edge_split() {}
void add_retriangulation_edge(halfedge_descriptor /* h */, CutMesh& /* tm */) {} void add_retriangulation_edge(HI /* h */, CutMesh& /* tm */) {}
}; };
} // namespace privat
using namespace Slic3r; /// <summary>
/// Flag for faces in CGAL mesh
/// </summary>
enum class FaceType {
// face inside of the cutted shape
inside,
// face outside of the cutted shape
outside,
// face without constrained edge (In or Out)
not_constrained,
// Helper flag that inside was processed
inside_
};
using FaceTypeMap = CutMesh::Property_map<FI, FaceType>;
/// <summary>
/// Face with constrained edge are inside/outside by type of intersection
/// Other set to not_constrained(still it could be inside/outside)
/// </summary>
/// <param name="face_type_map">[Output] property map with type of faces</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="vertex_shape_map">Keep information about source element of Face
/// type</param> <param name="ecm">Dynamic Edge Constrained Map of bool</param>
/// <param name="project">projection of opoint</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
void set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const Project &project,
const CutMesh &shape_mesh);
/// <summary>
/// Change FaceType from not_constrained to inside
/// For neighbor(or neighbor of neighbor of ...) of inside triangles.
/// Process only not_constrained triangles
/// </summary>
/// <param name="mesh">Corefined mesh</param>
/// <param name="face_type_map">In/Out map with faces type</param>
void flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map);
/// <summary>
/// Create surface cuts from mesh model
/// </summary>
/// <param name="mesh">Model</param>
/// <param name="shapes">Cutted shapes</param>
/// <param name="face_type_map">Define Triangle of interest - Edge between
/// inside / outside NOTE: Not const because it need to flag proccessed
/// faces</param> <param name="vert_shape_map">Info about source of vertices
/// in mesh</param> <returns>Created surface cuts</returns>
SurfaceCuts create_surface_cut(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map,
const VertexShapeMap &vert_shape_map);
/// <summary>
/// Collect connected inside faces
/// Collect outline half edges
/// </summary>
/// <param name="process">Queue of face to process - find connected</param>
/// <param name="faces">[Output] collected Face indices from mesh</param>
/// <param name="outlines">[Output] collected Halfedge indices from mesh</param>
/// <param name="face_type_map">Use flag inside / outside
/// NOTE: Modify in function: inside -> inside_</param>
/// <param name="mesh">mesh to process</param>
void collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
FaceTypeMap &face_type_map,
const CutMesh &mesh);
/// <summary>
/// copy triangles from CGAL mesh into index triangle set
/// </summary>
/// <param name="faces">Faces to copy</param>
/// <param name="count_outlines">Count of outlines</param>
/// <param name="mesh">Source CGAL mesh</param>
/// <param name="v2v">[Output] map to convert CGAL vertex to its::vertex</param>
/// <returns>Surface cut (Partialy filled - only index triangle set)</returns>
SurfaceCut create_index_triangle_set(const std::vector<FI> &faces,
size_t count_outlines,
const CutMesh &mesh,
std::map<VI, size_t> &v2v,
const VertexShapeMap &vert_shape_map);
/// <summary>
/// Connect outlines into closed loops
/// </summary>
/// <param name="outlines">Half edges from border of cut - Oriented</param>
/// <param name="mesh">Source CGAL mesh</param>
/// <param name="v2v">Map to convert CGAL vertex to its::vertex</param>
/// <returns>Cuts - outlines of surface</returns>
SurfaceCut::CutType create_cut(const std::vector<HI> &outlines,
const CutMesh &mesh,
const std::map<VI, size_t> &v2v);
/// <summary>
/// Debug purpose store of mesh with colored face by face type
/// </summary>
/// <param name="mesh">Input mesh, could add property color
