Changing the internal representation of Point / Pointf / Point3 / Pointf3 to Eigen Matrix types, first step

This commit is contained in:
bubnikv 2018-08-14 18:33:26 +02:00
parent 077680b806
commit 86da661097
60 changed files with 1228 additions and 1206 deletions

View file

@ -27,14 +27,14 @@ BoundingBox::polygon(Polygon* polygon) const
{
polygon->points.clear();
polygon->points.resize(4);
polygon->points[0].x = this->min.x;
polygon->points[0].y = this->min.y;
polygon->points[1].x = this->max.x;
polygon->points[1].y = this->min.y;
polygon->points[2].x = this->max.x;
polygon->points[2].y = this->max.y;
polygon->points[3].x = this->min.x;
polygon->points[3].y = this->max.y;
polygon->points[0].x() = this->min.x();
polygon->points[0].y() = this->min.y();
polygon->points[1].x() = this->max.x();
polygon->points[1].y() = this->min.y();
polygon->points[2].x() = this->max.x();
polygon->points[2].y() = this->max.y();
polygon->points[3].x() = this->min.x();
polygon->points[3].y() = this->max.y();
}
Polygon
@ -50,8 +50,8 @@ BoundingBox BoundingBox::rotated(double angle) const
BoundingBox out;
out.merge(this->min.rotated(angle));
out.merge(this->max.rotated(angle));
out.merge(Point(this->min.x, this->max.y).rotated(angle));
out.merge(Point(this->max.x, this->min.y).rotated(angle));
out.merge(Point(this->min.x(), this->max.y()).rotated(angle));
out.merge(Point(this->max.x(), this->min.y()).rotated(angle));
return out;
}
@ -60,8 +60,8 @@ BoundingBox BoundingBox::rotated(double angle, const Point &center) const
BoundingBox out;
out.merge(this->min.rotated(angle, center));
out.merge(this->max.rotated(angle, center));
out.merge(Point(this->min.x, this->max.y).rotated(angle, center));
out.merge(Point(this->max.x, this->min.y).rotated(angle, center));
out.merge(Point(this->min.x(), this->max.y()).rotated(angle, center));
out.merge(Point(this->max.x(), this->min.y()).rotated(angle, center));
return out;
}
@ -79,10 +79,10 @@ template <class PointClass> void
BoundingBoxBase<PointClass>::merge(const PointClass &point)
{
if (this->defined) {
this->min.x = std::min(point.x, this->min.x);
this->min.y = std::min(point.y, this->min.y);
this->max.x = std::max(point.x, this->max.x);
this->max.y = std::max(point.y, this->max.y);
this->min.x() = std::min(point.x(), this->min.x());
this->min.y() = std::min(point.y(), this->min.y());
this->max.x() = std::max(point.x(), this->max.x());
this->max.y() = std::max(point.y(), this->max.y());
} else {
this->min = this->max = point;
this->defined = true;
@ -102,13 +102,13 @@ template void BoundingBoxBase<Pointf>::merge(const Pointfs &points);
template <class PointClass> void
BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
{
assert(bb.defined || bb.min.x >= bb.max.x || bb.min.y >= bb.max.y);
assert(bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y());
if (bb.defined) {
if (this->defined) {
this->min.x = std::min(bb.min.x, this->min.x);
this->min.y = std::min(bb.min.y, this->min.y);
this->max.x = std::max(bb.max.x, this->max.x);
this->max.y = std::max(bb.max.y, this->max.y);
this->min.x() = std::min(bb.min.x(), this->min.x());
this->min.y() = std::min(bb.min.y(), this->min.y());
this->max.x() = std::max(bb.max.x(), this->max.x());
this->max.y() = std::max(bb.max.y(), this->max.y());
} else {
this->min = bb.min;
this->max = bb.max;
@ -123,8 +123,8 @@ template <class PointClass> void
BoundingBox3Base<PointClass>::merge(const PointClass &point)
{
if (this->defined) {
this->min.z = std::min(point.z, this->min.z);
this->max.z = std::max(point.z, this->max.z);
this->min.z() = std::min(point.z(), this->min.z());
this->max.z() = std::max(point.z(), this->max.z());
}
BoundingBoxBase<PointClass>::merge(point);
}
@ -140,11 +140,11 @@ template void BoundingBox3Base<Pointf3>::merge(const Pointf3s &points);
template <class PointClass> void
BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
{
assert(bb.defined || bb.min.x >= bb.max.x || bb.min.y >= bb.max.y || bb.min.z >= bb.max.z);
assert(bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y() || bb.min.z() >= bb.max.z());
if (bb.defined) {
if (this->defined) {
this->min.z = std::min(bb.min.z, this->min.z);
this->max.z = std::max(bb.max.z, this->max.z);
this->min.z() = std::min(bb.min.z(), this->min.z());
this->max.z() = std::max(bb.max.z(), this->max.z());
}
BoundingBoxBase<PointClass>::merge(bb);
}
@ -154,7 +154,7 @@ template void BoundingBox3Base<Pointf3>::merge(const BoundingBox3Base<Pointf3> &
template <class PointClass> PointClass
BoundingBoxBase<PointClass>::size() const
{
return PointClass(this->max.x - this->min.x, this->max.y - this->min.y);
return PointClass(this->max.x() - this->min.x(), this->max.y() - this->min.y());
}
template Point BoundingBoxBase<Point>::size() const;
template Pointf BoundingBoxBase<Pointf>::size() const;
@ -162,15 +162,15 @@ template Pointf BoundingBoxBase<Pointf>::size() const;
template <class PointClass> PointClass
BoundingBox3Base<PointClass>::size() const
{
return PointClass(this->max.x - this->min.x, this->max.y - this->min.y, this->max.z - this->min.z);
return PointClass(this->max.x() - this->min.x(), this->max.y() - this->min.y(), this->max.z() - this->min.z());
}
template Pointf3 BoundingBox3Base<Pointf3>::size() const;
template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
{
assert(this->defined);
double x = this->max.x - this->min.x;
double y = this->max.y - this->min.y;
double x = this->max.x() - this->min.x();
double y = this->max.y() - this->min.y();
return 0.5 * sqrt(x*x+y*y);
}
template double BoundingBoxBase<Point>::radius() const;
@ -178,9 +178,9 @@ template double BoundingBoxBase<Pointf>::radius() const;
template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
{
double x = this->max.x - this->min.x;
double y = this->max.y - this->min.y;
double z = this->max.z - this->min.z;
double x = this->max.x() - this->min.x();
double y = this->max.y() - this->min.y();
double z = this->max.z() - this->min.z();
return 0.5 * sqrt(x*x+y*y+z*z);
}
template double BoundingBox3Base<Pointf3>::radius() const;
@ -206,8 +206,8 @@ template <class PointClass> PointClass
BoundingBoxBase<PointClass>::center() const
{
return PointClass(
(this->max.x + this->min.x)/2,
(this->max.y + this->min.y)/2
(this->max.x() + this->min.x())/2,
(this->max.y() + this->min.y())/2
);
}
template Point BoundingBoxBase<Point>::center() const;
@ -217,9 +217,9 @@ template <class PointClass> PointClass
BoundingBox3Base<PointClass>::center() const
{
return PointClass(
(this->max.x + this->min.x)/2,
(this->max.y + this->min.y)/2,
(this->max.z + this->min.z)/2
(this->max.x() + this->min.x())/2,
(this->max.y() + this->min.y())/2,
(this->max.z() + this->min.z())/2
);
}
template Pointf3 BoundingBox3Base<Pointf3>::center() const;
@ -228,7 +228,7 @@ template <class PointClass> coordf_t
BoundingBox3Base<PointClass>::max_size() const
{
PointClass s = size();
return std::max(s.x, std::max(s.y, s.z));
return std::max(s.x(), std::max(s.y(), s.z()));
}
template coordf_t BoundingBox3Base<Pointf3>::max_size() const;
@ -248,8 +248,8 @@ static inline coord_t _align_to_grid(const coord_t coord, const coord_t spacing)
void BoundingBox::align_to_grid(const coord_t cell_size)
{
if (this->defined) {
min.x = _align_to_grid(min.x, cell_size);
min.y = _align_to_grid(min.y, cell_size);
min.x() = _align_to_grid(min.x(), cell_size);
min.y() = _align_to_grid(min.y(), cell_size);
}
}
@ -257,14 +257,14 @@ BoundingBoxf3 BoundingBoxf3::transformed(const std::vector<float>& matrix) const
{
Eigen::Matrix<float, 3, 8> vertices;
vertices(0, 0) = (float)min.x; vertices(1, 0) = (float)min.y; vertices(2, 0) = (float)min.z;
vertices(0, 1) = (float)max.x; vertices(1, 1) = (float)min.y; vertices(2, 1) = (float)min.z;
vertices(0, 2) = (float)max.x; vertices(1, 2) = (float)max.y; vertices(2, 2) = (float)min.z;
vertices(0, 3) = (float)min.x; vertices(1, 3) = (float)max.y; vertices(2, 3) = (float)min.z;
vertices(0, 4) = (float)min.x; vertices(1, 4) = (float)min.y; vertices(2, 4) = (float)max.z;
vertices(0, 5) = (float)max.x; vertices(1, 5) = (float)min.y; vertices(2, 5) = (float)max.z;
vertices(0, 6) = (float)max.x; vertices(1, 6) = (float)max.y; vertices(2, 6) = (float)max.z;
vertices(0, 7) = (float)min.x; vertices(1, 7) = (float)max.y; vertices(2, 7) = (float)max.z;
vertices(0, 0) = (float)min.x(); vertices(1, 0) = (float)min.y(); vertices(2, 0) = (float)min.z();
vertices(0, 1) = (float)max.x(); vertices(1, 1) = (float)min.y(); vertices(2, 1) = (float)min.z();
vertices(0, 2) = (float)max.x(); vertices(1, 2) = (float)max.y(); vertices(2, 2) = (float)min.z();
vertices(0, 3) = (float)min.x(); vertices(1, 3) = (float)max.y(); vertices(2, 3) = (float)min.z();
vertices(0, 4) = (float)min.x(); vertices(1, 4) = (float)min.y(); vertices(2, 4) = (float)max.z();
vertices(0, 5) = (float)max.x(); vertices(1, 5) = (float)min.y(); vertices(2, 5) = (float)max.z();
vertices(0, 6) = (float)max.x(); vertices(1, 6) = (float)max.y(); vertices(2, 6) = (float)max.z();
vertices(0, 7) = (float)min.x(); vertices(1, 7) = (float)max.y(); vertices(2, 7) = (float)max.z();
Eigen::Transform<float, 3, Eigen::Affine> m;
::memcpy((void*)m.data(), (const void*)matrix.data(), 16 * sizeof(float));

View file

@ -22,23 +22,23 @@ public:
BoundingBoxBase() : defined(false) {};
BoundingBoxBase(const PointClass &pmin, const PointClass &pmax) :
min(pmin), max(pmax), defined(pmin.x < pmax.x && pmin.y < pmax.y) {}
min(pmin), max(pmax), defined(pmin.x() < pmax.x() && pmin.y() < pmax.y()) {}
BoundingBoxBase(const std::vector<PointClass>& points)
{
if (points.empty())
CONFESS("Empty point set supplied to BoundingBoxBase constructor");
typename std::vector<PointClass>::const_iterator it = points.begin();
this->min.x = this->max.x = it->x;
this->min.y = this->max.y = it->y;
this->min.x() = this->max.x() = it->x();
this->min.y() = this->max.y() = it->y();
for (++it; it != points.end(); ++it)
{
this->min.x = std::min(it->x, this->min.x);
this->min.y = std::min(it->y, this->min.y);
this->max.x = std::max(it->x, this->max.x);
this->max.y = std::max(it->y, this->max.y);
this->min.x() = std::min(it->x(), this->min.x());
this->min.y() = std::min(it->y(), this->min.y());
this->max.x() = std::max(it->x(), this->max.x());
this->max.y() = std::max(it->y(), this->max.y());
}
this->defined = (this->min.x < this->max.x) && (this->min.y < this->max.y);
this->defined = (this->min.x() < this->max.x()) && (this->min.y() < this->max.y());
}
void merge(const PointClass &point);
void merge(const std::vector<PointClass> &points);
@ -47,16 +47,16 @@ public:
PointClass size() const;
double radius() const;
void translate(coordf_t x, coordf_t y) { assert(this->defined); this->min.translate(x, y); this->max.translate(x, y); }
void translate(const Pointf &pos) { this->translate(pos.x, pos.y); }
void translate(const Pointf &pos) { this->translate(pos.x(), pos.y()); }
void offset(coordf_t delta);
PointClass center() const;
bool contains(const PointClass &point) const {
return point.x >= this->min.x && point.x <= this->max.x
&& point.y >= this->min.y && point.y <= this->max.y;
return point.x() >= this->min.x() && point.x() <= this->max.x()
&& point.y() >= this->min.y() && point.y() <= this->max.y();
}
bool overlap(const BoundingBoxBase<PointClass> &other) const {
return ! (this->max.x < other.min.x || this->min.x > other.max.x ||
this->max.y < other.min.y || this->min.y > other.max.y);
return ! (this->max.x() < other.min.x() || this->min.x() > other.max.x() ||
this->max.y() < other.min.y() || this->min.y() > other.max.y());
}
bool operator==(const BoundingBoxBase<PointClass> &rhs) { return this->min == rhs.min && this->max == rhs.max; }
bool operator!=(const BoundingBoxBase<PointClass> &rhs) { return ! (*this == rhs); }
@ -69,7 +69,7 @@ public:
BoundingBox3Base() : BoundingBoxBase<PointClass>() {};
BoundingBox3Base(const PointClass &pmin, const PointClass &pmax) :
BoundingBoxBase<PointClass>(pmin, pmax)
{ if (pmin.z >= pmax.z) BoundingBoxBase<PointClass>::defined = false; }
{ if (pmin.z() >= pmax.z()) BoundingBoxBase<PointClass>::defined = false; }
BoundingBox3Base(const std::vector<PointClass>& points)
: BoundingBoxBase<PointClass>(points)
{
@ -77,13 +77,13 @@ public:
CONFESS("Empty point set supplied to BoundingBox3Base constructor");
typename std::vector<PointClass>::const_iterator it = points.begin();
this->min.z = this->max.z = it->z;
this->min.z() = this->max.z() = it->z();
for (++it; it != points.end(); ++it)
{
this->min.z = std::min(it->z, this->min.z);
this->max.z = std::max(it->z, this->max.z);
this->min.z() = std::min(it->z(), this->min.z());
this->max.z() = std::max(it->z(), this->max.z());
}
this->defined &= (this->min.z < this->max.z);
this->defined &= (this->min.z() < this->max.z());
}
void merge(const PointClass &point);
void merge(const std::vector<PointClass> &points);
@ -91,13 +91,13 @@ public:
PointClass size() const;
double radius() const;
void translate(coordf_t x, coordf_t y, coordf_t z) { this->min.translate(x, y, z); this->max.translate(x, y, z); }
void translate(const Pointf3 &pos) { this->translate(pos.x, pos.y, pos.z); }
void translate(const Pointf3 &pos) { this->translate(pos.x(), pos.y(), pos.z()); }
void offset(coordf_t delta);
PointClass center() const;
coordf_t max_size() const;
bool contains(const PointClass &point) const {
return BoundingBoxBase<PointClass>::contains(point) && point.z >= this->min.z && point.z <= this->max.z;
return BoundingBoxBase<PointClass>::contains(point) && point.z() >= this->min.z() && point.z() <= this->max.z();
}
bool contains(const BoundingBox3Base<PointClass>& other) const {
@ -105,7 +105,7 @@ public:
}
bool intersects(const BoundingBox3Base<PointClass>& other) const {
return (this->min.x < other.max.x) && (this->max.x > other.min.x) && (this->min.y < other.max.y) && (this->max.y > other.min.y) && (this->min.z < other.max.z) && (this->max.z > other.min.z);
return (this->min.x() < other.max.x()) && (this->max.x() > other.min.x()) && (this->min.y() < other.max.y()) && (this->max.y() > other.min.y()) && (this->min.z() < other.max.z()) && (this->max.z() > other.min.z());
}
};
@ -159,13 +159,13 @@ public:
template<typename VT>
inline bool empty(const BoundingBoxBase<VT> &bb)
{
return ! bb.defined || bb.min.x >= bb.max.x || bb.min.y >= bb.max.y;
return ! bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y();
}
template<typename VT>
inline bool empty(const BoundingBox3Base<VT> &bb)
{
return ! bb.defined || bb.min.x >= bb.max.x || bb.min.y >= bb.max.y || bb.min.z >= bb.max.z;
return ! bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y() || bb.min.z() >= bb.max.z();
}
} // namespace Slic3r

View file

@ -102,16 +102,16 @@ bool BridgeDetector::detect_angle(double bridge_direction_override)
// Get an oriented bounding box around _anchor_regions.
BoundingBox bbox = get_extents_rotated(this->_anchor_regions, - angle);
// Cover the region with line segments.
lines.reserve((bbox.max.y - bbox.min.y + this->spacing) / this->spacing);
lines.reserve((bbox.max.y() - bbox.min.y() + this->spacing) / this->spacing);
double s = sin(angle);
double c = cos(angle);
//FIXME Vojtech: The lines shall be spaced half the line width from the edge, but then
// some of the test cases fail. Need to adjust the test cases then?
// for (coord_t y = bbox.min.y + this->spacing / 2; y <= bbox.max.y; y += this->spacing)
for (coord_t y = bbox.min.y; y <= bbox.max.y; y += this->spacing)
// for (coord_t y = bbox.min.y() + this->spacing / 2; y <= bbox.max.y(); y += this->spacing)
for (coord_t y = bbox.min.y(); y <= bbox.max.y(); y += this->spacing)
lines.push_back(Line(
Point((coord_t)round(c * bbox.min.x - s * y), (coord_t)round(c * y + s * bbox.min.x)),
Point((coord_t)round(c * bbox.max.x - s * y), (coord_t)round(c * y + s * bbox.max.x))));
Point((coord_t)round(c * bbox.min.x() - s * y), (coord_t)round(c * y + s * bbox.min.x())),
Point((coord_t)round(c * bbox.max.x() - s * y), (coord_t)round(c * y + s * bbox.max.x()))));
}
double total_length = 0;

View file

@ -171,7 +171,7 @@ Slic3rMultiPoint_to_ClipperPath(const MultiPoint &input)
{
ClipperLib::Path retval;
for (Points::const_iterator pit = input.points.begin(); pit != input.points.end(); ++pit)
retval.push_back(ClipperLib::IntPoint( (*pit).x, (*pit).y ));
retval.push_back(ClipperLib::IntPoint( (*pit).x(), (*pit).y() ));
return retval;
}
@ -181,7 +181,7 @@ Slic3rMultiPoint_to_ClipperPath_reversed(const Slic3r::MultiPoint &input)
ClipperLib::Path output;
output.reserve(input.points.size());
for (Slic3r::Points::const_reverse_iterator pit = input.points.rbegin(); pit != input.points.rend(); ++pit)
output.push_back(ClipperLib::IntPoint( (*pit).x, (*pit).y ));
output.push_back(ClipperLib::IntPoint( (*pit).x(), (*pit).y() ));
return output;
}

View file

@ -637,9 +637,9 @@ public:
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value.x;
ss << this->value.x();
ss << ",";
ss << this->value.y;
ss << this->value.y();
return ss.str();
}
@ -647,8 +647,8 @@ public:
{
UNUSED(append);
char dummy;
return sscanf(str.data(), " %lf , %lf %c", &this->value.x, &this->value.y, &dummy) == 2 ||
sscanf(str.data(), " %lf x %lf %c", &this->value.x, &this->value.y, &dummy) == 2;
return sscanf(str.data(), " %lf , %lf %c", &this->value.x(), &this->value.y(), &dummy) == 2 ||
sscanf(str.data(), " %lf x %lf %c", &this->value.x(), &this->value.y(), &dummy) == 2;
}
};
@ -671,9 +671,9 @@ public:
std::ostringstream ss;
for (Pointfs::const_iterator it = this->values.begin(); it != this->values.end(); ++it) {
if (it - this->values.begin() != 0) ss << ",";
ss << it->x;
ss << it->x();
ss << "x";
ss << it->y;
ss << it->y();
}
return ss.str();
}
@ -700,9 +700,9 @@ public:
std::istringstream iss(point_str);
std::string coord_str;
if (std::getline(iss, coord_str, 'x')) {
std::istringstream(coord_str) >> point.x;
std::istringstream(coord_str) >> point.x();
if (std::getline(iss, coord_str, 'x')) {
std::istringstream(coord_str) >> point.y;
std::istringstream(coord_str) >> point.y();
}
}
this->values.push_back(point);