/// NOTE: Not const because need to [optionaly] append color property map</param>
/// <param name="face_type_map">Keep face type</param>
/// <param name="file">File to store</param>
void store(CutMesh &mesh,
const FaceTypeMap &face_type_map,
const std::string &file);
} // namespace privat
void Slic3r::append(SurfaceCut &sc, SurfaceCut &&sc_add) void Slic3r::append(SurfaceCut &sc, SurfaceCut &&sc_add)
{ {
@ -300,7 +331,7 @@ void Slic3r::append(SurfaceCut &sc, SurfaceCut &&sc_add)
its_merge(sc, std::move(sc_add)); its_merge(sc, std::move(sc_add));
} }
SurfaceCut Slic3r::cut_surface(const indexed_triangle_set &model, SurfaceCuts Slic3r::cut_surface(const indexed_triangle_set &model,
const ExPolygons &shapes, const ExPolygons &shapes,
const Emboss::IProject &projection) const Emboss::IProject &projection)
{ {
@ -310,36 +341,48 @@ SurfaceCut Slic3r::cut_surface(const indexed_triangle_set &model,
std::string face_shape_map_name = "f:IntersectingElement"; std::string face_shape_map_name = "f:IntersectingElement";
priv::CutMesh cgal_shape = priv::to_cgal(shapes, projection, edge_shape_map_name, face_shape_map_name); priv::CutMesh cgal_shape = priv::to_cgal(shapes, projection, edge_shape_map_name, face_shape_map_name);
auto& edge_shape_map = cgal_shape.property_map<priv::CutMesh::Edge_index, priv::IntersectingElement>(edge_shape_map_name).first; auto& edge_shape_map = cgal_shape.property_map<priv::EI, priv::IntersectingElement>(edge_shape_map_name).first;
auto& face_shape_map = cgal_shape.property_map<priv::CutMesh::Face_index, priv::IntersectingElement>(face_shape_map_name).first; auto& face_shape_map = cgal_shape.property_map<priv::FI, priv::IntersectingElement>(face_shape_map_name).first;
std::string vert_shape_map_name = "v:IntersectingElement"; std::string vert_shape_map_name = "v:IntersectingElement";
auto& vert_shape_map = cgal_model.add_property_map<priv::CutMesh::Vertex_index, priv::IntersectingElement>(vert_shape_map_name).first; // pointer to edge or face shape_map
priv::VertexShapeMap vert_shape_map = cgal_model.add_property_map<priv::VI, const priv::IntersectingElement*>(vert_shape_map_name).first;
// create anotation visitor
priv::Visitor visitor{cgal_model, cgal_shape, edge_shape_map, face_shape_map, vert_shape_map}; priv::Visitor visitor{cgal_model, cgal_shape, edge_shape_map, face_shape_map, vert_shape_map};
// bool map for affected edge // bool map for affected edge
priv::EcmType ecm = get(priv::DynamicEdgeProperty(), cgal_model); priv::EcmType ecm = get(priv::DynamicEdgeProperty(), cgal_model);
const auto& p = CGAL::Polygon_mesh_processing::parameters::throw_on_self_intersection(false).visitor(visitor).edge_is_constrained_map(ecm); const auto &p = CGAL::parameters::visitor(visitor)
const auto& q = CGAL::Polygon_mesh_processing::parameters::do_not_modify(true); .edge_is_constrained_map(ecm)
.throw_on_self_intersection(false);
const auto& q = CGAL::parameters::do_not_modify(true);
CGAL::Polygon_mesh_processing::corefine(cgal_model, cgal_shape, p, q); CGAL::Polygon_mesh_processing::corefine(cgal_model, cgal_shape, p, q);
std::string face_type_map_name = "f:side"; std::string face_type_map_name = "f:side";
priv::FaceTypeMap face_type_map = cgal_model.add_property_map<priv::CutMesh::Face_index, priv::FaceType>(face_type_map_name).first; priv::FaceTypeMap face_type_map = cgal_model.add_property_map<priv::FI, priv::FaceType>(face_type_map_name).first;
// Select inside and outside face in model // Select inside and outside face in model
priv::set_face_type(cgal_model, face_type_map, vert_shape_map, ecm, projection, cgal_shape); priv::set_face_type(face_type_map, cgal_model, vert_shape_map, ecm, projection, cgal_shape);
priv::store(cgal_model, face_type_map, "C:/data/temp/constrained.off"); // only debug priv::store(cgal_model, face_type_map, "C:/data/temp/constrained.off"); // only debug
// Seed fill the other faces inside the region. // Seed fill the other faces inside the region.