View file

@ -117,15 +117,15 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
m_bbox.merge(pts[j]);
}
coord_t eps = 16;
m_bbox.min.x -= eps;
m_bbox.min.y -= eps;
m_bbox.max.x += eps;
m_bbox.max.y += eps;
m_bbox.min.x() -= eps;
m_bbox.min.y() -= eps;
m_bbox.max.x() += eps;
m_bbox.max.y() += eps;
// 2) Initialize the edge grid.
m_resolution = resolution;
m_cols = (m_bbox.max.x - m_bbox.min.x + m_resolution - 1) / m_resolution;
m_rows = (m_bbox.max.y - m_bbox.min.y + m_resolution - 1) / m_resolution;
m_cols = (m_bbox.max.x() - m_bbox.min.x() + m_resolution - 1) / m_resolution;
m_rows = (m_bbox.max.y() - m_bbox.min.y() + m_resolution - 1) / m_resolution;
m_cells.assign(m_rows * m_cols, Cell());
// 3) First round of contour rasterization, count the edges per grid cell.
@ -135,15 +135,15 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
// End points of the line segment.
Slic3r::Point p1(pts[j]);
Slic3r::Point p2 = pts[(j + 1 == pts.size()) ? 0 : j + 1];
p1.x -= m_bbox.min.x;
p1.y -= m_bbox.min.y;
p2.x -= m_bbox.min.x;
p2.y -= m_bbox.min.y;
p1.x() -= m_bbox.min.x();
p1.y() -= m_bbox.min.y();
p2.x() -= m_bbox.min.x();
p2.y() -= m_bbox.min.y();
// Get the cells of the end points.
coord_t ix = p1.x / m_resolution;
coord_t iy = p1.y / m_resolution;
coord_t ixb = p2.x / m_resolution;
coord_t iyb = p2.y / m_resolution;
coord_t ix = p1.x() / m_resolution;
coord_t iy = p1.y() / m_resolution;
coord_t ixb = p2.x() / m_resolution;
coord_t iyb = p2.y() / m_resolution;
assert(ix >= 0 && ix < m_cols);
assert(iy >= 0 && iy < m_rows);
assert(ixb >= 0 && ixb < m_cols);
@ -154,13 +154,13 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
// Both ends fall into the same cell.
continue;
// Raster the centeral part of the line.
coord_t dx = std::abs(p2.x - p1.x);
coord_t dy = std::abs(p2.y - p1.y);
if (p1.x < p2.x) {
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x) * int64_t(dy);
if (p1.y < p2.y) {
coord_t dx = std::abs(p2.x() - p1.x());
coord_t dy = std::abs(p2.y() - p1.y());
if (p1.x() < p2.x()) {
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x()) * int64_t(dy);
if (p1.y() < p2.y()) {
// x positive, y positive
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y) * int64_t(dx);
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
do {
assert(ix <= ixb && iy <= iyb);
if (ex < ey) {
@ -185,7 +185,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
}
else {
// x positive, y non positive
int64_t ey = int64_t(p1.y - iy*m_resolution) * int64_t(dx);
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
do {
assert(ix <= ixb && iy >= iyb);
if (ex <= ey) {
@ -203,10 +203,10 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
}
}
else {
int64_t ex = int64_t(p1.x - ix*m_resolution) * int64_t(dy);
if (p1.y < p2.y) {
int64_t ex = int64_t(p1.x() - ix*m_resolution) * int64_t(dy);
if (p1.y() < p2.y()) {
// x non positive, y positive
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y) * int64_t(dx);
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
do {
assert(ix >= ixb && iy <= iyb);
if (ex < ey) {
@ -225,7 +225,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
}
else {
// x non positive, y non positive
int64_t ey = int64_t(p1.y - iy*m_resolution) * int64_t(dx);
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
do {
assert(ix >= ixb && iy >= iyb);
if (ex < ey) {
@ -279,15 +279,15 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
// End points of the line segment.
Slic3r::Point p1(pts[j]);
Slic3r::Point p2 = pts[(j + 1 == pts.size()) ? 0 : j + 1];
p1.x -= m_bbox.min.x;
p1.y -= m_bbox.min.y;
p2.x -= m_bbox.min.x;
p2.y -= m_bbox.min.y;
p1.x() -= m_bbox.min.x();
p1.y() -= m_bbox.min.y();
p2.x() -= m_bbox.min.x();
p2.y() -= m_bbox.min.y();
// Get the cells of the end points.
coord_t ix = p1.x / m_resolution;
coord_t iy = p1.y / m_resolution;
coord_t ixb = p2.x / m_resolution;
coord_t iyb = p2.y / m_resolution;
coord_t ix = p1.x() / m_resolution;
coord_t iy = p1.y() / m_resolution;
coord_t ixb = p2.x() / m_resolution;
coord_t iyb = p2.y() / m_resolution;
assert(ix >= 0 && ix < m_cols);
assert(iy >= 0 && iy < m_rows);
assert(ixb >= 0 && ixb < m_cols);
@ -298,13 +298,13 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
// Both ends fall into the same cell.
continue;
// Raster the centeral part of the line.
coord_t dx = std::abs(p2.x - p1.x);
coord_t dy = std::abs(p2.y - p1.y);
if (p1.x < p2.x) {
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x) * int64_t(dy);
if (p1.y < p2.y) {
coord_t dx = std::abs(p2.x() - p1.x());
coord_t dy = std::abs(p2.y() - p1.y());
if (p1.x() < p2.x()) {
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x()) * int64_t(dy);
if (p1.y() < p2.y()) {
// x positive, y positive
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y) * int64_t(dx);
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
do {
assert(ix <= ixb && iy <= iyb);
if (ex < ey) {
@ -329,7 +329,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
}
else {
// x positive, y non positive
int64_t ey = int64_t(p1.y - iy*m_resolution) * int64_t(dx);
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
do {
assert(ix <= ixb && iy >= iyb);
if (ex <= ey) {
@ -347,10 +347,10 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
}
}
else {
int64_t ex = int64_t(p1.x - ix*m_resolution) * int64_t(dy);
if (p1.y < p2.y) {
int64_t ex = int64_t(p1.x() - ix*m_resolution) * int64_t(dy);
if (p1.y() < p2.y()) {
// x non positive, y positive
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y) * int64_t(dx);
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
do {
assert(ix >= ixb && iy <= iyb);
if (ex < ey) {
@ -369,7 +369,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
}
else {
// x non positive, y non positive
int64_t ey = int64_t(p1.y - iy*m_resolution) * int64_t(dx);
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
do {
assert(ix >= ixb && iy >= iyb);
if (ex < ey) {
@ -429,15 +429,15 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
Point p1 = p1src;
Point p2 = p2src;
// Discretize the line segment p1, p2.
p1.x -= m_bbox.min.x;
p1.y -= m_bbox.min.y;
p2.x -= m_bbox.min.x;
p2.y -= m_bbox.min.y;
p1.x() -= m_bbox.min.x();
p1.y() -= m_bbox.min.y();
p2.x() -= m_bbox.min.x();
p2.y() -= m_bbox.min.y();
// Get the cells of the end points.
coord_t ix = div_floor(p1.x, m_resolution);
coord_t iy = div_floor(p1.y, m_resolution);
coord_t ixb = div_floor(p2.x, m_resolution);
coord_t iyb = div_floor(p2.y, m_resolution);
coord_t ix = div_floor(p1.x(), m_resolution);
coord_t iy = div_floor(p1.y(), m_resolution);
coord_t ixb = div_floor(p2.x(), m_resolution);
coord_t iyb = div_floor(p2.y(), m_resolution);
// assert(ix >= 0 && ix < m_cols);
// assert(iy >= 0 && iy < m_rows);
// assert(ixb >= 0 && ixb < m_cols);
@ -449,12 +449,12 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
// Both ends fall into the same cell.
continue;
// Raster the centeral part of the line.
coord_t dx = std::abs(p2.x - p1.x);
coord_t dy = std::abs(p2.y - p1.y);
if (p1.x < p2.x) {
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x) * int64_t(dy);
if (p1.y < p2.y) {
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y) * int64_t(dx);
coord_t dx = std::abs(p2.x() - p1.x());
coord_t dy = std::abs(p2.y() - p1.y());
if (p1.x() < p2.x()) {
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x()) * int64_t(dy);
if (p1.y() < p2.y()) {
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
do {
assert(ix <= ixb && iy <= iyb);
if (ex < ey) {
@ -479,7 +479,7 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
} while (ix != ixb || iy != iyb);
}
else {
int64_t ey = int64_t(p1.y - iy*m_resolution) * int64_t(dx);
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
do {
assert(ix <= ixb && iy >= iyb);
if (ex <= ey) {
@ -498,9 +498,9 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
}
}
else {
int64_t ex = int64_t(p1.x - ix*m_resolution) * int64_t(dy);
if (p1.y < p2.y) {
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y) * int64_t(dx);
int64_t ex = int64_t(p1.x() - ix*m_resolution) * int64_t(dy);
if (p1.y() < p2.y()) {
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
do {
assert(ix >= ixb && iy <= iyb);
if (ex < ey) {
@ -519,7 +519,7 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
} while (ix != ixb || iy != iyb);
}
else {
int64_t ey = int64_t(p1.y - iy*m_resolution) * int64_t(dx);
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
do {
assert(ix >= ixb && iy >= iyb);
if (ex < ey) {
@ -556,8 +556,8 @@ bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, con
{
BoundingBox bbox(p1a, p1a);
bbox.merge(p2a);
int64_t va_x = p2a.x - p1a.x;
int64_t va_y = p2a.y - p1a.y;
int64_t va_x = p2a.x() - p1a.x();
int64_t va_y = p2a.y() - p1a.y();
for (size_t i = cell.begin; i != cell.end; ++ i) {
const std::pair<size_t, size_t> &cell_data = m_cell_data[i];
// Contour indexed by the ith line of this cell.
@ -576,21 +576,21 @@ bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, con
if (! bbox.overlap(bbox2))
continue;
// Now intersect the two line segments using exact arithmetics.
int64_t w1_x = p1b.x - p1a.x;
int64_t w1_y = p1b.y - p1a.y;
int64_t w2_x = p2b.x - p1a.x;
int64_t w2_y = p2b.y - p1a.y;
int64_t w1_x = p1b.x() - p1a.x();
int64_t w1_y = p1b.y() - p1a.y();
int64_t w2_x = p2b.x() - p1a.x();
int64_t w2_y = p2b.y() - p1a.y();
int64_t side1 = va_x * w1_y - va_y * w1_x;
int64_t side2 = va_x * w2_y - va_y * w2_x;
if (side1 == side2 && side1 != 0)
// The line segments don't intersect.
continue;
w1_x = p1a.x - p1b.x;
w1_y = p1a.y - p1b.y;
w2_x = p2a.x - p1b.x;
w2_y = p2a.y - p1b.y;
int64_t vb_x = p2b.x - p1b.x;
int64_t vb_y = p2b.y - p1b.y;
w1_x = p1a.x() - p1b.x();
w1_y = p1a.y() - p1b.y();
w2_x = p2a.x() - p1b.x();
w2_y = p2a.y() - p1b.y();
int64_t vb_x = p2b.x() - p1b.x();
int64_t vb_y = p2b.y() - p1b.y();
side1 = vb_x * w1_y - vb_y * w1_x;
side2 = vb_x * w2_y - vb_y * w2_x;
if (side1 == side2 && side1 != 0)
@ -607,13 +607,13 @@ bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, con
bool EdgeGrid::Grid::inside(const Point &pt_src)
{
Point p = pt_src;
p.x -= m_bbox.min.x;
p.y -= m_bbox.min.y;
p.x() -= m_bbox.min.x();
p.y() -= m_bbox.min.y();
// Get the cell of the point.
if (p.x < 0 || p.y < 0)
if (p.x() < 0 || p.y() < 0)
return false;
coord_t ix = p.x / m_resolution;
coord_t iy = p.y / m_resolution;
coord_t ix = p.x() / m_resolution;
coord_t iy = p.y() / m_resolution;
if (ix >= this->m_cols || iy >= this->m_rows)
return false;
@ -634,21 +634,21 @@ bool EdgeGrid::Grid::inside(const Point &pt_src)
idx2 = 0;
const Point &p1 = contour[idx1];
const Point &p2 = contour[idx2];
if (p1.y < p2.y) {
if (p.y < p1.y || p.y > p2.y)
if (p1.y() < p2.y()) {
if (p.y() < p1.y() || p.y() > p2.y())
continue;
//FIXME finish this!
int64_t vx = 0;// pt_src
//FIXME finish this!
int64_t det = 0;
} else if (p1.y != p2.y) {
assert(p1.y > p2.y);
if (p.y < p2.y || p.y > p1.y)
} else if (p1.y() != p2.y()) {
assert(p1.y() > p2.y());
if (p.y() < p2.y() || p.y() > p1.y())
continue;
} else {
assert(p1.y == p2.y);
if (p1.y == p.y) {
if (p.x >= p1.x && p.x <= p2.x)
assert(p1.y() == p2.y());
if (p1.y() == p.y()) {
if (p.x() >= p1.x() && p.x() <= p2.x())
// On the segment.
return true;
// Before or after the segment.
@ -769,7 +769,7 @@ void EdgeGrid::Grid::calculate_sdf()
// Segment vector
const Slic3r::Point v_seg = p1.vector_to(p2);
// l2 of v_seg
const int64_t l2_seg = int64_t(v_seg.x) * int64_t(v_seg.x) + int64_t(v_seg.y) * int64_t(v_seg.y);
const int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y());
// For each corner of this cell and its 1 ring neighbours:
for (int corner_y = -1; corner_y < 3; ++ corner_y) {
coord_t corner_r = r + corner_y;
@ -780,28 +780,28 @@ void EdgeGrid::Grid::calculate_sdf()
if (corner_c < 0 || corner_c >= ncols)
continue;
float &d_min = m_signed_distance_field[corner_r * ncols + corner_c];
Slic3r::Point pt(m_bbox.min.x + corner_c * m_resolution, m_bbox.min.y + corner_r * m_resolution);
Slic3r::Point pt(m_bbox.min.x() + corner_c * m_resolution, m_bbox.min.y() + corner_r * m_resolution);
Slic3r::Point v_pt = p1.vector_to(pt);
// dot(p2-p1, pt-p1)
int64_t t_pt = int64_t(v_seg.x) * int64_t(v_pt.x) + int64_t(v_seg.y) * int64_t(v_pt.y);
int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y());
if (t_pt < 0) {
// Closest to p1.
double dabs = sqrt(int64_t(v_pt.x) * int64_t(v_pt.x) + int64_t(v_pt.y) * int64_t(v_pt.y));
double dabs = sqrt(int64_t(v_pt.x()) * int64_t(v_pt.x()) + int64_t(v_pt.y()) * int64_t(v_pt.y()));
if (dabs < d_min) {
// Previous point.
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
Slic3r::Point v_seg_prev = p0.vector_to(p1);
int64_t t2_pt = int64_t(v_seg_prev.x) * int64_t(v_pt.x) + int64_t(v_seg_prev.y) * int64_t(v_pt.y);
int64_t t2_pt = int64_t(v_seg_prev.x()) * int64_t(v_pt.x()) + int64_t(v_seg_prev.y()) * int64_t(v_pt.y());
if (t2_pt > 0) {
// Inside the wedge between the previous and the next segment.
// Set the signum depending on whether the vertex is convex or reflex.
int64_t det = int64_t(v_seg_prev.x) * int64_t(v_seg.y) - int64_t(v_seg_prev.y) * int64_t(v_seg.x);
int64_t det = int64_t(v_seg_prev.x()) * int64_t(v_seg.y()) - int64_t(v_seg_prev.y()) * int64_t(v_seg.x());
assert(det != 0);
d_min = dabs;
// Fill in an unsigned vector towards the zero iso surface.
float *l = &L[(corner_r * ncols + corner_c) << 1];
l[0] = std::abs(v_pt.x);
l[1] = std::abs(v_pt.y);
l[0] = std::abs(v_pt.x());
l[1] = std::abs(v_pt.y());
#ifdef _DEBUG
double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]);
assert(std::abs(dabs-dabs2) < 1e-4 * std::max(dabs, dabs2));
@ -816,7 +816,7 @@ void EdgeGrid::Grid::calculate_sdf()
} else {
// Closest to the segment.
assert(t_pt >= 0 && t_pt <= l2_seg);
int64_t d_seg = int64_t(v_seg.y) * int64_t(v_pt.x) - int64_t(v_seg.x) * int64_t(v_pt.y);
int64_t d_seg = int64_t(v_seg.y()) * int64_t(v_pt.x()) - int64_t(v_seg.x()) * int64_t(v_pt.y());
double d = double(d_seg) / sqrt(double(l2_seg));
double dabs = std::abs(d);
if (dabs < d_min) {
@ -824,8 +824,8 @@ void EdgeGrid::Grid::calculate_sdf()
// Fill in an unsigned vector towards the zero iso surface.
float *l = &L[(corner_r * ncols + corner_c) << 1];
float linv = float(d_seg) / float(l2_seg);
l[0] = std::abs(float(v_seg.y) * linv);
l[1] = std::abs(float(v_seg.x) * linv);
l[0] = std::abs(float(v_seg.y()) * linv);
l[1] = std::abs(float(v_seg.x()) * linv);
#ifdef _DEBUG
double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]);
assert(std::abs(dabs-dabs2) <= 1e-4 * std::max(dabs, dabs2));
@ -1059,8 +1059,8 @@ void EdgeGrid::Grid::calculate_sdf()
float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const
{
coord_t x = pt.x - m_bbox.min.x;
coord_t y = pt.y - m_bbox.min.y;
coord_t x = pt.x() - m_bbox.min.x();
coord_t y = pt.y() - m_bbox.min.y();
coord_t w = m_resolution * m_cols;
coord_t h = m_resolution * m_rows;
bool clamped = false;
@ -1124,39 +1124,39 @@ float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const
bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment) const {
BoundingBox bbox;
bbox.min = bbox.max = Point(pt.x - m_bbox.min.x, pt.y - m_bbox.min.y);
bbox.min = bbox.max = Point(pt.x() - m_bbox.min.x(), pt.y() - m_bbox.min.y());
bbox.defined = true;
// Upper boundary, round to grid and test validity.
bbox.max.x += search_radius;
bbox.max.y += search_radius;
if (bbox.max.x < 0 || bbox.max.y < 0)
bbox.max.x() += search_radius;
bbox.max.y() += search_radius;
if (bbox.max.x() < 0 || bbox.max.y() < 0)
return false;
bbox.max.x /= m_resolution;
bbox.max.y /= m_resolution;
if (bbox.max.x >= m_cols)
bbox.max.x = m_cols - 1;
if (bbox.max.y >= m_rows)
bbox.max.y = m_rows - 1;
bbox.max.x() /= m_resolution;
bbox.max.y() /= m_resolution;
if (bbox.max.x() >= m_cols)
bbox.max.x() = m_cols - 1;
if (bbox.max.y() >= m_rows)
bbox.max.y() = m_rows - 1;
// Lower boundary, round to grid and test validity.
bbox.min.x -= search_radius;
bbox.min.y -= search_radius;
if (bbox.min.x < 0)
bbox.min.x = 0;
if (bbox.min.y < 0)
bbox.min.y = 0;
bbox.min.x /= m_resolution;
bbox.min.y /= m_resolution;
bbox.min.x() -= search_radius;
bbox.min.y() -= search_radius;
if (bbox.min.x() < 0)
bbox.min.x() = 0;
if (bbox.min.y() < 0)
bbox.min.y() = 0;
bbox.min.x() /= m_resolution;
bbox.min.y() /= m_resolution;
// Is the interval empty?
if (bbox.min.x > bbox.max.x ||
bbox.min.y > bbox.max.y)
if (bbox.min.x() > bbox.max.x() ||
bbox.min.y() > bbox.max.y())
return false;
// Traverse all cells in the bounding box.
float d_min = search_radius;
// Signum of the distance field at pt.
int sign_min = 0;
bool on_segment = false;
for (int r = bbox.min.y; r <= bbox.max.y; ++ r) {
for (int c = bbox.min.x; c <= bbox.max.x; ++ c) {
for (int r = bbox.min.y(); r <= bbox.max.y(); ++ r) {
for (int c = bbox.min.x(); c <= bbox.max.x(); ++ c) {
const Cell &cell = m_cells[r * m_cols + c];
for (size_t i = cell.begin; i < cell.end; ++ i) {
const Slic3r::Points &pts = *m_contours[m_cell_data[i].first];
@ -1167,22 +1167,22 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu
Slic3r::Point v_seg = p1.vector_to(p2);
Slic3r::Point v_pt = p1.vector_to(pt);
// dot(p2-p1, pt-p1)
int64_t t_pt = int64_t(v_seg.x) * int64_t(v_pt.x) + int64_t(v_seg.y) * int64_t(v_pt.y);
int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y());
// l2 of seg
int64_t l2_seg = int64_t(v_seg.x) * int64_t(v_seg.x) + int64_t(v_seg.y) * int64_t(v_seg.y);
int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y());
if (t_pt < 0) {
// Closest to p1.
double dabs = sqrt(int64_t(v_pt.x) * int64_t(v_pt.x) + int64_t(v_pt.y) * int64_t(v_pt.y));
double dabs = sqrt(int64_t(v_pt.x()) * int64_t(v_pt.x()) + int64_t(v_pt.y()) * int64_t(v_pt.y()));
if (dabs < d_min) {
// Previous point.
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
Slic3r::Point v_seg_prev = p0.vector_to(p1);
int64_t t2_pt = int64_t(v_seg_prev.x) * int64_t(v_pt.x) + int64_t(v_seg_prev.y) * int64_t(v_pt.y);
int64_t t2_pt = int64_t(v_seg_prev.x()) * int64_t(v_pt.x()) + int64_t(v_seg_prev.y()) * int64_t(v_pt.y());
if (t2_pt > 0) {
// Inside the wedge between the previous and the next segment.
d_min = dabs;
// Set the signum depending on whether the vertex is convex or reflex.
int64_t det = int64_t(v_seg_prev.x) * int64_t(v_seg.y) - int64_t(v_seg_prev.y) * int64_t(v_seg.x);
int64_t det = int64_t(v_seg_prev.x()) * int64_t(v_seg.y()) - int64_t(v_seg_prev.y()) * int64_t(v_seg.x());
assert(det != 0);
sign_min = (det > 0) ? 1 : -1;
on_segment = false;
@ -1195,7 +1195,7 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu
} else {
// Closest to the segment.
assert(t_pt >= 0 && t_pt <= l2_seg);
int64_t d_seg = int64_t(v_seg.y) * int64_t(v_pt.x) - int64_t(v_seg.x) * int64_t(v_pt.y);
int64_t d_seg = int64_t(v_seg.y()) * int64_t(v_pt.x()) - int64_t(v_seg.x()) * int64_t(v_pt.y());
double d = double(d_seg) / sqrt(double(l2_seg));
double dabs = std::abs(d);
if (dabs < d_min) {
@ -1307,7 +1307,7 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
const Line &line_next = lines[it->second];
const Vector v1 = line_current.vector();
const Vector v2 = line_next.vector();
int64_t cross = int64_t(v1.x) * int64_t(v2.y) - int64_t(v2.x) * int64_t(v1.y);
int64_t cross = int64_t(v1.x()) * int64_t(v2.y()) - int64_t(v2.x()) * int64_t(v1.y());
if (cross > 0) {
// This has to be a convex right angle. There is no better next line.
i_next = it->second;
@ -1328,10 +1328,10 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
Polygon &poly = out[i];
for (size_t j = 0; j < poly.points.size(); ++ j) {
Point &p = poly.points[j];
p.x *= m_resolution;
p.y *= m_resolution;
p.x += m_bbox.min.x;
p.y += m_bbox.min.y;
p.x() *= m_resolution;
p.y() *= m_resolution;
p.x() += m_bbox.min.x();
p.y() += m_bbox.min.y();
}
// Shrink the contour slightly, so if the same contour gets discretized and simplified again, one will get the same result.
// Remove collineaer points.
@ -1341,11 +1341,11 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
size_t j0 = (j == 0) ? poly.points.size() - 1 : j - 1;
size_t j2 = (j + 1 == poly.points.size()) ? 0 : j + 1;
Point v = poly.points[j2] - poly.points[j0];
if (v.x != 0 && v.y != 0) {
if (v.x() != 0 && v.y() != 0) {
// This is a corner point. Copy it to the output contour.
Point p = poly.points[j];
p.y += (v.x < 0) ? - offset : offset;
p.x += (v.y > 0) ? - offset : offset;
p.y() += (v.x() < 0) ? - offset : offset;
p.x() += (v.y() > 0) ? - offset : offset;
pts.push_back(p);
}
}
@ -1357,8 +1357,8 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
#if 0
void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coord_t resolution, const char *path)
{
unsigned int w = (bbox.max.x - bbox.min.x + resolution - 1) / resolution;
unsigned int h = (bbox.max.y - bbox.min.y + resolution - 1) / resolution;
unsigned int w = (bbox.max.x() - bbox.min.x() + resolution - 1) / resolution;
unsigned int h = (bbox.max.y() - bbox.min.y() + resolution - 1) / resolution;
wxImage img(w, h);
unsigned char *data = img.GetData();
memset(data, 0, w * h * 3);
@ -1371,7 +1371,7 @@ void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coo
for (coord_t r = 0; r < h; ++r) {
for (coord_t c = 0; c < w; ++ c) {
unsigned char *pxl = data + (((h - r - 1) * w) + c) * 3;
Point pt(c * resolution + bbox.min.x, r * resolution + bbox.min.y);
Point pt(c * resolution + bbox.min.x(), r * resolution + bbox.min.y());
coordf_t min_dist;
bool on_segment = true;
#if 0
@ -1409,8 +1409,8 @@ void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coo
pxl[2] = 0;
}
float gridx = float(pt.x - grid.bbox().min.x) / float(grid.resolution());
float gridy = float(pt.y - grid.bbox().min.y) / float(grid.resolution());
float gridx = float(pt.x() - grid.bbox().min.x()) / float(grid.resolution());
float gridy = float(pt.y() - grid.bbox().min.y()) / float(grid.resolution());
if (gridx >= -0.4f && gridy >= -0.4f && gridx <= grid.cols() + 0.4f && gridy <= grid.rows() + 0.4f) {
int ix = int(floor(gridx + 0.5f));
int iy = int(floor(gridy + 0.5f));

View file

@ -361,7 +361,7 @@ ExPolygon::get_trapezoids2(Polygons* polygons) const
std::vector<coord_t> xx;
xx.reserve(pp.size());
for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
xx.push_back(p->x);
xx.push_back(p->x());
std::sort(xx.begin(), xx.end());
// find trapezoids by looping from first to next-to-last coordinate
@ -372,14 +372,14 @@ ExPolygon::get_trapezoids2(Polygons* polygons) const
// build rectangle
Polygon poly;
poly.points.resize(4);
poly[0].x = *x;
poly[0].y = bb.min.y;
poly[1].x = next_x;
poly[1].y = bb.min.y;
poly[2].x = next_x;
poly[2].y = bb.max.y;
poly[3].x = *x;
poly[3].y = bb.max.y;
poly[0].x() = *x;
poly[0].y() = bb.min.y();
poly[1].x() = next_x;
poly[1].y() = bb.min.y();
poly[2].x() = next_x;
poly[2].y() = bb.max.y();
poly[3].x() = *x;
poly[3].y() = bb.max.y();
// intersect with this expolygon
// append results to return value
@ -426,9 +426,9 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
p.Init(int(ex->contour.points.size()));
//printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
p[ point-ex->contour.points.begin() ].x = point->x;
p[ point-ex->contour.points.begin() ].y = point->y;
//printf("%ld %ld\n", point->x, point->y);
p[ point-ex->contour.points.begin() ].x = point->x();
p[ point-ex->contour.points.begin() ].y = point->y();
//printf("%ld %ld\n", point->x(), point->y());
}
p.SetHole(false);
input.push_back(p);
@ -440,9 +440,9 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
p.Init(hole->points.size());
//printf(PRINTF_ZU "\n1\n", hole->points.size());
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
p[ point-hole->points.begin() ].x = point->x;
p[ point-hole->points.begin() ].y = point->y;
//printf("%ld %ld\n", point->x, point->y);
p[ point-hole->points.begin() ].x = point->x();
p[ point-hole->points.begin() ].y = point->y();
//printf("%ld %ld\n", point->x(), point->y());
}
p.SetHole(true);
input.push_back(p);
@ -460,8 +460,8 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
Polygon p;
p.points.resize(num_points);
for (long i = 0; i < num_points; ++i) {
p.points[i].x = coord_t((*poly)[i].x);
p.points[i].y = coord_t((*poly)[i].y);
p.points[i].x() = coord_t((*poly)[i].x);
p.points[i].y() = coord_t((*poly)[i].y);
}
polygons->push_back(p);
}
@ -479,7 +479,7 @@ ExPolygon::triangulate_p2t(Polygons* polygons) const
std::vector<p2t::Point*> ContourPoints;
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
// We should delete each p2t::Point object
ContourPoints.push_back(new p2t::Point(point->x, point->y));
ContourPoints.push_back(new p2t::Point(point->x(), point->y()));
}
p2t::CDT cdt(ContourPoints);
@ -488,7 +488,7 @@ ExPolygon::triangulate_p2t(Polygons* polygons) const
std::vector<p2t::Point*> points;
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
// will be destructed in SweepContext::~SweepContext
points.push_back(new p2t::Point(point->x, point->y));
points.push_back(new p2t::Point(point->x(), point->y()));
}
cdt.AddHole(points);
}
@ -506,9 +506,8 @@ ExPolygon::triangulate_p2t(Polygons* polygons) const
polygons->push_back(p);
}
for(std::vector<p2t::Point*>::iterator it = ContourPoints.begin(); it != ContourPoints.end(); ++it) {
delete *it;
}
for (p2t::Point *ptr : ContourPoints)
delete ptr;
}
}

View file

@ -893,24 +893,24 @@ ExtrusionSimulator::~ExtrusionSimulator()
void ExtrusionSimulator::set_image_size(const Point &image_size)
{
// printf("ExtrusionSimulator::set_image_size()\n");
if (this->image_size.x == image_size.x &&
this->image_size.y == image_size.y)
if (this->image_size.x() == image_size.x() &&
this->image_size.y() == image_size.y())
return;
// printf("Setting image size: %d, %d\n", image_size.x, image_size.y);
this->image_size = image_size;
// Allocate the image data in an RGBA format.
// printf("Allocating image data, size %d\n", image_size.x * image_size.y * 4);
pimpl->image_data.assign(image_size.x * image_size.y * 4, 0);
pimpl->image_data.assign(image_size.x() * image_size.y() * 4, 0);
// printf("Allocating image data, allocated\n");
//FIXME fill the image with red vertical lines.
for (size_t r = 0; r < image_size.y; ++ r) {
for (size_t c = 0; c < image_size.x; c += 2) {
for (size_t r = 0; r < image_size.y(); ++ r) {
for (size_t c = 0; c < image_size.x(); c += 2) {
// Color red
pimpl->image_data[r * image_size.x * 4 + c * 4] = 255;
pimpl->image_data[r * image_size.x() * 4 + c * 4] = 255;
// Opacity full
pimpl->image_data[r * image_size.x * 4 + c * 4 + 3] = 255;
pimpl->image_data[r * image_size.x() * 4 + c * 4 + 3] = 255;
}
}
// printf("Allocating image data, set\n");
@ -922,8 +922,8 @@ void ExtrusionSimulator::set_viewport(const BoundingBox &viewport)
if (this->viewport != viewport) {
this->viewport = viewport;
Point sz = viewport.size();
pimpl->accumulator.resize(boost::extents[sz.y][sz.x]);
pimpl->bitmap.resize(boost::extents[sz.y*pimpl->bitmap_oversampled][sz.x*pimpl->bitmap_oversampled]);
pimpl->accumulator.resize(boost::extents[sz.y()][sz.x()]);
pimpl->bitmap.resize(boost::extents[sz.y()*pimpl->bitmap_oversampled][sz.x()*pimpl->bitmap_oversampled]);
// printf("Accumulator size: %d, %d\n", sz.y, sz.x);
}
}
@ -943,8 +943,8 @@ void ExtrusionSimulator::reset_accumulator()
// printf("ExtrusionSimulator::reset_accumulator()\n");
Point sz = viewport.size();
// printf("Reset accumulator, Accumulator size: %d, %d\n", sz.y, sz.x);
memset(&pimpl->accumulator[0][0], 0, sizeof(float) * sz.x * sz.y);
memset(&pimpl->bitmap[0][0], 0, sz.x * sz.y * pimpl->bitmap_oversampled * pimpl->bitmap_oversampled);
memset(&pimpl->accumulator[0][0], 0, sizeof(float) * sz.x() * sz.y());
memset(&pimpl->bitmap[0][0], 0, sz.x() * sz.y() * pimpl->bitmap_oversampled * pimpl->bitmap_oversampled);
pimpl->extrusion_points.clear();
// printf("Reset accumulator, done.\n");
}
@ -955,17 +955,17 @@ void ExtrusionSimulator::extrude_to_accumulator(const ExtrusionPath &path, const
// Convert the path to V2f points, shift and scale them to the viewport.
std::vector<V2f> polyline;
polyline.reserve(path.polyline.points.size());
float scalex = float(viewport.size().x) / float(bbox.size().x);
float scaley = float(viewport.size().y) / float(bbox.size().y);
float scalex = float(viewport.size().x()) / float(bbox.size().x());
float scaley = float(viewport.size().y()) / float(bbox.size().y());
float w = scale_(path.width) * scalex;
float h = scale_(path.height) * scalex;
w = scale_(path.mm3_per_mm / path.height) * scalex;
// printf("scalex: %f, scaley: %f\n", scalex, scaley);
// printf("bbox: %d,%d %d,%d\n", bbox.min.x, bbox.min.y, bbox.max.x, bbox.max.y);
// printf("bbox: %d,%d %d,%d\n", bbox.min.x(), bbox.min.y, bbox.max.x(), bbox.max.y);
for (Points::const_iterator it = path.polyline.points.begin(); it != path.polyline.points.end(); ++ it) {
// printf("point %d,%d\n", it->x+shift.x, it->y+shift.y);
// printf("point %d,%d\n", it->x+shift.x(), it->y+shift.y);
ExtrusionPoint ept;
ept.center = V2f(float(it->x+shift.x-bbox.min.x) * scalex, float(it->y+shift.y-bbox.min.y) * scaley);
ept.center = V2f(float(it->x()+shift.x()-bbox.min.x()) * scalex, float(it->y()+shift.y()-bbox.min.y()) * scaley);
ept.radius = w/2.f;
ept.height = 0.5f;
polyline.push_back(ept.center);
@ -989,9 +989,9 @@ void ExtrusionSimulator::evaluate_accumulator(ExtrusionSimulationType simulation
if (simulationType > ExtrusionSimulationDontSpread) {
// Average the cells of a bitmap into a lower resolution floating point mask.
A2f mask(boost::extents[sz.y][sz.x]);
for (int r = 0; r < sz.y; ++r) {
for (int c = 0; c < sz.x; ++c) {
A2f mask(boost::extents[sz.y()][sz.x()]);
for (int r = 0; r < sz.y(); ++r) {
for (int c = 0; c < sz.x(); ++c) {
float p = 0;
for (int j = 0; j < pimpl->bitmap_oversampled; ++ j) {
for (int i = 0; i < pimpl->bitmap_oversampled; ++ i) {
@ -1009,9 +1009,9 @@ void ExtrusionSimulator::evaluate_accumulator(ExtrusionSimulationType simulation
}
// Color map the accumulator.
for (int r = 0; r < sz.y; ++r) {
unsigned char *ptr = &pimpl->image_data[(image_size.x * (viewport.min.y + r) + viewport.min.x) * 4];
for (int c = 0; c < sz.x; ++c) {
for (int r = 0; r < sz.y(); ++r) {
unsigned char *ptr = &pimpl->image_data[(image_size.x() * (viewport.min.y() + r) + viewport.min.x()) * 4];
for (int c = 0; c < sz.x(); ++c) {
#if 1
float p = pimpl->accumulator[r][c];
#else

View file

@ -54,9 +54,9 @@ static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t b
// components that are outside these limits are set to the limits.
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
{
for (Pointfs::iterator it = pts.begin(); it != pts.end(); ++ it) {
it->x = clamp(minX, maxX, it->x);
it->y = clamp(minY, maxY, it->y);
for (Pointf &pt : pts) {
pt.x() = clamp(minX, maxX, pt.x());
pt.y() = clamp(minY, maxY, pt.y());
}
}
@ -128,7 +128,7 @@ static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t
result.push_back(Polyline());
Polyline &polyline = result.back();
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
polyline.points.push_back(Point(coord_t(it->x * scaleFactor), coord_t(it->y * scaleFactor)));
polyline.points.push_back(Point(coord_t(it->x() * scaleFactor), coord_t(it->y() * scaleFactor)));
}
return result;
}
@ -153,13 +153,13 @@ void Fill3DHoneycomb::_fill_surface_single(
Polylines polylines = makeGrid(
scale_(this->z),
distance,
ceil(bb.size().x / distance) + 1,
ceil(bb.size().y / distance) + 1,
ceil(bb.size().x() / distance) + 1,
ceil(bb.size().y() / distance) + 1,
((this->layer_id/thickness_layers) % 2) + 1);
// move pattern in place
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
it->translate(bb.min.x, bb.min.y);
it->translate(bb.min.x(), bb.min.y());
// clip pattern to boundaries
polylines = intersection_pl(polylines, (Polygons)expolygon);

View file

@ -121,11 +121,11 @@ public:
return aligned;
}
static Point _align_to_grid(Point coord, Point spacing)
{ return Point(_align_to_grid(coord.x, spacing.x), _align_to_grid(coord.y, spacing.y)); }
{ return Point(_align_to_grid(coord.x(), spacing.x()), _align_to_grid(coord.y(), spacing.y())); }
static coord_t _align_to_grid(coord_t coord, coord_t spacing, coord_t base)
{ return base + _align_to_grid(coord - base, spacing); }
static Point _align_to_grid(Point coord, Point spacing, Point base)
{ return Point(_align_to_grid(coord.x, spacing.x, base.x), _align_to_grid(coord.y, spacing.y, base.y)); }
{ return Point(_align_to_grid(coord.x(), spacing.x(), base.x()), _align_to_grid(coord.y(), spacing.y(), base.y())); }
};
} // namespace Slic3r

View file

@ -20,7 +20,7 @@ void FillConcentric::_fill_surface_single(
coord_t distance = coord_t(min_spacing / params.density);
if (params.density > 0.9999f && !params.dont_adjust) {
distance = this->_adjust_solid_spacing(bounding_box.size().x, distance);
distance = this->_adjust_solid_spacing(bounding_box.size().x(), distance);
this->spacing = unscale(distance);
}

View file

@ -34,21 +34,21 @@ static inline Polyline make_wave(
double z_cos, double z_sin, bool vertical)
{
std::vector<Pointf> points = one_period;
double period = points.back().x;
double period = points.back().x();
points.pop_back();
int n = points.size();
do {
points.emplace_back(Pointf(points[points.size()-n].x + period, points[points.size()-n].y));
} while (points.back().x < width);
points.back().x = width;
points.emplace_back(Pointf(points[points.size()-n].x() + period, points[points.size()-n].y()));
} while (points.back().x() < width);
points.back().x() = width;
// and construct the final polyline to return:
Polyline polyline;
for (auto& point : points) {
point.y += offset;
point.y = clamp(0., height, double(point.y));
point.y() += offset;
point.y() = clamp(0., height, double(point.y()));
if (vertical)
std::swap(point.x, point.y);
std::swap(point.x(), point.y());
polyline.points.emplace_back(convert_to<Point>(point * scaleFactor));
}
@ -73,12 +73,12 @@ static std::vector<Pointf> make_one_period(double width, double scaleFactor, dou
auto& tp = points[i]; // this point
auto& rp = points[i+1]; // right point
// calculate distance of the point to the line:
double dist_mm = unscale(scaleFactor * std::abs( (rp.y - lp.y)*tp.x + (lp.x - rp.x)*tp.y + (rp.x*lp.y - rp.y*lp.x) ) / std::hypot((rp.y - lp.y),(lp.x - rp.x)));
double dist_mm = unscale(scaleFactor * std::abs( (rp.y() - lp.y())*tp.x() + (lp.x() - rp.x())*tp.y() + (rp.x()*lp.y() - rp.y()*lp.x()) ) / std::hypot((rp.y() - lp.y()),(lp.x() - rp.x())));
if (dist_mm > tolerance) { // if the difference from straight line is more than this
double x = 0.5f * (points[i-1].x + points[i].x);
double x = 0.5f * (points[i-1].x() + points[i].x());
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
x = 0.5f * (points[i+1].x + points[i].x);
x = 0.5f * (points[i+1].x() + points[i].x());
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
std::sort(points.begin(), points.end()); // we added the points to the end, but need them all in order
--i; // decrement i so we also check the first newly added point
@ -143,12 +143,12 @@ void FillGyroid::_fill_surface_single(
scale_(this->z),
density_adjusted,
this->spacing,
ceil(bb.size().x / distance) + 1.,
ceil(bb.size().y / distance) + 1.);
ceil(bb.size().x() / distance) + 1.,
ceil(bb.size().y() / distance) + 1.);
// move pattern in place
for (Polyline &polyline : polylines)
polyline.translate(bb.min.x, bb.min.y);
polyline.translate(bb.min.x(), bb.min.y());
// clip pattern to boundaries
polylines = intersection_pl(polylines, (Polygons)expolygon);