priv::flood_fill_inner(cgal_model, face_type_map); priv::flood_fill_inner(cgal_model, face_type_map);
priv::store(cgal_model, face_type_map, "C:/data/temp/filled.off"); // only debug priv::store(cgal_model, face_type_map, "C:/data/temp/filled.off"); // only debug
SurfaceCut result; //std::string vertex_source_map_name = "v:shape_source";
// for (const ExPolygon& shape : shapes) //priv::FaceTypeMap vertex_source_map = cgal_model.add_property_map<priv::FI, priv::FaceType>(face_type_map_name).first;
// append(result, cut_surface(model, shape, projection)); //priv::anotate_vertices(cgal_model, shapes, face_type_map)
SurfaceCuts result = priv::create_surface_cut(cgal_model, shapes, face_type_map, vert_shape_map);
for (auto &r : result) {
size_t index = &r - &result.front();
std::string file = "C:/data/temp/cut" + std::to_string(index) + ".obj";
its_write_obj(r, file.c_str());
}
// TODO: Filter surfaceCuts to only the top most.
return result; return result;
} }
@ -359,7 +402,6 @@ priv::CutMesh priv::to_cgal(const indexed_triangle_set &its)
for (const stl_vertex &v : vertices) for (const stl_vertex &v : vertices)
result.add_vertex(CutMesh::Point{v.x(), v.y(), v.z()}); result.add_vertex(CutMesh::Point{v.x(), v.y(), v.z()});
using VI = CutMesh::Vertex_index;
for (const stl_triangle_vertex_indices &f : indices) for (const stl_triangle_vertex_indices &f : indices)
result.add_face(static_cast<VI>(f[0]), result.add_face(static_cast<VI>(f[0]),
static_cast<VI>(f[1]), static_cast<VI>(f[1]),
@ -368,18 +410,18 @@ priv::CutMesh priv::to_cgal(const indexed_triangle_set &its)
return result; return result;
} }
priv::CutMesh priv::to_cgal(const Slic3r::ExPolygons &shapes, priv::CutMesh priv::to_cgal(const ExPolygons &shapes,
const Slic3r::Emboss::IProject &projection, const Project &projection,
const std::string &edge_shape_map_name, const std::string &edge_shape_map_name,
const std::string &face_shape_map_name) const std::string &face_shape_map_name)
{ {
CutMesh result; CutMesh result;
if (shapes.empty()) return result; if (shapes.empty()) return result;
auto edge_shape_map = result.add_property_map<CutMesh::Edge_index, IntersectingElement>(edge_shape_map_name).first; auto edge_shape_map = result.add_property_map<EI, IntersectingElement>(edge_shape_map_name).first;
auto face_shape_map = result.add_property_map<CutMesh::Face_index, IntersectingElement>(face_shape_map_name).first; auto face_shape_map = result.add_property_map<FI, IntersectingElement>(face_shape_map_name).first;
std::vector<CutMesh::Vertex_index> indices; std::vector<VI> indices;
auto insert_contour = [&projection, &indices, &result, auto insert_contour = [&projection, &indices, &result,
&edge_shape_map, &face_shape_map] &edge_shape_map, &face_shape_map]
(const Polygon &polygon) { (const Polygon &polygon) {
@ -391,7 +433,7 @@ priv::CutMesh priv::to_cgal(const Slic3r::ExPolygons &shapes,
CutMesh::Point v_first{p.first.x(), p.first.y(), p.first.z()}; CutMesh::Point v_first{p.first.x(), p.first.y(), p.first.z()};
CutMesh::Point v_second{p.second.x(), p.second.y(), p.second.z()}; CutMesh::Point v_second{p.second.x(), p.second.y(), p.second.z()};
CutMesh::Vertex_index vi = result.add_vertex(v_first); VI vi = result.add_vertex(v_first);
assert(size_t(vi) == (indices.size() + num_vertices_old)); assert(size_t(vi) == (indices.size() + num_vertices_old));
indices.emplace_back(vi); indices.emplace_back(vi);
@ -400,17 +442,15 @@ priv::CutMesh priv::to_cgal(const Slic3r::ExPolygons &shapes,
indices.emplace_back(vi); indices.emplace_back(vi);
} }
auto find_edge = [&result](CutMesh::Face_index fi, auto find_edge = [&result](FI fi, VI from, VI to) {
CutMesh::Vertex_index from, HI hi = result.halfedge(fi);
CutMesh::Vertex_index to) {
CutMesh::Halfedge_index hi = result.halfedge(fi);