View file

@ -50,13 +50,13 @@ void FillHoneycomb::_fill_surface_single(
bounding_box.merge(_align_to_grid(bounding_box.min, Point(m.hex_width, m.pattern_height)));
}
coord_t x = bounding_box.min.x;
while (x <= bounding_box.max.x) {
coord_t x = bounding_box.min.x();
while (x <= bounding_box.max.x()) {
Polygon p;
coord_t ax[2] = { x + m.x_offset, x + m.distance - m.x_offset };
for (size_t i = 0; i < 2; ++ i) {
std::reverse(p.points.begin(), p.points.end()); // turn first half upside down
for (coord_t y = bounding_box.min.y; y <= bounding_box.max.y; y += m.y_short + m.hex_side + m.y_short + m.hex_side) {
for (coord_t y = bounding_box.min.y(); y <= bounding_box.max.y(); y += m.y_short + m.hex_side + m.y_short + m.hex_side) {
p.points.push_back(Point(ax[1], y + m.y_offset));
p.points.push_back(Point(ax[0], y + m.y_short - m.y_offset));
p.points.push_back(Point(ax[0], y + m.y_short + m.hex_side + m.y_offset));

View file

@ -24,14 +24,14 @@ void FillPlanePath::_fill_surface_single(
Point shift = this->_centered() ?
bounding_box.center() :
bounding_box.min;
expolygon.translate(-shift.x, -shift.y);
bounding_box.translate(-shift.x, -shift.y);
expolygon.translate(-shift.x(), -shift.y());
bounding_box.translate(-shift.x(), -shift.y());
Pointfs pts = _generate(
coord_t(ceil(coordf_t(bounding_box.min.x) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.min.y) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.x) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.y) / distance_between_lines)));
coord_t(ceil(coordf_t(bounding_box.min.x()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.min.y()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.x()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.y()) / distance_between_lines)));
Polylines polylines;
if (pts.size() >= 2) {
@ -41,8 +41,8 @@ void FillPlanePath::_fill_surface_single(
polyline.points.reserve(pts.size());
for (Pointfs::iterator it = pts.begin(); it != pts.end(); ++ it)
polyline.points.push_back(Point(
coord_t(floor(it->x * distance_between_lines + 0.5)),
coord_t(floor(it->y * distance_between_lines + 0.5))));
coord_t(floor(it->x() * distance_between_lines + 0.5)),
coord_t(floor(it->y() * distance_between_lines + 0.5))));
// intersection(polylines_src, offset((Polygons)expolygon, scale_(0.02)), &polylines);
polylines = intersection_pl(polylines, to_polygons(expolygon));
@ -62,7 +62,7 @@ void FillPlanePath::_fill_surface_single(
// paths must be repositioned and rotated back
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
it->translate(shift.x, shift.y);
it->translate(shift.x(), shift.y());
it->rotate(direction.first);
}
}
@ -162,7 +162,7 @@ Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x,
line.reserve(sz2);
for (size_t i = 0; i < sz2; ++ i) {
Point p = hilbert_n_to_xy(i);
line.push_back(Pointf(p.x + min_x, p.y + min_y));
line.push_back(Pointf(p.x() + min_x, p.y() + min_y));
}
return line;
}

View file

@ -26,7 +26,7 @@ void FillRectilinear::_fill_surface_single(
// define flow spacing according to requested density
if (params.density > 0.9999f && !params.dont_adjust) {
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x(), this->_line_spacing);
this->spacing = unscale(this->_line_spacing);
} else {
// extend bounding box so that our pattern will be aligned with other layers
@ -38,14 +38,14 @@ void FillRectilinear::_fill_surface_single(
}
// generate the basic pattern
coord_t x_max = bounding_box.max.x + SCALED_EPSILON;
coord_t x_max = bounding_box.max.x() + SCALED_EPSILON;
Lines lines;
for (coord_t x = bounding_box.min.x; x <= x_max; x += this->_line_spacing)
lines.push_back(this->_line(lines.size(), x, bounding_box.min.y, bounding_box.max.y));
for (coord_t x = bounding_box.min.x(); x <= x_max; x += this->_line_spacing)
lines.push_back(this->_line(lines.size(), x, bounding_box.min.y(), bounding_box.max.y()));
if (this->_horizontal_lines()) {
coord_t y_max = bounding_box.max.y + SCALED_EPSILON;
for (coord_t y = bounding_box.min.y; y <= y_max; y += this->_line_spacing)
lines.push_back(Line(Point(bounding_box.min.x, y), Point(bounding_box.max.x, y)));
coord_t y_max = bounding_box.max.y() + SCALED_EPSILON;
for (coord_t y = bounding_box.min.y(); y <= y_max; y += this->_line_spacing)
lines.push_back(Line(Point(bounding_box.min.x(), y), Point(bounding_box.max.x(), y)));
}
// clip paths against a slightly larger expolygon, so that the first and last paths
@ -72,10 +72,10 @@ void FillRectilinear::_fill_surface_single(
for (Polylines::iterator it_polyline = polylines.begin(); it_polyline != polylines.end(); ++ it_polyline) {
Point *first_point = &it_polyline->points.front();
Point *last_point = &it_polyline->points.back();
if (first_point->y > last_point->y)
if (first_point->y() > last_point->y())
std::swap(first_point, last_point);
first_point->y -= extra;
last_point->y += extra;
first_point->y() -= extra;
last_point->y() += extra;
}
size_t n_polylines_out_old = polylines_out.size();
@ -106,7 +106,7 @@ void FillRectilinear::_fill_surface_single(
const Vector distance = first_point.vector_to(last_point);
// TODO: we should also check that both points are on a fill_boundary to avoid
// connecting paths on the boundaries of internal regions
if (this->_can_connect(std::abs(distance.x), std::abs(distance.y)) &&
if (this->_can_connect(std::abs(distance.x()), std::abs(distance.y())) &&
expolygon_off.contains(Line(last_point, first_point))) {
// Append the polyline.
pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end());
@ -122,7 +122,7 @@ void FillRectilinear::_fill_surface_single(
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_old; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- direction.second.x, - direction.second.y);
// it->translate(- direction.second.x(), - direction.second.y());
it->rotate(direction.first);
}
}

View file

@ -42,12 +42,12 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po
Point px = (i == 0) ? p1 : p2;
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
Point pb = poly.points[seg];
if (pa.x > pb.x)
std::swap(pa.x, pb.x);
if (pa.y > pb.y)
std::swap(pa.y, pb.y);
assert(px.x >= pa.x && px.x <= pb.x);
assert(px.y >= pa.y && px.y <= pb.y);
if (pa.x() > pb.x())
std::swap(pa.x(), pb.x());
if (pa.y() > pb.y())
std::swap(pa.y(), pb.y());
assert(px.x() >= pa.x() && px.x() <= pb.x());
assert(px.y() >= pa.y() && px.y() <= pb.y());
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
@ -791,7 +791,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
// define flow spacing according to requested density
if (params.full_infill() && !params.dont_adjust) {
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing);
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x(), line_spacing);
this->spacing = unscale(line_spacing);
} else {
// extend bounding box so that our pattern will be aligned with other layers
@ -799,7 +799,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
// _align_to_grid will not work correctly with positive pattern_shift.
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
refpt.x -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
refpt.x() -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
bounding_box.merge(_align_to_grid(
bounding_box.min,
Point(line_spacing, line_spacing),
@ -808,8 +808,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
// Intersect a set of euqally spaced vertical lines wiht expolygon.
// n_vlines = ceil(bbox_width / line_spacing)
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min.x;
size_t n_vlines = (bounding_box.max.x() - bounding_box.min.x() + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min.x();
if (params.full_infill())
x0 += (line_spacing + SCALED_EPSILON) / 2;
@ -842,8 +842,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
const Point &p1 = contour[iPrev];
const Point &p2 = contour[iSegment];
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = p1.x;
coord_t r = p2.x;
coord_t l = p1.x();
coord_t r = p2.x();
if (l > r)
std::swap(l, r);
// il, ir are the left / right indices of vertical lines intersecting a segment
@ -869,33 +869,33 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
assert(l <= this_x);
assert(r >= this_x);
// Calculate the intersection position in y axis. x is known.
if (p1.x == this_x) {
if (p2.x == this_x) {
if (p1.x() == this_x) {
if (p2.x() == this_x) {
// Ignore strictly vertical segments.
continue;
}
is.pos_p = p1.y;
is.pos_p = p1.y();
is.pos_q = 1;
} else if (p2.x == this_x) {
is.pos_p = p2.y;
} else if (p2.x() == this_x) {
is.pos_p = p2.y();
is.pos_q = 1;
} else {
// First calculate the intersection parameter 't' as a rational number with non negative denominator.
if (p2.x > p1.x) {
is.pos_p = this_x - p1.x;
is.pos_q = p2.x - p1.x;
if (p2.x() > p1.x()) {
is.pos_p = this_x - p1.x();
is.pos_q = p2.x() - p1.x();
} else {
is.pos_p = p1.x - this_x;
is.pos_q = p1.x - p2.x;
is.pos_p = p1.x() - this_x;
is.pos_q = p1.x() - p2.x();
}
assert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
// Make an intersection point from the 't'.
is.pos_p *= int64_t(p2.y - p1.y);
is.pos_p += p1.y * int64_t(is.pos_q);
is.pos_p *= int64_t(p2.y() - p1.y());
is.pos_p += p1.y() * int64_t(is.pos_q);
}
// +-1 to take rounding into account.
assert(is.pos() + 1 >= std::min(p1.y, p2.y));
assert(is.pos() <= std::max(p1.y, p2.y) + 1);
assert(is.pos() + 1 >= std::min(p1.y(), p2.y()));
assert(is.pos() <= std::max(p1.y(), p2.y()) + 1);
segs[i].intersections.push_back(is);
}
}
@ -919,7 +919,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
coord_t dir = contour[iSegment].x - contour[iPrev].x;
coord_t dir = contour[iSegment].x() - contour[iPrev].x();
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
@ -1066,7 +1066,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
intrsctn.consumed_vertical_up :
seg.intersections[i-1].consumed_vertical_up;
if (! consumed) {
coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos()));
coordf_t dist2 = sqr(coordf_t(pointLast.x() - seg.pos)) + sqr(coordf_t(pointLast.y() - intrsctn.pos()));
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
@ -1356,8 +1356,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
std::abs(polyline_current->points.front().x() - polyline_current->points.back().x()) < SCALED_EPSILON &&
std::abs(polyline_current->points.front().y() - polyline_current->points.back().y()) < SCALED_EPSILON))
polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
@ -1383,7 +1383,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
// it->translate(- rotate_vector.second.x(), - rotate_vector.second.y());
assert(! it->has_duplicate_points());
it->rotate(rotate_vector.first);
//FIXME rather simplify the paths to avoid very short edges?

View file

@ -223,24 +223,24 @@ Point SegmentIntersection::pos() const
const Pointf p2 = convert_to<Pointf>(line->pos);
const Pointf v2 = convert_to<Pointf>(line->dir);
// Intersect the two rays.
double denom = v1.x * v2.y - v2.x * v1.y;
double denom = v1.x() * v2.y() - v2.x() * v1.y();
Point out;
if (denom == 0.) {
// Lines are collinear. As the pos() method is not supposed to be called on collinear vectors,
// the source vectors are not quite collinear. Return the center of the contour segment.
out = seg_start + seg_end;
out.x >>= 1;
out.y >>= 1;
out.x() >>= 1;
out.y() >>= 1;
} else {
// Find the intersection point.
double t = (v2.x * (p1.y - p2.y) - v2.y * (p1.x - p2.x)) / denom;
double t = (v2.x() * (p1.y() - p2.y()) - v2.y() * (p1.x() - p2.x())) / denom;
if (t < 0.)
out = seg_start;
else if (t > 1.)
out = seg_end;
else {
out.x = coord_t(floor(p1.x + t * v1.x + 0.5));
out.y = coord_t(floor(p1.y + t * v1.y + 0.5));
out.x() = coord_t(floor(p1.x() + t * v1.x() + 0.5));
out.y() = coord_t(floor(p1.y() + t * v1.y() + 0.5));
}
}
return out;
@ -317,8 +317,8 @@ int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) c
int64_t denom2 = cross(this->line->dir, vec_b);
Point vx_a = seg_start_a - this->line->pos;
Point vx_b = seg_start_b - this->line->pos;
int64_t t1_times_denom1 = int64_t(vx_a.x) * int64_t(vec_a.y) - int64_t(vx_a.y) * int64_t(vec_a.x);
int64_t t2_times_denom2 = int64_t(vx_b.x) * int64_t(vec_b.y) - int64_t(vx_b.y) * int64_t(vec_b.x);
int64_t t1_times_denom1 = int64_t(vx_a.x()) * int64_t(vec_a.y()) - int64_t(vx_a.y()) * int64_t(vec_a.x());
int64_t t2_times_denom2 = int64_t(vx_b.x()) * int64_t(vec_b.y()) - int64_t(vx_b.y()) * int64_t(vec_b.x());
assert(denom1 != 0);
assert(denom2 != 0);
return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2);
@ -389,7 +389,7 @@ static bool prepare_infill_hatching_segments(
// Define the flow spacing according to requested density.
if (params.full_infill() && ! params.dont_adjust) {
// Full infill, adjust the line spacing to fit an integer number of lines.
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size().x, line_spacing);
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size().x(), line_spacing);
// Report back the adjusted line spacing.
fill_dir_params.spacing = float(unscale(line_spacing));
} else {
@ -398,7 +398,7 @@ static bool prepare_infill_hatching_segments(
Point refpt = rotate_vector.second.rotated(- out.angle);
// _align_to_grid will not work correctly with positive pattern_shift.
coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing;
refpt.x -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
refpt.x() -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
bounding_box.merge(Fill::_align_to_grid(
bounding_box.min,
Point(line_spacing, line_spacing),
@ -407,13 +407,13 @@ static bool prepare_infill_hatching_segments(
// Intersect a set of euqally spaced vertical lines wiht expolygon.
// n_vlines = ceil(bbox_width / line_spacing)
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min.x;
size_t n_vlines = (bounding_box.max.x() - bounding_box.min.x() + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min.x();
if (params.full_infill())
x0 += coord_t((line_spacing + SCALED_EPSILON) / 2);
out.line_spacing = line_spacing;
out.start_point = Point(x0, bounding_box.min.y);
out.start_point = Point(x0, bounding_box.min.y());
out.start_point.rotate(out.angle);
#ifdef SLIC3R_DEBUG
@ -436,10 +436,10 @@ static bool prepare_infill_hatching_segments(
for (size_t i = 0; i < n_vlines; ++ i) {
auto &seg = out.segs[i];
seg.idx = i;
// seg.x = x0 + coord_t(i) * line_spacing;
// seg.x() = x0 + coord_t(i) * line_spacing;
coord_t x = x0 + coord_t(i) * line_spacing;
seg.pos.x = coord_t(floor(cos_a * x - sin_a * bounding_box.min.y + 0.5));
seg.pos.y = coord_t(floor(cos_a * bounding_box.min.y + sin_a * x + 0.5));
seg.pos.x() = coord_t(floor(cos_a * x - sin_a * bounding_box.min.y() + 0.5));
seg.pos.y() = coord_t(floor(cos_a * bounding_box.min.y() + sin_a * x + 0.5));
seg.dir = out.direction;
}
@ -454,7 +454,7 @@ static bool prepare_infill_hatching_segments(
const Point *pr = &contour[iSegment];
// Orient the segment to the direction vector.
const Point v = *pr - *pl;
int orientation = Int128::sign_determinant_2x2_filtered(v.x, v.y, out.direction.x, out.direction.y);
int orientation = Int128::sign_determinant_2x2_filtered(v.x(), v.y(), out.direction.x(), out.direction.y());
if (orientation == 0)
// Ignore strictly vertical segments.
continue;
@ -462,8 +462,8 @@ static bool prepare_infill_hatching_segments(
// Always orient the input segment consistently towards the hatching direction.
std::swap(pl, pr);
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = (coord_t)floor(cos_a * pl->x + sin_a * pl->y - SCALED_EPSILON);
coord_t r = (coord_t)ceil (cos_a * pr->x + sin_a * pr->y + SCALED_EPSILON);
coord_t l = (coord_t)floor(cos_a * pl->x() + sin_a * pl->y() - SCALED_EPSILON);
coord_t r = (coord_t)ceil (cos_a * pr->x() + sin_a * pr->y() + SCALED_EPSILON);
assert(l < r - SCALED_EPSILON);
// il, ir are the left / right indices of vertical lines intersecting a segment
int il = std::max<int>(0, (l - x0 + line_spacing) / line_spacing);
@ -479,9 +479,9 @@ static bool prepare_infill_hatching_segments(
// 2) all lines from il to ir intersect <pl, pr>.
assert(il >= 0 && ir < int(out.segs.size()));
for (int i = il; i <= ir; ++ i) {
// assert(out.segs[i].x == i * line_spacing + x0);
// assert(l <= out.segs[i].x);
// assert(r >= out.segs[i].x);
// assert(out.segs[i].x() == i * line_spacing + x0);
// assert(l <= out.segs[i].x());
// assert(r >= out.segs[i].x());
SegmentIntersection is;
is.line = &out.segs[i];
is.expoly_with_offset = &poly_with_offset;
@ -491,10 +491,10 @@ static bool prepare_infill_hatching_segments(
// +-1 to take rounding into account.
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
assert(is.pos().x + 1 >= std::min(pl->x, pr->x));
assert(is.pos().y + 1 >= std::min(pl->y, pr->y));
assert(is.pos().x <= std::max(pl->x, pr->x) + 1);
assert(is.pos().y <= std::max(pl->y, pr->y) + 1);
assert(is.pos().x() + 1 >= std::min(pl->x(), pr->x()));
assert(is.pos().y() + 1 >= std::min(pl->y(), pr->y()));
assert(is.pos().x() <= std::max(pl->x(), pr->x()) + 1);
assert(is.pos().y() <= std::max(pl->y(), pr->y()) + 1);
out.segs[i].intersections.push_back(is);
}
}
@ -659,12 +659,12 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po
Point px = (i == 0) ? p1 : p2;
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
Point pb = poly.points[seg];
if (pa.x > pb.x)
std::swap(pa.x, pb.x);
if (pa.y > pb.y)
std::swap(pa.y, pb.y);
assert(px.x >= pa.x && px.x <= pb.x);
assert(px.y >= pa.y && px.y <= pb.y);
if (pa.x() > pb.x())
std::swap(pa.x(), pb.x());
if (pa.y() > pb.y())
std::swap(pa.y(), pb.y());
assert(px.x() >= pa.x() && px.x() <= pb.x());
assert(px.y() >= pa.y() && px.y() <= pb.y());
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
@ -1481,8 +1481,8 @@ static bool fill_hatching_segments_legacy(
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
std::abs(polyline_current->points.front().x() - polyline_current->points.back().x()) < SCALED_EPSILON &&
std::abs(polyline_current->points.front().y() - polyline_current->points.back().y()) < SCALED_EPSILON))
polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
@ -1510,7 +1510,7 @@ static bool fill_hatching_segments_legacy(
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
// it->translate(- rotate_vector.second.x(), - rotate_vector.second.y());
assert(! it->has_duplicate_points());
//it->rotate(rotate_vector.first);
//FIXME rather simplify the paths to avoid very short edges?

View file

@ -1352,8 +1352,8 @@ namespace Slic3r {
double angle_z = (rotation.axis() == Eigen::Vector3d::UnitZ()) ? rotation.angle() : -rotation.angle();
#endif
instance.offset.x = offset_x;
instance.offset.y = offset_y;
instance.offset.x() = offset_x;
instance.offset.y() = offset_y;
instance.scaling_factor = sx;
instance.rotation = angle_z;
}
@ -1801,7 +1801,7 @@ namespace Slic3r {
}
Eigen::Affine3f transform;
transform = Eigen::Translation3f((float)instance->offset.x, (float)instance->offset.y, 0.0f) * Eigen::AngleAxisf((float)instance->rotation, Eigen::Vector3f::UnitZ()) * Eigen::Scaling((float)instance->scaling_factor);
transform = Eigen::Translation3f((float)instance->offset.x(), (float)instance->offset.y(), 0.0f) * Eigen::AngleAxisf((float)instance->rotation, Eigen::Vector3f::UnitZ()) * Eigen::Scaling((float)instance->scaling_factor);
build_items.emplace_back(instance_id, transform.matrix());
stream << " </" << OBJECT_TAG << ">\n";

View file

@ -496,8 +496,8 @@ void AMFParserContext::endDocument()
for (const Instance &instance : object.second.instances)
if (instance.deltax_set && instance.deltay_set) {
ModelInstance *mi = m_model.objects[object.second.idx]->add_instance();
mi->offset.x = instance.deltax;
mi->offset.y = instance.deltay;
mi->offset.x() = instance.deltax;
mi->offset.y() = instance.deltay;
mi->rotation = instance.rz_set ? instance.rz : 0.f;
mi->scaling_factor = instance.scale_set ? instance.scale : 1.f;
}
@ -829,8 +829,8 @@ bool store_amf(const char *path, Model *model, Print* print, bool export_print_c
" <scale>%lf</scale>\n"
" </instance>\n",
object_id,
instance->offset.x,
instance->offset.y,
instance->offset.x(),
instance->offset.y(),
instance->rotation,
instance->scaling_factor);
//FIXME missing instance->scaling_factor

View file

@ -207,8 +207,8 @@ bool load_prus(const char *path, Model *model)
for (size_t c = 0; c < 3; ++ c)
trafo[r][c] += mat_trafo(r, c);
}
instance_offset.x = position[0] - zero[0];
instance_offset.y = position[1] - zero[1];
instance_offset.x() = position[0] - zero[0];
instance_offset.y() = position[1] - zero[1];
trafo[2][3] = position[2] / instance_scaling_factor;
trafo_set = true;
}

View file

@ -49,7 +49,7 @@ Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &
// If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
// Otherwise perform the path planning in the coordinate system of the active object.
bool use_external = this->use_external_mp || this->use_external_mp_once;
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin().x, gcodegen.origin().y) : Point(0, 0);
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin().x(), gcodegen.origin().y()) : Point(0, 0);
Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())->
shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin);
if (use_external)
@ -65,7 +65,7 @@ std::string OozePrevention::pre_toolchange(GCode &gcodegen)
if (!this->standby_points.empty()) {
// get current position in print coordinates
Pointf3 writer_pos = gcodegen.writer().get_position();
Point pos = Point::new_scale(writer_pos.x, writer_pos.y);
Point pos = Point::new_scale(writer_pos.x(), writer_pos.y());
// find standby point
Point standby_point;
@ -160,7 +160,7 @@ Wipe::wipe(GCode &gcodegen, bool toolchange)
static inline Point wipe_tower_point_to_object_point(GCode &gcodegen, const WipeTower::xy &wipe_tower_pt)
{
return Point(scale_(wipe_tower_pt.x - gcodegen.origin().x), scale_(wipe_tower_pt.y - gcodegen.origin().y));
return Point(scale_(wipe_tower_pt.x - gcodegen.origin().x()), scale_(wipe_tower_pt.y - gcodegen.origin().y()));
}
std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const
@ -262,7 +262,7 @@ std::string WipeTowerIntegration::tool_change(GCode &gcodegen, int extruder_id,
std::string WipeTowerIntegration::finalize(GCode &gcodegen)
{
std::string gcode;
if (std::abs(gcodegen.writer().get_position().z - m_final_purge.print_z) > EPSILON)
if (std::abs(gcodegen.writer().get_position().z() - m_final_purge.print_z) > EPSILON)
gcode += gcodegen.change_layer(m_final_purge.print_z);
gcode += append_tcr(gcodegen, m_final_purge, -1);
return gcode;
@ -699,7 +699,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
for (unsigned int extruder_id : print.extruders()) {
const Pointf &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
Polygon s(outer_skirt);
s.translate(-scale_(extruder_offset.x), -scale_(extruder_offset.y));
s.translate(-scale_(extruder_offset.x()), -scale_(extruder_offset.y()));
skirts.emplace_back(std::move(s));
}
m_ooze_prevention.enable = true;
@ -725,7 +725,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
// Print objects from the smallest to the tallest to avoid collisions
// when moving onto next object starting point.
std::vector<PrintObject*> objects(print.objects);
std::sort(objects.begin(), objects.end(), [](const PrintObject* po1, const PrintObject* po2) { return po1->size.z < po2->size.z; });
std::sort(objects.begin(), objects.end(), [](const PrintObject* po1, const PrintObject* po2) { return po1->size.z() < po2->size.z(); });
size_t finished_objects = 0;
for (size_t object_id = initial_print_object_id; object_id < objects.size(); ++ object_id) {
const PrintObject &object = *objects[object_id];
@ -742,7 +742,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
final_extruder_id = tool_ordering.last_extruder();
assert(final_extruder_id != (unsigned int)-1);
}
this->set_origin(unscale(copy.x), unscale(copy.y));
this->set_origin(unscale(copy.x()), unscale(copy.y()));
if (finished_objects > 0) {
// Move to the origin position for the copy we're going to print.
// This happens before Z goes down to layer 0 again, so that no collision happens hopefully.
@ -849,7 +849,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
{
DynamicConfig config;
config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index));
config.set_key_value("layer_z", new ConfigOptionFloat(m_writer.get_position().z - m_config.z_offset.value));
config.set_key_value("layer_z", new ConfigOptionFloat(m_writer.get_position().z() - m_config.z_offset.value));
if (print.config.single_extruder_multi_material) {
// Process the end_filament_gcode for the active filament only.
_writeln(file, this->placeholder_parser_process("end_filament_gcode", print.config.end_filament_gcode.get_at(m_writer.extruder()->id()), m_writer.extruder()->id(), &config));
@ -1304,8 +1304,8 @@ void GCode::process_layer(
layer_surface_bboxes.push_back(get_extents(expoly.contour));
auto point_inside_surface = [&layer, &layer_surface_bboxes](const size_t i, const Point &point) {
const BoundingBox &bbox = layer_surface_bboxes[i];
return point.x >= bbox.min.x && point.x < bbox.max.x &&
point.y >= bbox.min.y && point.y < bbox.max.y &&
return point.x() >= bbox.min.x() && point.x() < bbox.max.x() &&
point.y() >= bbox.min.y() && point.y() < bbox.max.y() &&
layer.slices.expolygons[i].contour.contains(point);
};
@ -1455,7 +1455,7 @@ void GCode::process_layer(
if (m_last_obj_copy != this_object_copy)
m_avoid_crossing_perimeters.use_external_mp_once = true;
m_last_obj_copy = this_object_copy;
this->set_origin(unscale(copy.x), unscale(copy.y));
this->set_origin(unscale(copy.x()), unscale(copy.y()));
if (object_by_extruder.support != nullptr && !print_wipe_extrusions) {
m_layer = layers[layer_id].support_layer;
gcode += this->extrude_support(
@ -1544,8 +1544,8 @@ void GCode::set_origin(const Pointf &pointf)
{
// if origin increases (goes towards right), last_pos decreases because it goes towards left
const Point translate(
scale_(m_origin.x - pointf.x),
scale_(m_origin.y - pointf.y)
scale_(m_origin.x() - pointf.x()),
scale_(m_origin.y() - pointf.y())
);
m_last_pos.translate(translate);
m_wipe.path.translate(translate);
@ -1680,11 +1680,11 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co
const Point &p2 = polygon.points[j];
const Slic3r::Point v_seg = p1.vector_to(p2);
const Slic3r::Point v_pt = p1.vector_to(pt);
const int64_t l2_seg = int64_t(v_seg.x) * int64_t(v_seg.x) + int64_t(v_seg.y) * int64_t(v_seg.y);
int64_t t_pt = int64_t(v_seg.x) * int64_t(v_pt.x) + int64_t(v_seg.y) * int64_t(v_pt.y);
const int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y());
int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y());
if (t_pt < 0) {
// Closest to p1.
double dabs = sqrt(int64_t(v_pt.x) * int64_t(v_pt.x) + int64_t(v_pt.y) * int64_t(v_pt.y));
double dabs = sqrt(int64_t(v_pt.x()) * int64_t(v_pt.x()) + int64_t(v_pt.y()) * int64_t(v_pt.y()));
if (dabs < d_min) {
d_min = dabs;
i_min = i;
@ -1697,7 +1697,7 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co
} else {
// Closest to the segment.
assert(t_pt >= 0 && t_pt <= l2_seg);
int64_t d_seg = int64_t(v_seg.y) * int64_t(v_pt.x) - int64_t(v_seg.x) * int64_t(v_pt.y);
int64_t d_seg = int64_t(v_seg.y()) * int64_t(v_pt.x()) - int64_t(v_seg.x()) * int64_t(v_pt.y());
double d = double(d_seg) / sqrt(double(l2_seg));
double dabs = std::abs(d);
if (dabs < d_min) {
@ -1706,8 +1706,8 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co
// Evaluate the foot point.
pt_min = p1;
double linv = double(d_seg) / double(l2_seg);
pt_min.x = pt.x - coord_t(floor(double(v_seg.y) * linv + 0.5));
pt_min.y = pt.y + coord_t(floor(double(v_seg.x) * linv + 0.5));
pt_min.x() = pt.x() - coord_t(floor(double(v_seg.y()) * linv + 0.5));
pt_min.y() = pt.y() + coord_t(floor(double(v_seg.x()) * linv + 0.5));
assert(Line(p1, p2).distance_to(pt_min) < scale_(1e-5));
}
}
@ -1777,8 +1777,8 @@ std::vector<float> polygon_angles_at_vertices(const Polygon &polygon, const std:
const Point &p2 = polygon.points[idx_next];
const Point v1 = p0.vector_to(p1);
const Point v2 = p1.vector_to(p2);
int64_t dot = int64_t(v1.x)*int64_t(v2.x) + int64_t(v1.y)*int64_t(v2.y);
int64_t cross = int64_t(v1.x)*int64_t(v2.y) - int64_t(v1.y)*int64_t(v2.x);
int64_t dot = int64_t(v1.x())*int64_t(v2.x()) + int64_t(v1.y())*int64_t(v2.y());
int64_t cross = int64_t(v1.x())*int64_t(v2.y()) - int64_t(v1.y())*int64_t(v2.x());
float angle = float(atan2(double(cross), double(dot)));
angles[idx_curr] = angle;
}
@ -1802,10 +1802,10 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
{
static int iRun = 0;
BoundingBox bbox = (*lower_layer_edge_grid)->bbox();
bbox.min.x -= scale_(5.f);
bbox.min.y -= scale_(5.f);
bbox.max.x += scale_(5.f);
bbox.max.y += scale_(5.f);
bbox.min.x() -= scale_(5.f);
bbox.min.y() -= scale_(5.f);
bbox.max.x() += scale_(5.f);
bbox.max.y() += scale_(5.f);
EdgeGrid::save_png(*(*lower_layer_edge_grid), bbox, scale_(0.1f), debug_out_path("GCode_extrude_loop_edge_grid-%d.png", iRun++));
}
#endif
@ -1841,7 +1841,7 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
break;
case spRear:
last_pos = m_layer->object()->bounding_box().center();
last_pos.y += coord_t(3. * m_layer->object()->bounding_box().radius());
last_pos.y() += coord_t(3. * m_layer->object()->bounding_box().radius());
last_pos_weight = 5.f;
break;
}
@ -1974,7 +1974,7 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
//FIXME Better parametrize the loop by its length.
Polygon polygon = loop.polygon();
Point centroid = polygon.centroid();
last_pos = Point(polygon.bounding_box().max.x, centroid.y);
last_pos = Point(polygon.bounding_box().max.x(), centroid.y());
last_pos.rotate(fmod((float)rand()/16.0, 2.0*PI), centroid);
}
// Find the closest point, avoid overhangs.
@ -2532,8 +2532,8 @@ Pointf GCode::point_to_gcode(const Point &point) const
{
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
return Pointf(
unscale(point.x) + m_origin.x - extruder_offset.x,
unscale(point.y) + m_origin.y - extruder_offset.y);
unscale(point.x()) + m_origin.x() - extruder_offset.x(),
unscale(point.y()) + m_origin.y() - extruder_offset.y());
}
// convert a model-space scaled point into G-code coordinates
@ -2541,8 +2541,8 @@ Point GCode::gcode_to_point(const Pointf &point) const
{
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
return Point(
scale_(point.x - m_origin.x + extruder_offset.x),
scale_(point.y - m_origin.y + extruder_offset.y));
scale_(point.x() - m_origin.x() + extruder_offset.x()),
scale_(point.y() - m_origin.y() + extruder_offset.y()));
}

View file

@ -683,7 +683,7 @@ void GCodeAnalyzer::_calc_gcode_preview_extrusion_layers(GCodePreviewData& previ
// constructs the polylines while traversing the moves
for (const GCodeMove& move : extrude_moves->second)
{
if ((data != move.data) || (z != move.start_position.z) || (position != move.start_position) || (volumetric_rate != move.data.feedrate * (float)move.data.mm3_per_mm))
if ((data != move.data) || (z != move.start_position.z()) || (position != move.start_position) || (volumetric_rate != move.data.feedrate * (float)move.data.mm3_per_mm))
{
// store current polyline
polyline.remove_duplicate_points();
@ -693,12 +693,12 @@ void GCodeAnalyzer::_calc_gcode_preview_extrusion_layers(GCodePreviewData& previ
polyline = Polyline();
// add both vertices of the move
polyline.append(Point(scale_(move.start_position.x), scale_(move.start_position.y)));
polyline.append(Point(scale_(move.end_position.x), scale_(move.end_position.y)));
polyline.append(Point(scale_(move.start_position.x()), scale_(move.start_position.y())));
polyline.append(Point(scale_(move.end_position.x()), scale_(move.end_position.y())));
// update current values
data = move.data;
z = move.start_position.z;
z = move.start_position.z();
volumetric_rate = move.data.feedrate * (float)move.data.mm3_per_mm;
height_range.update_from(move.data.height);
width_range.update_from(move.data.width);
@ -707,7 +707,7 @@ void GCodeAnalyzer::_calc_gcode_preview_extrusion_layers(GCodePreviewData& previ
}
else
// append end vertex of the move to current polyline
polyline.append(Point(scale_(move.end_position.x), scale_(move.end_position.y)));
polyline.append(Point(scale_(move.end_position.x()), scale_(move.end_position.y())));
// update current values
position = move.end_position;
@ -756,7 +756,7 @@ void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
for (const GCodeMove& move : travel_moves->second)
{
GCodePreviewData::Travel::EType move_type = (move.delta_extruder < 0.0f) ? GCodePreviewData::Travel::Retract : ((move.delta_extruder > 0.0f) ? GCodePreviewData::Travel::Extrude : GCodePreviewData::Travel::Move);
GCodePreviewData::Travel::Polyline::EDirection move_direction = ((move.start_position.x != move.end_position.x) || (move.start_position.y != move.end_position.y)) ? GCodePreviewData::Travel::Polyline::Generic : GCodePreviewData::Travel::Polyline::Vertical;
GCodePreviewData::Travel::Polyline::EDirection move_direction = ((move.start_position.x() != move.end_position.x()) || (move.start_position.y() != move.end_position.y())) ? GCodePreviewData::Travel::Polyline::Generic : GCodePreviewData::Travel::Polyline::Vertical;
if ((type != move_type) || (direction != move_direction) || (feedrate != move.data.feedrate) || (position != move.start_position) || (extruder_id != move.data.extruder_id))
{
@ -768,12 +768,12 @@ void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
polyline = Polyline3();
// add both vertices of the move
polyline.append(Point3(scale_(move.start_position.x), scale_(move.start_position.y), scale_(move.start_position.z)));
polyline.append(Point3(scale_(move.end_position.x), scale_(move.end_position.y), scale_(move.end_position.z)));
polyline.append(Point3(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z())));
polyline.append(Point3(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
}
else
// append end vertex of the move to current polyline
polyline.append(Point3(scale_(move.end_position.x), scale_(move.end_position.y), scale_(move.end_position.z)));
polyline.append(Point3(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
// update current values
position = move.end_position;
@ -804,7 +804,7 @@ void GCodeAnalyzer::_calc_gcode_preview_retractions(GCodePreviewData& preview_da
for (const GCodeMove& move : retraction_moves->second)
{
// store position
Point3 position(scale_(move.start_position.x), scale_(move.start_position.y), scale_(move.start_position.z));
Point3 position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
preview_data.retraction.positions.emplace_back(position, move.data.width, move.data.height);
}
}
@ -818,7 +818,7 @@ void GCodeAnalyzer::_calc_gcode_preview_unretractions(GCodePreviewData& preview_
for (const GCodeMove& move : unretraction_moves->second)
{
// store position
Point3 position(scale_(move.start_position.x), scale_(move.start_position.y), scale_(move.start_position.z));
Point3 position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
preview_data.unretraction.positions.emplace_back(position, move.data.width, move.data.height);
}
}

View file

@ -24,9 +24,9 @@ void CoolingBuffer::reset()
{
m_current_pos.assign(5, 0.f);
Pointf3 pos = m_gcodegen.writer().get_position();
m_current_pos[0] = float(pos.x);
m_current_pos[1] = float(pos.y);
m_current_pos[2] = float(pos.z);
m_current_pos[0] = float(pos.x());
m_current_pos[1] = float(pos.y());
m_current_pos[2] = float(pos.z());
m_current_pos[4] = float(m_gcodegen.config().travel_speed.value);
}

View file

@ -19,10 +19,10 @@ static inline BoundingBox extrusion_polyline_extents(const Polyline &polyline, c
if (! polyline.points.empty())
bbox.merge(polyline.points.front());
for (const Point &pt : polyline.points) {
bbox.min.x = std::min(bbox.min.x, pt.x - radius);
bbox.min.y = std::min(bbox.min.y, pt.y - radius);
bbox.max.x = std::max(bbox.max.x, pt.x + radius);
bbox.max.y = std::max(bbox.max.y, pt.y + radius);
bbox.min.x() = std::min(bbox.min.x(), pt.x() - radius);
bbox.min.y() = std::min(bbox.min.y(), pt.y() - radius);
bbox.max.x() = std::max(bbox.max.x(), pt.x() + radius);
bbox.max.y() = std::max(bbox.max.y(), pt.y() + radius);
}
return bbox;
}
@ -146,10 +146,10 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
Pointf p2(e.pos.x, e.pos.y);
bbox.merge(p1);
coordf_t radius = 0.5 * e.width;
bbox.min.x = std::min(bbox.min.x, std::min(p1.x, p2.x) - radius);
bbox.min.y = std::min(bbox.min.y, std::min(p1.y, p2.y) - radius);
bbox.max.x = std::max(bbox.max.x, std::max(p1.x, p2.x) + radius);
bbox.max.y = std::max(bbox.max.y, std::max(p1.y, p2.y) + radius);
bbox.min.x() = std::min(bbox.min.x(), std::min(p1.x(), p2.x()) - radius);
bbox.min.y() = std::min(bbox.min.y(), std::min(p1.y(), p2.y()) - radius);
bbox.max.x() = std::max(bbox.max.x(), std::max(p1.x(), p2.x()) + radius);
bbox.max.y() = std::max(bbox.max.y(), std::max(p1.y(), p2.y()) + radius);
}
}
}
@ -170,10 +170,10 @@ BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print)
Pointf p2(e.pos.x, e.pos.y);
bbox.merge(p1);
coordf_t radius = 0.5 * e.width;
bbox.min.x = std::min(bbox.min.x, std::min(p1.x, p2.x) - radius);
bbox.min.y = std::min(bbox.min.y, std::min(p1.y, p2.y) - radius);
bbox.max.x = std::max(bbox.max.x, std::max(p1.x, p2.x) + radius);
bbox.max.y = std::max(bbox.max.y, std::max(p1.y, p2.y) + radius);
bbox.min.x() = std::min(bbox.min.x(), std::min(p1.x(), p2.x()) - radius);
bbox.min.y() = std::min(bbox.min.y(), std::min(p1.y(), p2.y()) - radius);
bbox.max.x() = std::max(bbox.max.x(), std::max(p1.x(), p2.x()) + radius);
bbox.max.y() = std::max(bbox.max.y(), std::max(p1.y(), p2.y()) + radius);
}
}
}