for (; result.target(hi) != to; hi = result.next(hi)); for (; result.target(hi) != to; hi = result.next(hi));
assert(result.source(hi) == from); assert(result.source(hi) == from);
assert(result.target(hi) == to); assert(result.target(hi) == to);
return result.edge(hi); return result.edge(hi);
}; };
int32_t contour_index = 0; uint32_t contour_index = 0;
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) { for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
bool is_first = i == 0; bool is_first = i == 0;
bool is_last = (i + 2) >= indices.size(); bool is_last = (i + 2) >= indices.size();
@ -420,7 +460,10 @@ priv::CutMesh priv::to_cgal(const Slic3r::ExPolygons &shapes,
auto ei1 = find_edge(fi1, indices[i], indices[i + 1]); auto ei1 = find_edge(fi1, indices[i], indices[i + 1]);
auto ei2 = find_edge(fi1, indices[i + 1], indices[j]); auto ei2 = find_edge(fi1, indices[i + 1], indices[j]);
auto fi2 = result.add_face(indices[j], indices[i + 1], indices[j + 1]); auto fi2 = result.add_face(indices[j], indices[i + 1], indices[j + 1]);
IntersectingElement element {num_vertices_old, contour_index, IntersectingElement::Type::undefined, is_first, is_last}; uint32_t vertex_base = static_cast<uint32_t>(num_vertices_old);
IntersectingElement element {vertex_base, contour_index, (unsigned char)IntersectingElement::Type::undefined};
if (is_first) element.set_is_first();
if (is_last) element.set_is_last();
edge_shape_map[ei1] = element.set_type(IntersectingElement::Type::edge_1); edge_shape_map[ei1] = element.set_type(IntersectingElement::Type::edge_1);
face_shape_map[fi1] = element.set_type(IntersectingElement::Type::face_1); face_shape_map[fi1] = element.set_type(IntersectingElement::Type::face_1);
edge_shape_map[ei2] = element.set_type(IntersectingElement::Type::edge_2); edge_shape_map[ei2] = element.set_type(IntersectingElement::Type::edge_2);
@ -443,12 +486,12 @@ priv::CutMesh priv::to_cgal(const Slic3r::ExPolygons &shapes,
return result; return result;
} }
void priv::set_face_type(const CutMesh &mesh, void priv::set_face_type(FaceTypeMap &face_type_map,
FaceTypeMap &face_type_map, const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map, const VertexShapeMap &vertex_shape_map,
const EcmType &ecm, const EcmType &ecm,
const Emboss::IProject &project, const Project &project,
const CutMesh &shape_mesh) const CutMesh &shape_mesh)
{ {
size_t count = 0; size_t count = 0;
for (auto& fi : mesh.faces()) { for (auto& fi : mesh.faces()) {
@ -457,17 +500,17 @@ void priv::set_face_type(const CutMesh &mesh,
auto hi = hi_end; auto hi = hi_end;
do { do {
CGAL::SM_Edge_index edge_index = mesh.edge(hi); EI edge_index = mesh.edge(hi);
// is edge new created - constrained? // is edge new created - constrained?
if (get(ecm, edge_index)) { if (get(ecm, edge_index)) {
// This face has a constrained edge. // This face has a constrained edge.
IntersectingElement shape_from = vertex_shape_map[mesh.source(hi)]; const IntersectingElement& shape_from = *vertex_shape_map[mesh.source(hi)];
IntersectingElement shape_to = vertex_shape_map[mesh.target(hi)]; const IntersectingElement& shape_to = *vertex_shape_map[mesh.target(hi)];
assert(shape_from.point_index != -1); assert(shape_from.point_index != std::numeric_limits<uint32_t>::max());
assert(shape_from.type != IntersectingElement::Type::undefined); assert(shape_from.attr != (unsigned char)IntersectingElement::Type::undefined);
assert(shape_to.point_index != -1); assert(shape_to.point_index != std::numeric_limits<uint32_t>::max());
assert(shape_to.type != IntersectingElement::Type::undefined); assert(shape_to.attr != (unsigned char)IntersectingElement::Type::undefined);
// assert mean: There is constrained between two shapes // assert mean: There is constrained between two shapes
// Filip think it can't happens. // Filip think it can't happens.