View file

@ -278,12 +278,12 @@ std::string GCodeWriter::set_speed(double F, const std::string &comment, const s
std::string GCodeWriter::travel_to_xy(const Pointf &point, const std::string &comment)
{
m_pos.x = point.x;
m_pos.y = point.y;
m_pos.x() = point.x();
m_pos.y() = point.y();
std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point.x)
<< " Y" << XYZF_NUM(point.y)
gcode << "G1 X" << XYZF_NUM(point.x())
<< " Y" << XYZF_NUM(point.y())
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
COMMENT(comment);
gcode << "\n";
@ -296,9 +296,9 @@ std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &
don't perform the Z move but we only move in the XY plane and
adjust the nominal Z by reducing the lift amount that will be
used for unlift. */
if (!this->will_move_z(point.z)) {
double nominal_z = m_pos.z - m_lifted;
m_lifted = m_lifted - (point.z - nominal_z);
if (!this->will_move_z(point.z())) {
double nominal_z = m_pos.z() - m_lifted;
m_lifted = m_lifted - (point.z() - nominal_z);
return this->travel_to_xy(point);
}
@ -308,9 +308,9 @@ std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &
m_pos = point;
std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point.x)
<< " Y" << XYZF_NUM(point.y)
<< " Z" << XYZF_NUM(point.z)
gcode << "G1 X" << XYZF_NUM(point.x())
<< " Y" << XYZF_NUM(point.y())
<< " Z" << XYZF_NUM(point.z())
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
COMMENT(comment);
gcode << "\n";
@ -323,7 +323,7 @@ std::string GCodeWriter::travel_to_z(double z, const std::string &comment)
we don't perform the move but we only adjust the nominal Z by
reducing the lift amount that will be used for unlift. */
if (!this->will_move_z(z)) {
double nominal_z = m_pos.z - m_lifted;
double nominal_z = m_pos.z() - m_lifted;
m_lifted = m_lifted - (z - nominal_z);
return "";
}
@ -336,7 +336,7 @@ std::string GCodeWriter::travel_to_z(double z, const std::string &comment)
std::string GCodeWriter::_travel_to_z(double z, const std::string &comment)
{
m_pos.z = z;
m_pos.z() = z;
std::ostringstream gcode;
gcode << "G1 Z" << XYZF_NUM(z)
@ -351,8 +351,8 @@ bool GCodeWriter::will_move_z(double z) const
/* If target Z is lower than current Z but higher than nominal Z
we don't perform an actual Z move. */
if (m_lifted > 0) {
double nominal_z = m_pos.z - m_lifted;
if (z >= nominal_z && z <= m_pos.z)
double nominal_z = m_pos.z() - m_lifted;
if (z >= nominal_z && z <= m_pos.z())
return false;
}
return true;
@ -360,13 +360,13 @@ bool GCodeWriter::will_move_z(double z) const
std::string GCodeWriter::extrude_to_xy(const Pointf &point, double dE, const std::string &comment)
{
m_pos.x = point.x;
m_pos.y = point.y;
m_pos.x() = point.x();
m_pos.y() = point.y();
m_extruder->extrude(dE);
std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point.x)
<< " Y" << XYZF_NUM(point.y)
gcode << "G1 X" << XYZF_NUM(point.x())
<< " Y" << XYZF_NUM(point.y())
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
COMMENT(comment);
gcode << "\n";
@ -380,9 +380,9 @@ std::string GCodeWriter::extrude_to_xyz(const Pointf3 &point, double dE, const s
m_extruder->extrude(dE);
std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point.x)
<< " Y" << XYZF_NUM(point.y)
<< " Z" << XYZF_NUM(point.z)
gcode << "G1 X" << XYZF_NUM(point.x())
<< " Y" << XYZF_NUM(point.y())
<< " Z" << XYZF_NUM(point.z())
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
COMMENT(comment);
gcode << "\n";
@ -486,12 +486,12 @@ std::string GCodeWriter::lift()
{
double above = this->config.retract_lift_above.get_at(m_extruder->id());
double below = this->config.retract_lift_below.get_at(m_extruder->id());
if (m_pos.z >= above && (below == 0 || m_pos.z <= below))
if (m_pos.z() >= above && (below == 0 || m_pos.z() <= below))
target_lift = this->config.retract_lift.get_at(m_extruder->id());
}
if (m_lifted == 0 && target_lift > 0) {
m_lifted = target_lift;
return this->_travel_to_z(m_pos.z + target_lift, "lift Z");
return this->_travel_to_z(m_pos.z() + target_lift, "lift Z");
}
return "";
}
@ -500,7 +500,7 @@ std::string GCodeWriter::unlift()
{
std::string gcode;
if (m_lifted > 0) {
gcode += this->_travel_to_z(m_pos.z - m_lifted, "restore layer Z");
gcode += this->_travel_to_z(m_pos.z() - m_lifted, "restore layer Z");
m_lifted = 0;
}
return gcode;

View file

@ -198,7 +198,7 @@ namespace Slic3r { namespace Geometry {
static bool
sort_points (Point a, Point b)
{
return (a.x < b.x) || (a.x == b.x && a.y < b.y);
return (a.x() < b.x()) || (a.x() == b.x() && a.y() < b.y());
}
/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
@ -349,30 +349,30 @@ struct ArrangeItem {
coordf_t weight;
bool operator<(const ArrangeItem &other) const {
return weight < other.weight ||
((weight == other.weight) && (pos.y < other.pos.y || (pos.y == other.pos.y && pos.x < other.pos.x)));
((weight == other.weight) && (pos.y() < other.pos.y() || (pos.y() == other.pos.y() && pos.x() < other.pos.x())));
}
};
Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
{
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
const Pointf cell_size(part_size.x + gap, part_size.y + gap);
const Pointf cell_size(part_size.x() + gap, part_size.y() + gap);
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
*bed_bounding_box :
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
BoundingBoxf(
Pointf(0, 0),
Pointf(cell_size.x * num_parts, cell_size.y * num_parts));
Pointf(cell_size.x() * num_parts, cell_size.y() * num_parts));
// This is how many cells we have available into which to put parts.
size_t cellw = size_t(floor((bed_bbox.size().x + gap) / cell_size.x));
size_t cellh = size_t(floor((bed_bbox.size().y + gap) / cell_size.y));
size_t cellw = size_t(floor((bed_bbox.size().x() + gap) / cell_size.x()));
size_t cellh = size_t(floor((bed_bbox.size().y() + gap) / cell_size.y()));
if (num_parts > cellw * cellh)
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
Pointf cells_size(cellw * cell_size.x - gap, cellh * cell_size.y - gap);
Pointf cells_size(cellw * cell_size.x() - gap, cellh * cell_size.y() - gap);
Pointf cells_offset(bed_bbox.center() - 0.5 * cells_size);
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
@ -380,19 +380,19 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
for (size_t j = 0; j < cellh; ++ j) {
// Center of the jth row on the bed.
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min.y, cells_bb.max.y);
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min.y(), cells_bb.max.y());
// Offset from the bed center.
coordf_t yd = cells_bb.center().y - cy;
coordf_t yd = cells_bb.center().y() - cy;
for (size_t i = 0; i < cellw; ++ i) {
// Center of the ith column on the bed.
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min.x, cells_bb.max.x);
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min.x(), cells_bb.max.x());
// Offset from the bed center.
coordf_t xd = cells_bb.center().x - cx;
coordf_t xd = cells_bb.center().x() - cx;
// Cell with a distance from the bed center.
ArrangeItem &ci = cellsorder[j * cellw + i];
// Cell center
ci.pos.x = cx;
ci.pos.y = cy;
ci.pos.x() = cx;
ci.pos.y() = cy;
// Square distance of the cell center to the bed center.
ci.weight = xd * xd + yd * yd;
}
@ -405,7 +405,7 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
Pointfs positions;
positions.reserve(num_parts);
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
positions.push_back(Pointf(it->pos.x - 0.5 * part_size.x, it->pos.y - 0.5 * part_size.y));
positions.push_back(Pointf(it->pos.x() - 0.5 * part_size.x(), it->pos.y() - 0.5 * part_size.y()));
return positions;
}
#else
@ -430,26 +430,26 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
Pointf part = part_size;
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
part.x += dist;
part.y += dist;
part.x() += dist;
part.y() += dist;
Pointf area;
if (bb != NULL && bb->defined) {
area = bb->size();
} else {
// bogus area size, large enough not to trigger the error below
area.x = part.x * total_parts;
area.y = part.y * total_parts;
area.x() = part.x() * total_parts;
area.y() = part.y() * total_parts;
}
// this is how many cells we have available into which to put parts
size_t cellw = floor((area.x + dist) / part.x);
size_t cellh = floor((area.y + dist) / part.y);
size_t cellw = floor((area.x() + dist) / part.x());
size_t cellh = floor((area.y() + dist) / part.y());
if (total_parts > (cellw * cellh))
return false;
// total space used by cells
Pointf cells(cellw * part.x, cellh * part.y);
Pointf cells(cellw * part.x(), cellh * part.y());
// bounding box of total space used by cells
BoundingBoxf cells_bb;
@ -458,8 +458,8 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
// center bounding box to area
cells_bb.translate(
(area.x - cells.x) / 2,
(area.y - cells.y) / 2
(area.x() - cells.x()) / 2,
(area.y() - cells.y()) / 2
);
// list of cells, sorted by distance from center
@ -468,15 +468,15 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
// work out distance for all cells, sort into list
for (size_t i = 0; i <= cellw-1; ++i) {
for (size_t j = 0; j <= cellh-1; ++j) {
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x, cells_bb.max.x);
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y, cells_bb.max.y);
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x(), cells_bb.max.x());
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y(), cells_bb.max.y());
coordf_t xd = fabs((area.x / 2) - cx);
coordf_t yd = fabs((area.y / 2) - cy);
coordf_t xd = fabs((area.x() / 2) - cx);
coordf_t yd = fabs((area.y() / 2) - cy);
ArrangeItem c;
c.pos.x = cx;
c.pos.y = cy;
c.pos.x() = cx;
c.pos.y() = cy;
c.index_x = i;
c.index_y = j;
c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
@ -533,13 +533,13 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
coordf_t cx = c.item.index_x - lx;
coordf_t cy = c.item.index_y - ty;
positions.push_back(Pointf(cx * part.x, cy * part.y));
positions.push_back(Pointf(cx * part.x(), cy * part.y()));
}
if (bb != NULL && bb->defined) {
for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
p->x += bb->min.x;
p->y += bb->min.y;
p->x() += bb->min.x();
p->y() += bb->min.y();
}
}
@ -676,10 +676,10 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
const bool primaryEdgesOnly = false;
BoundingBox bbox = BoundingBox(lines);
bbox.min.x -= coord_t(1. / SCALING_FACTOR);
bbox.min.y -= coord_t(1. / SCALING_FACTOR);
bbox.max.x += coord_t(1. / SCALING_FACTOR);
bbox.max.y += coord_t(1. / SCALING_FACTOR);
bbox.min.x() -= coord_t(1. / SCALING_FACTOR);
bbox.min.y() -= coord_t(1. / SCALING_FACTOR);
bbox.max.x() += coord_t(1. / SCALING_FACTOR);
bbox.max.y() += coord_t(1. / SCALING_FACTOR);
::Slic3r::SVG svg(path, bbox);
@ -689,7 +689,7 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
// bbox.scale(1.2);
// For clipping of half-lines to some reasonable value.
// The line will then be clipped by the SVG viewer anyway.
const double bbox_dim_max = double(bbox.max.x - bbox.min.x) + double(bbox.max.y - bbox.min.y);
const double bbox_dim_max = double(bbox.max.x() - bbox.min.x()) + double(bbox.max.y() - bbox.min.y());
// For the discretization of the Voronoi parabolic segments.
const double discretization_step = 0.0005 * bbox_dim_max;
@ -697,8 +697,8 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
std::vector<Voronoi::Internal::segment_type> segments;
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
segments.push_back(Voronoi::Internal::segment_type(
Voronoi::Internal::point_type(double(it->a.x), double(it->a.y)),
Voronoi::Internal::point_type(double(it->b.x), double(it->b.y))));
Voronoi::Internal::point_type(double(it->a.x()), double(it->a.y())),
Voronoi::Internal::point_type(double(it->b.x()), double(it->b.y()))));
// Color exterior edges.
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
@ -712,7 +712,7 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
}
// Draw the input polygon.
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
svg.draw(Line(Point(coord_t(it->a.x), coord_t(it->a.y)), Point(coord_t(it->b.x), coord_t(it->b.y))), inputSegmentColor, inputSegmentLineWidth);
svg.draw(Line(Point(coord_t(it->a.x()), coord_t(it->a.y())), Point(coord_t(it->b.x()), coord_t(it->b.y()))), inputSegmentColor, inputSegmentLineWidth);
#if 1
// Draw voronoi vertices.
@ -828,8 +828,8 @@ public:
Lines2VDSegments(const Lines &alines) : lines(alines) {}
typename VD::segment_type operator[](size_t idx) const {
return typename VD::segment_type(
typename VD::point_type(typename VD::coord_type(lines[idx].a.x), typename VD::coord_type(lines[idx].a.y)),
typename VD::point_type(typename VD::coord_type(lines[idx].b.x), typename VD::coord_type(lines[idx].b.y)));
typename VD::point_type(typename VD::coord_type(lines[idx].a.x()), typename VD::coord_type(lines[idx].a.y())),
typename VD::point_type(typename VD::coord_type(lines[idx].b.x()), typename VD::coord_type(lines[idx].b.y())));
}
private:
const Lines &lines;

View file

@ -30,9 +30,9 @@ enum Orientation
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
int64_t u = int64_t(b.x()) * int64_t(c.y()) - int64_t(b.y()) * int64_t(c.x());
int64_t v = int64_t(a.x()) * int64_t(c.y()) - int64_t(a.y()) * int64_t(c.x());
int64_t w = int64_t(a.x()) * int64_t(b.y()) - int64_t(a.y()) * int64_t(b.x());
int64_t d = u - v + w;
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}
@ -52,7 +52,7 @@ static inline bool is_ccw(const Polygon &poly)
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
const Point &pmin = poly.points[imin];
const Point &p = poly.points[i];
if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y))
if (p.x() < pmin.x() || (p.x() == pmin.x() && p.y() < pmin.y()))
imin = i;
}
@ -68,24 +68,24 @@ static inline bool is_ccw(const Polygon &poly)
inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
{
double denom = v1.x * v2.y - v2.x * v1.y;
double denom = v1.x() * v2.y() - v2.x() * v1.y();
if (std::abs(denom) < EPSILON)
return false;
double t = (v2.x * (p1.y - p2.y) - v2.y * (p1.x - p2.x)) / denom;
res.x = p1.x + t * v1.x;
res.y = p1.y + t * v1.y;
double t = (v2.x() * (p1.y() - p2.y()) - v2.y() * (p1.x() - p2.x())) / denom;
res.x() = p1.x() + t * v1.x();
res.y() = p1.y() + t * v1.y();
return true;
}
inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
{
double denom = v1.x * v2.y - v2.x * v1.y;
double denom = v1.x() * v2.y() - v2.x() * v1.y();
if (std::abs(denom) < EPSILON)
// Lines are collinear.
return false;
double s12_x = p1.x - p2.x;
double s12_y = p1.y - p2.y;
double s_numer = v1.x * s12_y - v1.y * s12_x;
double s12_x = p1.x() - p2.x();
double s12_y = p1.y() - p2.y();
double s_numer = v1.x() * s12_y - v1.y() * s12_x;
bool denom_is_positive = false;
if (denom < 0.) {
denom_is_positive = true;
@ -95,7 +95,7 @@ inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, co
if (s_numer < 0.)
// Intersection outside of the 1st segment.
return false;
double t_numer = v2.x * s12_y - v2.y * s12_x;
double t_numer = v2.x() * s12_y - v2.y() * s12_x;
if (! denom_is_positive)
t_numer = - t_numer;
if (t_numer < 0. || s_numer > denom || t_numer > denom)
@ -103,8 +103,8 @@ inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, co
return false;
// Intersection inside both of the segments.
double t = t_numer / denom;
res.x = p1.x + t * v1.x;
res.y = p1.y + t * v1.y;
res.x() = p1.x() + t * v1.x();
res.y() = p1.y() + t * v1.y();
return true;
}

View file

@ -168,8 +168,8 @@ void Layer::export_region_slices_to_svg(const char *path) const
for (Surfaces::const_iterator surface = (*region)->slices.surfaces.begin(); surface != (*region)->slices.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;
@ -194,8 +194,8 @@ void Layer::export_region_fill_surfaces_to_svg(const char *path) const
for (Surfaces::const_iterator surface = (*region)->fill_surfaces.surfaces.begin(); surface != (*region)->fill_surfaces.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;

View file

@ -395,8 +395,8 @@ void LayerRegion::export_region_slices_to_svg(const char *path) const
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;
@ -422,8 +422,8 @@ void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;

View file

@ -11,8 +11,8 @@ std::string
Line::wkt() const
{
std::ostringstream ss;
ss << "LINESTRING(" << this->a.x << " " << this->a.y << ","
<< this->b.x << " " << this->b.y << ")";
ss << "LINESTRING(" << this->a.x() << " " << this->a.y() << ","
<< this->b.x() << " " << this->b.y() << ")";
return ss.str();
}
@ -67,7 +67,7 @@ Line::length() const
Point
Line::midpoint() const
{
return Point((this->a.x + this->b.x) / 2.0, (this->a.y + this->b.y) / 2.0);
return Point((this->a.x() + this->b.x()) / 2.0, (this->a.y() + this->b.y()) / 2.0);
}
void
@ -75,10 +75,10 @@ Line::point_at(double distance, Point* point) const
{
double len = this->length();
*point = this->a;
if (this->a.x != this->b.x)
point->x = this->a.x + (this->b.x - this->a.x) * distance / len;
if (this->a.y != this->b.y)
point->y = this->a.y + (this->b.y - this->a.y) * distance / len;
if (this->a.x() != this->b.x())
point->x() = this->a.x() + (this->b.x() - this->a.x()) * distance / len;
if (this->a.y() != this->b.y())
point->y() = this->a.y() + (this->b.y() - this->a.y()) * distance / len;
}
Point
@ -96,13 +96,13 @@ Line::intersection_infinite(const Line &other, Point* point) const
Vector d1 = this->vector();
Vector d2 = other.vector();
double cross = d1.x * d2.y - d1.y * d2.x;
double cross = d1.x() * d2.y() - d1.y() * d2.x();
if (std::fabs(cross) < EPSILON)
return false;
double t1 = (x.x * d2.y - x.y * d2.x)/cross;
point->x = this->a.x + d1.x * t1;
point->y = this->a.y + d1.y * t1;
double t1 = (x.x() * d2.y() - x.y() * d2.x())/cross;
point->x() = this->a.x() + d1.x() * t1;
point->y() = this->a.y() + d1.y() * t1;
return true;
}
@ -121,7 +121,7 @@ Line::distance_to(const Point &point) const
double
Line::atan2_() const
{
return atan2(this->b.y - this->a.y, this->b.x - this->a.x);
return atan2(this->b.y() - this->a.y(), this->b.x() - this->a.x());
}
double
@ -154,13 +154,13 @@ Line::parallel_to(const Line &line) const {
Vector
Line::vector() const
{
return Vector(this->b.x - this->a.x, this->b.y - this->a.y);
return Vector(this->b.x() - this->a.x(), this->b.y() - this->a.y());
}
Vector
Line::normal() const
{
return Vector((this->b.y - this->a.y), -(this->b.x - this->a.x));
return Vector((this->b.y() - this->a.y()), -(this->b.x() - this->a.x()));
}
void
@ -182,14 +182,14 @@ Line::extend_start(double distance)
bool
Line::intersection(const Line& line, Point* intersection) const
{
double denom = ((double)(line.b.y - line.a.y)*(this->b.x - this->a.x)) -
((double)(line.b.x - line.a.x)*(this->b.y - this->a.y));
double denom = ((double)(line.b.y() - line.a.y())*(this->b.x() - this->a.x())) -
((double)(line.b.x() - line.a.x())*(this->b.y() - this->a.y()));
double nume_a = ((double)(line.b.x - line.a.x)*(this->a.y - line.a.y)) -
((double)(line.b.y - line.a.y)*(this->a.x - line.a.x));
double nume_a = ((double)(line.b.x() - line.a.x())*(this->a.y() - line.a.y())) -
((double)(line.b.y() - line.a.y())*(this->a.x() - line.a.x()));
double nume_b = ((double)(this->b.x - this->a.x)*(this->a.y - line.a.y)) -
((double)(this->b.y - this->a.y)*(this->a.x - line.a.x));
double nume_b = ((double)(this->b.x() - this->a.x())*(this->a.y() - line.a.y())) -
((double)(this->b.y() - this->a.y())*(this->a.x() - line.a.x()));
if (fabs(denom) < EPSILON) {
if (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON) {
@ -204,8 +204,8 @@ Line::intersection(const Line& line, Point* intersection) const
if (ua >= 0 && ua <= 1.0f && ub >= 0 && ub <= 1.0f)
{
// Get the intersection point.
intersection->x = this->a.x + ua*(this->b.x - this->a.x);
intersection->y = this->a.y + ua*(this->b.y - this->a.y);
intersection->x() = this->a.x() + ua*(this->b.x() - this->a.x());
intersection->y() = this->a.y() + ua*(this->b.y() - this->a.y());
return true;
}
@ -225,15 +225,15 @@ double Line3::length() const
Vector3 Line3::vector() const
{
return Vector3(b.x - a.x, b.y - a.y, b.z - a.z);
return Vector3(b.x() - a.x(), b.y() - a.y(), b.z() - a.z());
}
Pointf3
Linef3::intersect_plane(double z) const
{
return Pointf3(
this->a.x + (this->b.x - this->a.x) * (z - this->a.z) / (this->b.z - this->a.z),
this->a.y + (this->b.y - this->a.y) * (z - this->a.z) / (this->b.z - this->a.z),
this->a.x() + (this->b.x() - this->a.x()) * (z - this->a.z()) / (this->b.z() - this->a.z()),
this->a.y() + (this->b.y() - this->a.y()) * (z - this->a.z()) / (this->b.z() - this->a.z()),
z
);
}

View file

@ -257,8 +257,8 @@ void Model::center_instances_around_point(const Pointf &point)
bb.merge(o->instance_bounding_box(i, false));
Sizef3 size = bb.size();
coordf_t shift_x = -bb.min.x + point.x - size.x/2;
coordf_t shift_y = -bb.min.y + point.y - size.y/2;
coordf_t shift_x = -bb.min.x() + point.x() - size.x()/2;
coordf_t shift_y = -bb.min.y() + point.y() - size.y()/2;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances)
i->offset.translate(shift_x, shift_y);
@ -337,11 +337,11 @@ std::string toString(const Model& model, bool holes = true) {
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
<< v.x() << ", "
<< v.y() << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
ss << "\t\t\t{" << v.x() << ", " << v.y() << "},\n";
}
ss << "\t\t},\n";
@ -350,11 +350,11 @@ std::string toString(const Model& model, bool holes = true) {
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
<< v.x() << ", "
<< v.y() << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
ss << "\t\t\t\t{" << v.x() << ", " << v.y() << "},\n";
}
ss << "\t\t\t},\n";
}
@ -429,8 +429,8 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
ClipperLib::cInt(objinst->offset.x()/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y()/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
@ -501,12 +501,12 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
bbb.scale(1.0/SCALING_FACTOR);
bin = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
static_cast<libnest2d::Coord>(bbb.min.x()),
static_cast<libnest2d::Coord>(bbb.min.y())
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
static_cast<libnest2d::Coord>(bbb.max.x()),
static_cast<libnest2d::Coord>(bbb.max.y())
});
}
@ -720,8 +720,8 @@ void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
ModelInstance* instance = object->add_instance();
instance->offset.x = (size.x + dist) * (x_copy-1);
instance->offset.y = (size.y + dist) * (y_copy-1);
instance->offset.x() = (size.x() + dist) * (x_copy-1);
instance->offset.y() = (size.y() + dist) * (y_copy-1);
}
}
}
@ -735,7 +735,7 @@ bool Model::looks_like_multipart_object() const
if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
return false;
for (const ModelVolume *vol : obj->volumes) {
double zmin_this = vol->mesh.bounding_box().min.z;
double zmin_this = vol->mesh.bounding_box().min.z();
if (zmin == std::numeric_limits<double>::max())
zmin = zmin_this;
else if (std::abs(zmin - zmin_this) > EPSILON)
@ -779,13 +779,13 @@ void Model::adjust_min_z()
if (objects.empty())
return;
if (bounding_box().min.z < 0.0)
if (bounding_box().min.z() < 0.0)
{
for (ModelObject* obj : objects)
{
if (obj != nullptr)
{
coordf_t obj_min_z = obj->bounding_box().min.z;
coordf_t obj_min_z = obj->bounding_box().min.z();
if (obj_min_z < 0.0)
obj->translate(0.0, 0.0, -obj_min_z);
}
@ -985,19 +985,19 @@ BoundingBoxf3 ModelObject::tight_bounding_box(bool include_modifiers) const
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
// scale
p.x *= inst->scaling_factor;
p.y *= inst->scaling_factor;
p.z *= inst->scaling_factor;
p.x() *= inst->scaling_factor;
p.y() *= inst->scaling_factor;
p.z() *= inst->scaling_factor;
// rotate Z
double x = p.x;
double y = p.y;
p.x = c * x - s * y;
p.y = s * x + c * y;
double x = p.x();
double y = p.y();
p.x() = c * x - s * y;
p.y() = s * x + c * y;
// translate
p.x += inst->offset.x;
p.y += inst->offset.y;
p.x() += inst->offset.x();
p.y() += inst->offset.y();
bb.merge(p);
}
@ -1067,12 +1067,12 @@ void ModelObject::center_around_origin()
bb.merge(v->mesh.bounding_box());
// first align to origin on XYZ
Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z);
Vectorf3 vector(-bb.min.x(), -bb.min.y(), -bb.min.z());
// then center it on XY
Sizef3 size = bb.size();
vector.x -= size.x/2;
vector.y -= size.y/2;
vector.x() -= size.x()/2;
vector.y() -= size.y()/2;
this->translate(vector);
this->origin_translation.translate(vector);
@ -1084,7 +1084,7 @@ void ModelObject::center_around_origin()
Vectorf3 v = vector.negative();
v.rotate(i->rotation);
v.scale(i->scaling_factor);
i->offset.translate(v.x, v.y);
i->offset.translate(v.x(), v.y());
}
this->invalidate_bounding_box();
}
@ -1259,19 +1259,19 @@ void ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
// scale
p.x *= inst->scaling_factor;
p.y *= inst->scaling_factor;
p.z *= inst->scaling_factor;
p.x() *= inst->scaling_factor;
p.y() *= inst->scaling_factor;
p.z() *= inst->scaling_factor;
// rotate Z
double x = p.x;
double y = p.y;
p.x = c * x - s * y;
p.y = s * x + c * y;
double x = p.x();
double y = p.y();
p.x() = c * x - s * y;
p.y() = s * x + c * y;
// translate
p.x += inst->offset.x;
p.y += inst->offset.y;
p.x() += inst->offset.x();
p.y() += inst->offset.y();
bb.merge(p);
}
@ -1298,15 +1298,15 @@ void ModelObject::print_info() const
mesh.check_topology();
BoundingBoxf3 bb = mesh.bounding_box();
Sizef3 size = bb.size();
cout << "size_x = " << size.x << endl;
cout << "size_y = " << size.y << endl;
cout << "size_z = " << size.z << endl;
cout << "min_x = " << bb.min.x << endl;
cout << "min_y = " << bb.min.y << endl;
cout << "min_z = " << bb.min.z << endl;
cout << "max_x = " << bb.max.x << endl;
cout << "max_y = " << bb.max.y << endl;
cout << "max_z = " << bb.max.z << endl;
cout << "size_x = " << size.x() << endl;
cout << "size_y = " << size.y() << endl;
cout << "size_z = " << size.z() << endl;
cout << "min_x = " << bb.min.x() << endl;
cout << "min_y = " << bb.min.y() << endl;
cout << "min_z = " << bb.min.z() << endl;
cout << "max_x = " << bb.max.x() << endl;
cout << "max_y = " << bb.max.y() << endl;
cout << "max_z = " << bb.max.z() << endl;
cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl;
cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl;
@ -1397,7 +1397,7 @@ void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) cons
mesh->rotate_z(this->rotation); // rotate around mesh origin
mesh->scale(this->scaling_factor); // scale around mesh origin
if (!dont_translate)
mesh->translate(this->offset.x, this->offset.y, 0);
mesh->translate(this->offset.x(), this->offset.y(), 0);
}
BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mesh, bool dont_translate) const
@ -1420,19 +1420,19 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
if (! empty(bbox)) {
// Scale the bounding box uniformly.
if (std::abs(this->scaling_factor - 1.) > EPSILON) {
bbox.min.x *= float(this->scaling_factor);
bbox.min.y *= float(this->scaling_factor);
bbox.min.z *= float(this->scaling_factor);
bbox.max.x *= float(this->scaling_factor);
bbox.max.y *= float(this->scaling_factor);
bbox.max.z *= float(this->scaling_factor);
bbox.min.x() *= float(this->scaling_factor);
bbox.min.y() *= float(this->scaling_factor);
bbox.min.z() *= float(this->scaling_factor);
bbox.max.x() *= float(this->scaling_factor);
bbox.max.y() *= float(this->scaling_factor);
bbox.max.z() *= float(this->scaling_factor);
}
// Translate the bounding box.
if (! dont_translate) {
bbox.min.x += float(this->offset.x);
bbox.min.y += float(this->offset.y);
bbox.max.x += float(this->offset.x);
bbox.max.y += float(this->offset.y);
bbox.min.x() += float(this->offset.x());
bbox.min.y() += float(this->offset.y());
bbox.max.x() += float(this->offset.x());
bbox.max.y() += float(this->offset.y());
}
}
return bbox;
@ -1442,7 +1442,7 @@ BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, b
{
Eigen::Transform<float, 3, Eigen::Affine> matrix = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
if (!dont_translate)
matrix.translate(Eigen::Vector3f((float)offset.x, (float)offset.y, 0.0f));
matrix.translate(Eigen::Vector3f((float)offset.x(), (float)offset.y(), 0.0f));
matrix.rotate(Eigen::AngleAxisf(rotation, Eigen::Vector3f::UnitZ()));
matrix.scale(scaling_factor);

View file

@ -120,7 +120,7 @@ public:
// A snug bounding box around the transformed non-modifier object volumes.
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
void center_around_origin();
void translate(const Vectorf3 &vector) { this->translate(vector.x, vector.y, vector.z); }
void translate(const Vectorf3 &vector) { this->translate(vector.x(), vector.y(), vector.z()); }
void translate(coordf_t x, coordf_t y, coordf_t z);
void scale(const Pointf3 &versor);
void rotate(float angle, const Axis &axis);

View file

@ -27,16 +27,16 @@ MultiPoint::translate(double x, double y)
void
MultiPoint::translate(const Point &vector)
{
this->translate(vector.x, vector.y);
this->translate(vector.x(), vector.y());
}
void MultiPoint::rotate(double cos_angle, double sin_angle)
{
for (Point &pt : this->points) {
double cur_x = double(pt.x);
double cur_y = double(pt.y);
pt.x = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
pt.y = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
double cur_x = double(pt.x());
double cur_y = double(pt.y());
pt.x() = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
pt.y() = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
}
}
@ -46,10 +46,10 @@ MultiPoint::rotate(double angle, const Point &center)
double s = sin(angle);
double c = cos(angle);
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
double dx = double(it->x - center.x);
double dy = double(it->y - center.y);
it->x = (coord_t)round(double(center.x) + c * dx - s * dy);
it->y = (coord_t)round(double(center.y) + c * dy + s * dx);
double dx = double(it->x() - center.x());
double dy = double(it->y() - center.y());
it->x() = (coord_t)round(double(center.x()) + c * dx - s * dy);
it->y() = (coord_t)round(double(center.y()) + c * dy + s * dx);
}
}
@ -224,7 +224,7 @@ void MultiPoint3::translate(double x, double y)
void MultiPoint3::translate(const Point& vector)
{
translate(vector.x, vector.y);
translate(vector.x(), vector.y());
}
double MultiPoint3::length() const
@ -281,19 +281,19 @@ BoundingBox get_extents_rotated(const Points &points, double angle)
double s = sin(angle);
double c = cos(angle);
Points::const_iterator it = points.begin();
double cur_x = (double)it->x;
double cur_y = (double)it->y;
bbox.min.x = bbox.max.x = (coord_t)round(c * cur_x - s * cur_y);
bbox.min.y = bbox.max.y = (coord_t)round(c * cur_y + s * cur_x);
double cur_x = (double)it->x();
double cur_y = (double)it->y();
bbox.min.x() = bbox.max.x() = (coord_t)round(c * cur_x - s * cur_y);
bbox.min.y() = bbox.max.y() = (coord_t)round(c * cur_y + s * cur_x);
for (++it; it != points.end(); ++it) {
double cur_x = (double)it->x;
double cur_y = (double)it->y;
double cur_x = (double)it->x();
double cur_y = (double)it->y();
coord_t x = (coord_t)round(c * cur_x - s * cur_y);
coord_t y = (coord_t)round(c * cur_y + s * cur_x);
bbox.min.x = std::min(x, bbox.min.x);
bbox.min.y = std::min(y, bbox.min.y);
bbox.max.x = std::max(x, bbox.max.x);
bbox.max.y = std::max(y, bbox.max.y);
bbox.min.x() = std::min(x, bbox.min.x());
bbox.min.y() = std::min(y, bbox.min.y());
bbox.max.x() = std::max(x, bbox.max.x());
bbox.max.y() = std::max(y, bbox.max.y());
}
bbox.defined = true;
}

View file

@ -3,21 +3,13 @@
#include "MultiPoint.hpp"
#include "Int128.hpp"
#include <algorithm>
#include <cmath>
namespace Slic3r {
Point::Point(double x, double y)
{
this->x = lrint(x);
this->y = lrint(y);
}
std::string
Point::wkt() const
std::string Point::wkt() const
{
std::ostringstream ss;
ss << "POINT(" << this->x << " " << this->y << ")";
ss << "POINT(" << this->x() << " " << this->y() << ")";
return ss.str();
}
@ -25,58 +17,58 @@ std::string
Point::dump_perl() const
{
std::ostringstream ss;
ss << "[" << this->x << "," << this->y << "]";
ss << "[" << this->x() << "," << this->y() << "]";
return ss.str();
}
void
Point::scale(double factor)
{
this->x *= factor;
this->y *= factor;
this->x() *= factor;
this->y() *= factor;
}
void
Point::translate(double x, double y)
{
this->x += x;
this->y += y;
this->x() += x;
this->y() += y;
}
void
Point::translate(const Vector &vector)
{
this->translate(vector.x, vector.y);
this->translate(vector.x(), vector.y());
}
void
Point::rotate(double angle)
{
double cur_x = (double)this->x;
double cur_y = (double)this->y;
double cur_x = (double)this->x();
double cur_y = (double)this->y();
double s = sin(angle);
double c = cos(angle);
this->x = (coord_t)round(c * cur_x - s * cur_y);
this->y = (coord_t)round(c * cur_y + s * cur_x);
this->x() = (coord_t)round(c * cur_x - s * cur_y);
this->y() = (coord_t)round(c * cur_y + s * cur_x);
}
void
Point::rotate(double angle, const Point &center)
{
double cur_x = (double)this->x;
double cur_y = (double)this->y;
double cur_x = (double)this->x();
double cur_y = (double)this->y();
double s = sin(angle);
double c = cos(angle);
double dx = cur_x - (double)center.x;
double dy = cur_y - (double)center.y;
this->x = (coord_t)round( (double)center.x + c * dx - s * dy );
this->y = (coord_t)round( (double)center.y + c * dy + s * dx );
double dx = cur_x - (double)center.x();
double dy = cur_y - (double)center.y();
this->x() = (coord_t)round( (double)center.x() + c * dx - s * dy );
this->y() = (coord_t)round( (double)center.y() + c * dy + s * dx );
}
bool
Point::coincides_with_epsilon(const Point &point) const
{
return std::abs(this->x - point.x) < SCALED_EPSILON && std::abs(this->y - point.y) < SCALED_EPSILON;
return std::abs(this->x() - point.x()) < SCALED_EPSILON && std::abs(this->y() - point.y()) < SCALED_EPSILON;
}
int
@ -97,12 +89,12 @@ int Point::nearest_point_index(const PointConstPtrs &points) const
for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
/* If the X distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
double d = sqr<double>(this->x - (*it)->x);
double d = sqr<double>(this->x() - (*it)->x());
if (distance != -1 && d > distance) continue;
/* If the Y distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
d += sqr<double>(this->y - (*it)->y);
d += sqr<double>(this->y() - (*it)->y());
if (distance != -1 && d > distance) continue;
idx = it - points.begin();
@ -137,8 +129,8 @@ Point::nearest_point(const Points &points, Point* point) const
double
Point::distance_to(const Line &line) const
{
const double dx = line.b.x - line.a.x;
const double dy = line.b.y - line.a.y;
const double dx = line.b.x() - line.a.x();
const double dy = line.b.y() - line.a.y();
const double l2 = dx*dx + dy*dy; // avoid a sqrt
if (l2 == 0.0) return this->distance_to(line.a); // line.a == line.b case
@ -146,12 +138,12 @@ Point::distance_to(const Line &line) const
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
// We find projection of this point onto the line.
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
const double t = ((this->x - line.a.x) * dx + (this->y - line.a.y) * dy) / l2;
const double t = ((this->x() - line.a.x()) * dx + (this->y() - line.a.y()) * dy) / l2;
if (t < 0.0) return this->distance_to(line.a); // beyond the 'a' end of the segment
else if (t > 1.0) return this->distance_to(line.b); // beyond the 'b' end of the segment
Point projection(
line.a.x + t * dx,
line.a.y + t * dy
line.a.x() + t * dx,
line.a.y() + t * dy
);
return this->distance_to(projection);
}
@ -161,8 +153,8 @@ Point::perp_distance_to(const Line &line) const
{
if (line.a.coincides_with(line.b)) return this->distance_to(line.a);
double n = (double)(line.b.x - line.a.x) * (double)(line.a.y - this->y)
- (double)(line.a.x - this->x) * (double)(line.b.y - line.a.y);
double n = (double)(line.b.x() - line.a.x()) * (double)(line.a.y() - this->y())
- (double)(line.a.x() - this->x()) * (double)(line.b.y() - line.a.y());
return std::abs(n) / line.length();
}
@ -177,7 +169,7 @@ Point::perp_distance_to(const Line &line) const
double
Point::ccw(const Point &p1, const Point &p2) const
{
return (double)(p2.x - p1.x)*(double)(this->y - p1.y) - (double)(p2.y - p1.y)*(double)(this->x - p1.x);
return (double)(p2.x() - p1.x())*(double)(this->y() - p1.y()) - (double)(p2.y() - p1.y())*(double)(this->x() - p1.x());
}
double
@ -191,8 +183,8 @@ Point::ccw(const Line &line) const
double
Point::ccw_angle(const Point &p1, const Point &p2) const
{
double angle = atan2(p1.x - this->x, p1.y - this->y)
- atan2(p2.x - this->x, p2.y - this->y);
double angle = atan2(p1.x() - this->x(), p1.y() - this->y())
- atan2(p2.x() - this->x(), p2.y() - this->y());
// we only want to return only positive angles
return angle <= 0 ? angle + 2*PI : angle;
@ -229,9 +221,9 @@ Point::projection_onto(const Line &line) const
If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
must be closest to calling Point.
*/
double lx = (double)(line.b.x - line.a.x);
double ly = (double)(line.b.y - line.a.y);
double theta = ( (double)(line.b.x - this->x)*lx + (double)(line.b.y- this->y)*ly )
double lx = (double)(line.b.x() - line.a.x());
double ly = (double)(line.b.y() - line.a.y());
double theta = ( (double)(line.b.x() - this->x())*lx + (double)(line.b.y()- this->y())*ly )
/ ( sqr<double>(lx) + sqr<double>(ly) );
if (0.0 <= theta && theta <= 1.0)
@ -248,26 +240,26 @@ Point::projection_onto(const Line &line) const
Point
Point::negative() const
{
return Point(-this->x, -this->y);
return Point(-this->x(), -this->y());
}
Vector
Point::vector_to(const Point &point) const
{
return Vector(point.x - this->x, point.y - this->y);
return Vector(point.x() - this->x(), point.y() - this->y());
}
std::ostream&
operator<<(std::ostream &stm, const Pointf &pointf)
{
return stm << pointf.x << "," << pointf.y;
return stm << pointf.x() << "," << pointf.y();
}
std::string
Pointf::wkt() const
{
std::ostringstream ss;
ss << "POINT(" << this->x << " " << this->y << ")";
ss << "POINT(" << this->x() << " " << this->y() << ")";
return ss.str();
}
@ -275,105 +267,105 @@ std::string
Pointf::dump_perl() const
{
std::ostringstream ss;
ss << "[" << this->x << "," << this->y << "]";
ss << "[" << this->x() << "," << this->y() << "]";
return ss.str();
}
void
Pointf::scale(double factor)
{
this->x *= factor;
this->y *= factor;
this->x() *= factor;
this->y() *= factor;
}
void
Pointf::translate(double x, double y)
{
this->x += x;
this->y += y;
this->x() += x;
this->y() += y;
}
void
Pointf::translate(const Vectorf &vector)
{
this->translate(vector.x, vector.y);
this->translate(vector.x(), vector.y());
}
void
Pointf::rotate(double angle)
{
double cur_x = this->x;
double cur_y = this->y;
double cur_x = this->x();
double cur_y = this->y();
double s = sin(angle);
double c = cos(angle);
this->x = c * cur_x - s * cur_y;
this->y = c * cur_y + s * cur_x;
this->x() = c * cur_x - s * cur_y;
this->y() = c * cur_y + s * cur_x;
}
void
Pointf::rotate(double angle, const Pointf &center)
{
double cur_x = this->x;
double cur_y = this->y;
double cur_x = this->x();
double cur_y = this->y();
double s = sin(angle);
double c = cos(angle);
double dx = cur_x - center.x;
double dy = cur_y - center.y;
this->x = center.x + c * dx - s * dy;
this->y = center.y + c * dy + s * dx;
double dx = cur_x - center.x();
double dy = cur_y - center.y();
this->x() = center.x() + c * dx - s * dy;
this->y() = center.y() + c * dy + s * dx;
}
Pointf
Pointf::negative() const
{
return Pointf(-this->x, -this->y);
return Pointf(-this->x(), -this->y());
}
Vectorf
Pointf::vector_to(const Pointf &point) const
{
return Vectorf(point.x - this->x, point.y - this->y);
return Vectorf(point.x() - this->x(), point.y() - this->y());
}
void
Pointf3::scale(double factor)
{
Pointf::scale(factor);
this->z *= factor;
this->z() *= factor;
}
void
Pointf3::translate(const Vectorf3 &vector)
{
this->translate(vector.x, vector.y, vector.z);
this->translate(vector.x(), vector.y(), vector.z());
}
void
Pointf3::translate(double x, double y, double z)
{
Pointf::translate(x, y);
this->z += z;
this->z() += z;
}
double
Pointf3::distance_to(const Pointf3 &point) const
{
double dx = ((double)point.x - this->x);
double dy = ((double)point.y - this->y);
double dz = ((double)point.z - this->z);
double dx = ((double)point.x() - this->x());
double dy = ((double)point.y() - this->y());
double dz = ((double)point.z() - this->z());
return sqrt(dx*dx + dy*dy + dz*dz);
}
Pointf3
Pointf3::negative() const
{
return Pointf3(-this->x, -this->y, -this->z);
return Pointf3(-this->x(), -this->y(), -this->z());
}
Vectorf3
Pointf3::vector_to(const Pointf3 &point) const
{
return Vectorf3(point.x - this->x, point.y - this->y, point.z - this->z);
return Vectorf3(point.x() - this->x(), point.y() - this->y(), point.z() - this->z());
}
namespace int128 {
@ -382,12 +374,12 @@ int orient(const Point &p1, const Point &p2, const Point &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
}
int cross(const Point &v1, const Point &v2)
{
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
}
}