@ -477,17 +520,19 @@ void priv::set_face_type(const CutMesh &mesh,
bool is_inside = false; bool is_inside = false;
// index into contour // index into contour
int32_t i_from = shape_from.point_index; uint32_t i_from = shape_from.point_index;
int32_t i_to = shape_to.point_index; uint32_t i_to = shape_to.point_index;
if (i_from == i_to && shape_from.type == shape_to.type) { IntersectingElement::Type type_from = shape_from.get_type();
IntersectingElement::Type type_to = shape_to.get_type();
if (i_from == i_to && type_from == type_to) {
// intersecting element must be face // intersecting element must be face
assert(shape_from.type == IntersectingElement::Type::face_1 || assert(type_from == IntersectingElement::Type::face_1 ||
shape_from.type == IntersectingElement::Type::face_2); type_from == IntersectingElement::Type::face_2);
// count of vertices is twice as count of point in the contour // count of vertices is twice as count of point in the contour
int i = i_from * 2; uint32_t i = i_from * 2;
// j is next contour point in vertices // j is next contour point in vertices
int j = shape_from.is_last ? 0 : i + 2; uint32_t j = shape_from.is_last() ? 0 : i + 2;
i += shape_from.vertex_base; i += shape_from.vertex_base;
j += shape_from.vertex_base; j += shape_from.vertex_base;
@ -496,24 +541,26 @@ void priv::set_face_type(const CutMesh &mesh,
// abc is source triangle face // abc is source triangle face
auto abcp = auto abcp =
shape_from.type == IntersectingElement::Type::face_1 ? type_from == IntersectingElement::Type::face_1 ?
CGAL::orientation( CGAL::orientation(
shape_mesh.point(CGAL::SM_Vertex_index(i)), shape_mesh.point(VI(i)),
shape_mesh.point(CGAL::SM_Vertex_index(i + 1)), shape_mesh.point(VI(i + 1)),
shape_mesh.point(CGAL::SM_Vertex_index(j)), p) : shape_mesh.point(VI(j)), p) :
//shape_from.type == IntersectingElement::Type::face_2 // type_from == IntersectingElement::Type::face_2
CGAL::orientation( CGAL::orientation(
shape_mesh.point(CGAL::SM_Vertex_index(j)), shape_mesh.point(VI(j)),
shape_mesh.point(CGAL::SM_Vertex_index(i + 1)), shape_mesh.point(VI(i + 1)),
shape_mesh.point(CGAL::SM_Vertex_index(j + 1)), p); shape_mesh.point(VI(j + 1)), p);
is_inside = abcp == CGAL::POSITIVE; is_inside = abcp == CGAL::POSITIVE;
} else if (i_from < i_to || (i_from == i_to && shape_from.type < shape_to.type)) { } else if (i_from < i_to || (i_from == i_to && type_from < type_to)) {
// TODO: check that it is continous indices of contour // TODO: check that it is continous indices of contour
bool is_last = shape_from.is_first && shape_to.is_last; bool is_last = shape_from.is_first() && shape_to.is_last() &&
shape_to.vertex_base == shape_from.vertex_base;
if (!is_last) is_inside = true; if (!is_last) is_inside = true;
} else { // i_from > i_to || (i_from == i_to && shape_from.type > shape_to.type) } else { // i_from > i_to || (i_from == i_to && shape_from.type > shape_to.type)
// TODO: check that it is continous indices of contour // TODO: check that it is continous indices of contour
bool is_last = shape_to.is_first && shape_from.is_last; bool is_last = shape_to.is_first() && shape_from.is_last() &&
shape_to.vertex_base == shape_from.vertex_base;
if (is_last) is_inside = true; if (is_last) is_inside = true;
} }
@ -544,44 +591,308 @@ void priv::set_face_type(const CutMesh &mesh,
void priv::flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map) void priv::flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map)
{ {
for (Visitor::face_descriptor fi : mesh.faces()) { for (FI fi : mesh.faces()) {
if (face_type_map[fi] != FaceType::not_constrained) continue; if (face_type_map[fi] != FaceType::not_constrained) continue;
// check if neighbor face is inside // check if neighbor(one of three in triangle) has type inside
Visitor::halfedge_descriptor hi = mesh.halfedge(fi);
Visitor::halfedge_descriptor hi_end = hi;
bool has_inside_neighbor = false; bool has_inside_neighbor = false;
std::vector<CutMesh::Face_index> queue; HI hi = mesh.halfedge(fi);
HI hi_end = hi;
// list of other not constrained neighbors
std::queue<FI> queue;
do { do {
Visitor::face_descriptor fi_opposite = mesh.face(mesh.opposite(hi)); FI fi_opposite = mesh.face(mesh.opposite(hi));
FaceType side = face_type_map[fi_opposite]; FaceType side = face_type_map[fi_opposite];
if (side == FaceType::inside) { if (side == FaceType::inside) {
has_inside_neighbor = true; has_inside_neighbor = true;
} else if (side == FaceType::not_constrained) { } else if (side == FaceType::not_constrained) {
queue.emplace_back(fi_opposite); queue.emplace(fi_opposite);
} }
hi = mesh.next(hi); hi = mesh.next(hi);
} while (hi != hi_end); } while (hi != hi_end);
if (!has_inside_neighbor) continue; if (!has_inside_neighbor) continue;
face_type_map[fi] = FaceType::inside; face_type_map[fi] = FaceType::inside;
while (!queue.empty()) { while (!queue.empty()) {
Visitor::face_descriptor fi = queue.back(); FI fi = queue.front();
queue.pop_back(); queue.pop();
// Do not fill twice // Do not fill twice
if (face_type_map[fi] == FaceType::inside) continue; if (face_type_map[fi] == FaceType::inside) continue;
face_type_map[fi] = FaceType::inside; face_type_map[fi] = FaceType::inside;
// check neighbor triangle // check neighbor triangle
Visitor::halfedge_descriptor hi = mesh.halfedge(fi); HI hi = mesh.halfedge(fi);
Visitor::halfedge_descriptor hi_end = hi; HI hi_end = hi;
do { do {
Visitor::face_descriptor fi_opposite = mesh.face(mesh.opposite(hi)); FI fi_opposite = mesh.face(mesh.opposite(hi));
FaceType side = face_type_map[fi_opposite]; FaceType side = face_type_map[fi_opposite];
if (side == FaceType::not_constrained) if (side == FaceType::not_constrained)
queue.emplace_back(fi_opposite); queue.emplace(fi_opposite);
hi = mesh.next(hi); hi = mesh.next(hi);
} while (hi != hi_end); } while (hi != hi_end);
} }
} }
} }
void priv::Visitor::intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar)
{
if (i_id >= intersections.size()) {
size_t capacity = Slic3r::next_highest_power_of_2(i_id + 1);
intersections.reserve(capacity);
intersections.resize(capacity);
}
const IntersectingElement *intersection_ptr = nullptr;
if (&tm_e == &shape) {
assert(&tm_f == &object);
switch (sdim) {
case 1:
// edge x edge intersection
intersection_ptr = &edge_shape_map[shape.edge(h_e)];
break;
case 2:
// edge x face intersection
intersection_ptr = &face_shape_map[shape.face(h_e)];
break;
default: assert(false);
}
if (is_target_coplanar)
vert_shape_map[object.source(h_f)] = intersection_ptr;
if (is_source_coplanar)
vert_shape_map[object.target(h_f)] = intersection_ptr;
} else {
assert(&tm_f == &shape && &tm_e == &object);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
if (sdim == 0) vert_shape_map[object.target(h_e)] = intersection_ptr;
}
intersections[i_id] = intersection_ptr;
}
void priv::Visitor::new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
{
assert(&tm == &object);
assert(i_id < intersections.size());
const IntersectingElement *intersection_ptr = intersections[i_id];
assert(intersection_ptr != nullptr);
assert(intersection_ptr->point_index != std::numeric_limits<uint32_t>::max());
vert_shape_map[v] = intersection_ptr;
}
void priv::collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
FaceTypeMap &face_type_map,
const CutMesh &mesh)
{
while (!process.empty()) {
FI fi_ = process.front();
process.pop();
// Do not process twice
if (face_type_map[fi_] == FaceType::inside_) continue;
assert(face_type_map[fi_] == FaceType::inside);
// flag face as processed
face_type_map[fi_] = FaceType::inside_;
faces.push_back(fi_);
// check neighbor triangle
HI hi = mesh.halfedge(fi_);
HI hi_end = hi;
do {
FI fi_opposite = mesh.face(mesh.opposite(hi));
FaceType side = face_type_map[fi_opposite];
if (side == FaceType::inside) {
process.emplace(fi_opposite);
} else if (side == FaceType::outside) {
// store outlines
outlines.push_back(hi);
}
hi = mesh.next(hi);
} while (hi != hi_end);
}
}
SurfaceCut priv::create_index_triangle_set(const std::vector<FI> &faces,
size_t count_outlines,
const CutMesh &mesh,
std::map<VI, size_t> &v2v,
const VertexShapeMap &vert_shape_map)
{
size_t indices_size = faces.size();
size_t vertices_size = (indices_size * 3 - count_outlines / 2) / 2;
SurfaceCut sc;
sc.indices.reserve(indices_size);
sc.vertices.reserve(vertices_size);
for (FI fi : faces) {
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
Vec3i its_face;
// index into its_face
int its_face_id = 0;
do {
// copy its
VI vi = mesh.source(hi);
auto it = v2v.find(vi);
size_t index = -1;
if (it != v2v.end()) {
index = it->second;
} else {
index = sc.vertices.size();
const auto &p = mesh.point(vi);
sc.vertices.emplace_back(p.x(), p.y(), p.z());
v2v[vi] = index;
}
assert(index != -1);
its_face[its_face_id++] = index;
hi = mesh.next(hi);
} while (hi != hi_end);
sc.indices.emplace_back(std::move(its_face));
}
return sc;
}
SurfaceCut::CutType priv::create_cut(const std::vector<HI> &outlines,
const CutMesh &mesh,
const std::map<VI, size_t> &v2v)
{
SurfaceCut::CutType cut;
using Index = SurfaceCut::Index;
std::vector<std::vector<Index>> unclosed_cut;
for (HI hi : outlines) {
// source vertex (from)
VI vi_s = mesh.source(hi);
assert(v2v.find(vi_s) != v2v.end());
Index vi_from = v2v.at(vi_s);
// target vertex (to)
VI vi_t = mesh.target(hi);
assert(v2v.find(vi_t) != v2v.end());
Index vi_to = v2v.at(vi_t);
std::vector<Index> *cut_move = nullptr;
std::vector<Index> *cut_connect = nullptr;
for (std::vector<Index> &cut : unclosed_cut) {
if (cut.back() != vi_from) continue;
if (cut.front() == vi_to) {
// cut closing
cut_move = &cut;
} else {
cut_connect = &cut;
}
break;
}
if (cut_move != nullptr) {
// index of closed cut
size_t index = cut_move - &unclosed_cut.front();
// move cut to result
cut.emplace_back(std::move(*cut_move));
// remove it from unclosed cut
unclosed_cut.erase(unclosed_cut.begin() + index);
} else if (cut_connect != nullptr) {
// try find tail to connect cut
std::vector<Index> *cut_tail = nullptr;
for (std::vector<Index> &cut : unclosed_cut) {
if (cut.front() != vi_to) continue;
cut_tail = &cut;
break;
}
if (cut_tail != nullptr) {
// index of tail
size_t index = cut_tail - &unclosed_cut.front();
// move to connect vector
cut_connect->insert(cut_connect->end(),
make_move_iterator(cut_tail->begin()),
make_move_iterator(cut_tail->end()));
// remove tail from unclosed cut
unclosed_cut.erase(unclosed_cut.begin() + index);
} else {
cut_connect->push_back(vi_to);
}
} else { // not found
bool create_cut = true;
// try to insert to front of cut
for (std::vector<Index> &cut : unclosed_cut) {
if (cut.front() != vi_to) continue;
cut.insert(cut.begin(), vi_from);
create_cut = false;
break;
}
if (create_cut)
unclosed_cut.emplace_back(std::vector{vi_from, vi_to});
}
}
assert(unclosed_cut.empty());
return cut;
}
SurfaceCuts priv::create_surface_cut(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map,
const VertexShapeMap &vert_shape_map)
{
// faces from one surface cut
std::vector<FI> faces;
faces.reserve(mesh.faces().size());
std::vector<HI> outlines;
std::queue<FI> process;
SurfaceCuts result;
for (FI fi: mesh.faces()) {
if (face_type_map[fi] != FaceType::inside) continue;
faces.clear();
outlines.clear();
assert(process.empty());
// Process queue of faces to separate to surface_cut
process.push(fi);
collect_surface_data(process, faces, outlines, face_type_map, mesh);
// convert vertex index from mesh to index of vertices in result
std::map<VI, size_t> v2v;
SurfaceCut sc = create_index_triangle_set(faces, outlines.size(), mesh, v2v, vert_shape_map);
// connect outlines
sc.cut = create_cut(outlines, mesh, v2v);
// TODO: create vertex2contour map
result.emplace_back(std::move(sc));
}
return result;
}
// only for debug
void priv::store(CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string& file)
{
auto color_prop = mesh.property_map<priv::FI, CGAL::Color>("f:color");
if (!color_prop.second)
color_prop = mesh.add_property_map<priv::FI, CGAL::Color>("f:color");
auto face_colors = color_prop.first;
for (auto fi : mesh.faces()) {
auto &color = face_colors[fi];
switch (face_type_map[fi]) {
case FaceType::inside: color = CGAL::Color{255, 0, 0}; break;
case FaceType::inside_: color = CGAL::Color{150, 0, 0}; break;
case FaceType::outside: color = CGAL::Color{255, 0, 255}; break;
case FaceType::not_constrained: color = CGAL::Color{0, 255, 0}; break;
default: color = CGAL::Color{127, 127, 127};
}
}
CGAL::IO::write_OFF(file, mesh);
}

View File

@ -11,19 +11,48 @@
namespace Slic3r{ namespace Slic3r{
/// <summary>
/// Address of contour point in ExPolygon
/// </summary>
struct ExPolygonPoint
{
// Index of Polygon in ExPolygon
// 0 .. ExPolygon::contour
// N .. ExPolygon::hole[N-1]
size_t poly_id;
// Index of point in Polygon
size_t index;
};
/// <summary>
/// Address of contour point in ExPolygons
/// </summary>
struct ExPolygonsPoint : public ExPolygonPoint
{
// Index of ExPolygon in ExPolygons
size_t expoly_id;
};
/// <summary> /// <summary>
/// Represents cutted surface from object /// Represents cutted surface from object
/// Extend index triangle set by outlines /// Extend index triangle set by outlines
/// </summary> /// </summary>
struct SurfaceCut : public indexed_triangle_set struct SurfaceCut : public indexed_triangle_set
{ {
using Index = unsigned int; // connected cutted surface
// cutted surface
indexed_triangle_set mesh; indexed_triangle_set mesh;
// verticex index(index to mesh vertices)
using Index = unsigned int;
using CutType = std::vector<std::vector<Index>>;
// list of circulated open surface // list of circulated open surface
std::vector<std::vector<Index>> cut; CutType cut;
// conversion map from vertex index to contour point
std::map<Index, ExPolygonsPoint> vertex2contour;
}; };
using SurfaceCuts = std::vector<SurfaceCut>;
/// <summary> /// <summary>
/// Merge two surface cuts together /// Merge two surface cuts together
@ -40,9 +69,9 @@ void append(SurfaceCut &sc, SurfaceCut &&sc_add);
/// <param name="shapes">Multi shapes to cut from model</param> /// <param name="shapes">Multi shapes to cut from model</param>
/// <param name="projection">Define transformation from 2d shape to 3d</param> /// <param name="projection">Define transformation from 2d shape to 3d</param>
/// <returns>Cutted surface from model</returns> /// <returns>Cutted surface from model</returns>
SurfaceCut cut_surface(const indexed_triangle_set &model, SurfaceCuts cut_surface(const indexed_triangle_set &model,
const ExPolygons &shapes, const ExPolygons &shapes,
const Emboss::IProject &projection); const Emboss::IProject &projection);
} // namespace Slic3r } // namespace Slic3r
#endif // slic3r_CutSurface_hpp_ #endif // slic3r_CutSurface_hpp_

View File

@ -241,8 +241,8 @@ TEST_CASE("Cut surface", "[]")
its_translate(cube2, Vec3f(100, -40, 40)); its_translate(cube2, Vec3f(100, -40, 40));
its_merge(object, std::move(cube2)); its_merge(object, std::move(cube2));
auto surface = cut_surface(object, shape, projection); auto surfaces = cut_surface(object, shape, projection);
//its_write_obj(surface, "C:/data/temp/surface_cutted.obj"); CHECK(!surfaces.empty());
} }
#ifndef __APPLE__ #ifndef __APPLE__