View file

@ -2,12 +2,15 @@
#define slic3r_Point_hpp_
#include "libslic3r.h"
#include <cstddef>
#include <vector>
#include <math.h>
#include <cmath>
#include <string>
#include <sstream>
#include <unordered_map>
#include <Eigen/Geometry>
namespace Slic3r {
class Line;
@ -28,24 +31,37 @@ typedef std::vector<Point3> Points3;
typedef std::vector<Pointf> Pointfs;
typedef std::vector<Pointf3> Pointf3s;
// Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type.
typedef Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign> Vec2crd;
typedef Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign> Vec3crd;
// Vector types with a double coordinate base type.
typedef Eigen::Matrix<coordf_t, 2, 1, Eigen::DontAlign> Vec2d;
typedef Eigen::Matrix<coordf_t, 3, 1, Eigen::DontAlign> Vec3d;
class Point
{
public:
typedef coord_t coord_type;
coord_t x;
coord_t y;
Point(coord_t _x = 0, coord_t _y = 0): x(_x), y(_y) {};
Point(int64_t _x, int64_t _y): x(coord_t(_x)), y(coord_t(_y)) {}; // for Clipper
Point(double x, double y);
Vec2crd data;
Point(coord_t x = 0, coord_t y = 0) { data(0) = x; data(1) = y; }
Point(int64_t x, int64_t y) : Point(coord_t(x), coord_t(y)) {} // for Clipper
Point(double x, double y) : Point(lrint(x), lrint(y)) {}
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
bool operator==(const Point& rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
bool operator<(const Point& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }
const coord_t& x() const { return this->data[0]; }
coord_t& x() { return this->data[0]; }
const coord_t& y() const { return this->data[1]; }
coord_t& y() { return this->data[1]; }
Point& operator+=(const Point& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
Point& operator-=(const Point& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
Point& operator*=(const coord_t& rhs) { this->x *= rhs; this->y *= rhs; return *this; }
bool operator==(const Point& rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
bool operator<(const Point& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
Point& operator*=(const coord_t& rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
std::string wkt() const;
std::string dump_perl() const;
@ -56,14 +72,14 @@ public:
void rotate(double angle, const Point &center);
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
bool coincides_with(const Point &point) const { return this->x == point.x && this->y == point.y; }
bool coincides_with(const Point &point) const { return this->x() == point.x() && this->y() == point.y(); }
bool coincides_with_epsilon(const Point &point) const;
int nearest_point_index(const Points &points) const;
int nearest_point_index(const PointConstPtrs &points) const;
int nearest_point_index(const PointPtrs &points) const;
bool nearest_point(const Points &points, Point* point) const;
double distance_to(const Point &point) const { return sqrt(distance_to_sq(point)); }
double distance_to_sq(const Point &point) const { double dx = double(point.x - this->x); double dy = double(point.y - this->y); return dx*dx + dy*dy; }
double distance_to_sq(const Point &point) const { double dx = double(point.x() - this->x()); double dy = double(point.y() - this->y()); return dx*dx + dy*dy; }
double distance_to(const Line &line) const;
double perp_distance_to(const Line &line) const;
double ccw(const Point &p1, const Point &p2) const;
@ -75,11 +91,11 @@ public:
Vector vector_to(const Point &point) const;
};
inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x + point2.x, point1.y + point2.y); }
inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x - point2.x, point1.y - point2.y); }
inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x, scalar * point2.y); }
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }
inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x() + point2.x(), point1.y() + point2.y()); }
inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x() - point2.x(), point1.y() - point2.y()); }
inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x(), scalar * point2.y()); }
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x()) * int64_t(v2.y()) - int64_t(v1.y()) * int64_t(v2.x()); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x()) * int64_t(v2.x()) + int64_t(v1.y()) * int64_t(v2.y()); }
namespace int128 {
@ -95,7 +111,7 @@ int cross(const Point &v1, const Slic3r::Point &v2);
// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
size_t operator()(const Point &pt) const {
return std::hash<coord_t>()(pt.x) ^ std::hash<coord_t>()(pt.y);
return std::hash<coord_t>()(pt.x()) ^ std::hash<coord_t>()(pt.y());
}
};
@ -141,13 +157,13 @@ public:
void insert(const ValueType &value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), value));
m_map.emplace(std::make_pair(Point(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
}
void insert(ValueType &&value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), std::move(value)));
m_map.emplace(std::make_pair(Point(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
}
// Return a pair of <ValueType*, distance_squared>
@ -157,12 +173,12 @@ public:
const ValueType *value_min = nullptr;
double dist_min = std::numeric_limits<double>::max();
// Round pt to a closest grid_cell corner.
Point grid_corner((pt.x+(m_grid_resolution>>1))>>m_grid_log2, (pt.y+(m_grid_resolution>>1))>>m_grid_log2);
Point grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
// For four neighbors of grid_corner:
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
// Range of fragment starts around grid_corner, close to pt.
auto range = m_map.equal_range(Point(grid_corner.x + neighbor_x, grid_corner.y + neighbor_y));
auto range = m_map.equal_range(Point(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
// Find the map entry closest to pt.
for (auto it = range.first; it != range.second; ++it) {
const ValueType &value = it->second;
@ -194,12 +210,16 @@ private:
class Point3 : public Point
{
public:
coord_t z;
explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), z(_z) {};
coord_t m_z;
const coord_t& z() const { return this->m_z; }
coord_t& z() { return this->m_z; }
explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), m_z(_z) {};
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
bool operator==(const Point3 &rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool operator==(const Point3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
bool operator!=(const Point3 &rhs) const { return ! (*this == rhs); }
bool coincides_with(const Point3& rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool coincides_with(const Point3& rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
private:
// Hide the following inherited methods:
bool operator==(const Point &rhs) const;
@ -212,15 +232,17 @@ class Pointf
{
public:
typedef coordf_t coord_type;
coordf_t x;
coordf_t y;
explicit Pointf(coordf_t _x = 0, coordf_t _y = 0): x(_x), y(_y) {};
static Pointf new_unscale(coord_t x, coord_t y) {
return Pointf(unscale(x), unscale(y));
};
static Pointf new_unscale(const Point &p) {
return Pointf(unscale(p.x), unscale(p.y));
};
Vec2d data;
explicit Pointf(coordf_t x = 0, coordf_t y = 0) { data(0) = x; data(1) = y; }
static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p.x()), unscale(p.y())); }
const coordf_t& x() const { return this->data[0]; }
coordf_t& x() { return this->data[0]; }
const coordf_t& y() const { return this->data[1]; }
coordf_t& y() { return this->data[1]; }
std::string wkt() const;
std::string dump_perl() const;
void scale(double factor);
@ -231,39 +253,41 @@ public:
Pointf negative() const;
Vectorf vector_to(const Pointf &point) const;
Pointf& operator+=(const Pointf& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
Pointf& operator-=(const Pointf& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
Pointf& operator*=(const coordf_t& rhs) { this->x *= rhs; this->y *= rhs; return *this; }
Pointf& operator+=(const Pointf& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
Pointf& operator-=(const Pointf& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
Pointf& operator*=(const coordf_t& rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
bool operator==(const Pointf &rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator==(const Pointf &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
bool operator!=(const Pointf &rhs) const { return ! (*this == rhs); }
bool operator< (const Pointf& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }
bool operator< (const Pointf& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
};
inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x + point2.x, point1.y + point2.y); }
inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x - point2.x, point1.y - point2.y); }
inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x * v2.y - v1.y * v2.x; }
inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x * v2.x + v1.y * v2.y; }
inline coordf_t dot(const Pointf &v) { return v.x * v.x + v.y * v.y; }
inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x() + point2.x(), point1.y() + point2.y()); }
inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x() - point2.x(), point1.y() - point2.y()); }
inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x(), scalar * point2.y()); }
inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x(), scalar * point2.y()); }
inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x() * v2.x() + v1.y() * v2.y(); }
inline coordf_t dot(const Pointf &v) { return v.x() * v.x() + v.y() * v.y(); }
inline double length(const Vectorf &v) { return sqrt(dot(v)); }
inline double l2(const Vectorf &v) { return dot(v); }
inline Vectorf normalize(const Vectorf& v)
{
coordf_t len = ::sqrt(sqr(v.x) + sqr(v.y));
coordf_t len = ::sqrt(sqr(v.x()) + sqr(v.y()));
return (len != 0.0) ? 1.0 / len * v : Vectorf(0.0, 0.0);
}
class Pointf3 : public Pointf
{
public:
coordf_t z;
explicit Pointf3(coordf_t _x = 0, coordf_t _y = 0, coordf_t _z = 0): Pointf(_x, _y), z(_z) {};
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) {
return Pointf3(unscale(x), unscale(y), unscale(z));
};
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p.x), unscale(p.y), unscale(p.z)); }
coordf_t m_z;
const coordf_t& z() const { return this->m_z; }
coordf_t& z() { return this->m_z; }
explicit Pointf3(coordf_t _x = 0, coordf_t _y = 0, coordf_t _z = 0): Pointf(_x, _y), m_z(_z) {};
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p.x()), unscale(p.y()), unscale(p.z())); }
void scale(double factor);
void translate(const Vectorf3 &vector);
void translate(double x, double y, double z);
@ -271,7 +295,7 @@ public:
Pointf3 negative() const;
Vectorf3 vector_to(const Pointf3 &point) const;
bool operator==(const Pointf3 &rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool operator==(const Pointf3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
bool operator!=(const Pointf3 &rhs) const { return ! (*this == rhs); }
private:
@ -280,23 +304,23 @@ private:
bool operator!=(const Pointf &rhs) const;
};
inline Pointf3 operator+(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); }
inline Pointf3 operator-(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
inline Pointf3 operator-(const Pointf3& p) { return Pointf3(-p.x, -p.y, -p.z); }
inline Pointf3 operator*(double scalar, const Pointf3& p) { return Pointf3(scalar * p.x, scalar * p.y, scalar * p.z); }
inline Pointf3 operator*(const Pointf3& p, double scalar) { return Pointf3(scalar * p.x, scalar * p.y, scalar * p.z); }
inline Pointf3 cross(const Pointf3& v1, const Pointf3& v2) { return Pointf3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x); }
inline coordf_t dot(const Pointf3& v1, const Pointf3& v2) { return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; }
inline Pointf3 operator+(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x() + p2.x(), p1.y() + p2.y(), p1.z() + p2.z()); }
inline Pointf3 operator-(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x() - p2.x(), p1.y() - p2.y(), p1.z() - p2.z()); }
inline Pointf3 operator-(const Pointf3& p) { return Pointf3(-p.x(), -p.y(), -p.z()); }
inline Pointf3 operator*(double scalar, const Pointf3& p) { return Pointf3(scalar * p.x(), scalar * p.y(), scalar * p.z()); }
inline Pointf3 operator*(const Pointf3& p, double scalar) { return Pointf3(scalar * p.x(), scalar * p.y(), scalar * p.z()); }
inline Pointf3 cross(const Pointf3& v1, const Pointf3& v2) { return Pointf3(v1.y() * v2.z() - v1.z() * v2.y(), v1.z() * v2.x() - v1.x() * v2.z(), v1.x() * v2.y() - v1.y() * v2.x()); }
inline coordf_t dot(const Pointf3& v1, const Pointf3& v2) { return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z(); }
inline Pointf3 normalize(const Pointf3& v)
{
coordf_t len = ::sqrt(sqr(v.x) + sqr(v.y) + sqr(v.z));
coordf_t len = ::sqrt(sqr(v.x()) + sqr(v.y()) + sqr(v.z()));
return (len != 0.0) ? 1.0 / len * v : Pointf3(0.0, 0.0, 0.0);
}
template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y())); }
template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y())); }
template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y()), typename TO::coord_type(src.z())); }
template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y()), typename TO::coord_type(src.z())); }
} // namespace Slic3r
@ -312,7 +336,7 @@ namespace boost { namespace polygon {
typedef coord_t coordinate_type;
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? point.x : point.y;
return (orient == HORIZONTAL) ? (coordinate_type)point.x() : (coordinate_type)point.y();
}
};
@ -321,14 +345,14 @@ namespace boost { namespace polygon {
typedef coord_t coordinate_type;
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
if (orient == HORIZONTAL)
point.x = value;
point.x() = value;
else
point.y = value;
point.y() = value;
}
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
Slic3r::Point retval;
retval.x = x_value;
retval.y = y_value;
retval.x() = x_value;
retval.y() = y_value;
return retval;
}
};

View file

@ -88,7 +88,7 @@ int64_t Polygon::area2x() const
int64_t a = 0;
for (size_t i = 0, j = n - 1; i < n; ++i)
a += int64_t(poly[j].x + poly[i].x) * int64_t(poly[j].y - poly[i].y);
a += int64_t(poly[j].x() + poly[i].x()) * int64_t(poly[j].y() - poly[i].y());
j = i;
}
return -a * 0.5;
@ -103,7 +103,7 @@ double Polygon::area() const
double a = 0.;
for (size_t i = 0, j = n - 1; i < n; ++i) {
a += ((double)points[j].x + (double)points[i].x) * ((double)points[i].y - (double)points[j].y);
a += ((double)points[j].x() + (double)points[i].x()) * ((double)points[i].y() - (double)points[j].y());
j = i;
}
return 0.5 * a;
@ -157,17 +157,17 @@ Polygon::contains(const Point &point) const
Points::const_iterator i = this->points.begin();
Points::const_iterator j = this->points.end() - 1;
for (; i != this->points.end(); j = i++) {
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y well.
// Does the ray with y == point.y intersect this line segment?
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y() well.
// Does the ray with y == point.y() intersect this line segment?
#if 1
if ( ((i->y > point.y) != (j->y > point.y))
&& ((double)point.x < (double)(j->x - i->x) * (double)(point.y - i->y) / (double)(j->y - i->y) + (double)i->x) )
if ( ((i->y() > point.y()) != (j->y() > point.y()))
&& ((double)point.x() < (double)(j->x() - i->x()) * (double)(point.y() - i->y()) / (double)(j->y() - i->y()) + (double)i->x()) )
result = !result;
#else
if ((i->y > point.y) != (j->y > point.y)) {
if ((i->y() > point.y()) != (j->y() > point.y())) {
// Orientation predicated relative to i-th point.
double orient = (double)(point.x - i->x) * (double)(j->y - i->y) - (double)(point.y - i->y) * (double)(j->x - i->x);
if ((i->y > j->y) ? (orient > 0.) : (orient < 0.))
double orient = (double)(point.x() - i->x()) * (double)(j->y() - i->y()) - (double)(point.y() - i->y()) * (double)(j->x() - i->x());
if ((i->y() > j->y()) ? (orient > 0.) : (orient < 0.))
result = !result;
}
#endif
@ -225,8 +225,8 @@ Polygon::centroid() const
Polyline polyline = this->split_at_first_point();
for (Points::const_iterator point = polyline.points.begin(); point != polyline.points.end() - 1; ++point) {
x_temp += (double)( point->x + (point+1)->x ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
y_temp += (double)( point->y + (point+1)->y ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
x_temp += (double)( point->x() + (point+1)->x() ) * ( (double)point->x()*(point+1)->y() - (double)(point+1)->x()*point->y() );
y_temp += (double)( point->y() + (point+1)->y() ) * ( (double)point->x()*(point+1)->y() - (double)(point+1)->x()*point->y() );
}
return Point(x_temp/(6*area_temp), y_temp/(6*area_temp));
@ -238,7 +238,7 @@ Polygon::wkt() const
std::ostringstream wkt;
wkt << "POLYGON((";
for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) {
wkt << p->x << " " << p->y;
wkt << p->x() << " " << p->y();
if (p != this->points.end()-1) wkt << ",";
}
wkt << "))";
@ -312,13 +312,13 @@ Point Polygon::point_projection(const Point &point) const
dmin = d;
proj = pt1;
}
Pointf v1(coordf_t(pt1.x - pt0.x), coordf_t(pt1.y - pt0.y));
Pointf v1(coordf_t(pt1.x() - pt0.x()), coordf_t(pt1.y() - pt0.y()));
coordf_t div = dot(v1);
if (div > 0.) {
Pointf v2(coordf_t(point.x - pt0.x), coordf_t(point.y - pt0.y));
Pointf v2(coordf_t(point.x() - pt0.x()), coordf_t(point.y() - pt0.y()));
coordf_t t = dot(v1, v2) / div;
if (t > 0. && t < 1.) {
Point foot(coord_t(floor(coordf_t(pt0.x) + t * v1.x + 0.5)), coord_t(floor(coordf_t(pt0.y) + t * v1.y + 0.5)));
Point foot(coord_t(floor(coordf_t(pt0.x()) + t * v1.x() + 0.5)), coord_t(floor(coordf_t(pt0.y()) + t * v1.y() + 0.5)));
d = foot.distance_to(point);
if (d < dmin) {
dmin = d;
@ -376,12 +376,12 @@ static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
{
Point v1 = p2 - p1;
Point v2 = p3 - p2;
int64_t dir = int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y);
int64_t dir = int64_t(v1.x()) * int64_t(v2.x()) + int64_t(v1.y()) * int64_t(v2.y());
if (dir > 0)
// p3 does not turn back to p1. Do not remove p2.
return false;
double l2_1 = double(v1.x) * double(v1.x) + double(v1.y) * double(v1.y);
double l2_2 = double(v2.x) * double(v2.x) + double(v2.y) * double(v2.y);
double l2_1 = double(v1.x()) * double(v1.x()) + double(v1.y()) * double(v1.y());
double l2_2 = double(v2.x()) * double(v2.x()) + double(v2.y()) * double(v2.y());
if (dir == 0)
// p1, p2, p3 may make a perpendicular corner, or there is a zero edge length.
// Remove p2 if it is coincident with p1 or p2.
@ -389,7 +389,7 @@ static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
// p3 turns back to p1 after p2. Are p1, p2, p3 collinear?
// Calculate distance from p3 to a segment (p1, p2) or from p1 to a segment(p2, p3),
// whichever segment is longer
double cross = double(v1.x) * double(v2.y) - double(v2.x) * double(v1.y);
double cross = double(v1.x()) * double(v2.y()) - double(v2.x()) * double(v1.y());
double dist2 = cross * cross / std::max(l2_1, l2_2);
return dist2 < EPSILON * EPSILON;
}

View file

@ -27,7 +27,7 @@ public:
static Polygon new_scale(std::vector<Pointf> points) {
Points int_points;
for (auto pt : points)
int_points.push_back(Point::new_scale(pt.x, pt.y));
int_points.push_back(Point::new_scale(pt.x(), pt.y()));
return Polygon(int_points);
}
Polygon& operator=(const Polygon &other) { points = other.points; return *this; }

View file

@ -33,7 +33,7 @@ Polyline::leftmost_point() const
{
Point p = this->points.front();
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++it) {
if (it->x < p.x) p = *it;
if (it->x() < p.x()) p = *it;
}
return p;
}
@ -214,7 +214,7 @@ Polyline::wkt() const
std::ostringstream wkt;
wkt << "LINESTRING((";
for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) {
wkt << p->x << " " << p->y;
wkt << p->x() << " " << p->y();
if (p != this->points.end()-1) wkt << ",";
}
wkt << "))";

View file

@ -25,7 +25,7 @@ public:
Polyline pl;
Points int_points;
for (auto pt : points)
int_points.push_back(Point::new_scale(pt.x, pt.y));
int_points.push_back(Point::new_scale(pt.x(), pt.y()));
pl.append(int_points);
return pl;
}

View file

@ -15,9 +15,9 @@ inline int nearest_point_index(const std::vector<Chaining> &pairs, const Point &
T dmin = std::numeric_limits<T>::max();
int idx = 0;
for (std::vector<Chaining>::const_iterator it = pairs.begin(); it != pairs.end(); ++it) {
T d = sqr(T(start_near.x - it->first.x));
T d = sqr(T(start_near.x() - it->first.x()));
if (d <= dmin) {
d += sqr(T(start_near.y - it->first.y));
d += sqr(T(start_near.y() - it->first.y()));
if (d < dmin) {
idx = (it - pairs.begin()) * 2;
dmin = d;
@ -26,9 +26,9 @@ inline int nearest_point_index(const std::vector<Chaining> &pairs, const Point &
}
}
if (! no_reverse) {
d = sqr(T(start_near.x - it->last.x));
d = sqr(T(start_near.x() - it->last.x()));
if (d <= dmin) {
d += sqr(T(start_near.y - it->last.y));
d += sqr(T(start_near.y() - it->last.y()));
if (d < dmin) {
idx = (it - pairs.begin()) * 2 + 1;
dmin = d;
@ -82,7 +82,7 @@ Point PolylineCollection::leftmost_point(const Polylines &polylines)
Point p = it->leftmost_point();
for (++ it; it != polylines.end(); ++it) {
Point p2 = it->leftmost_point();
if (p2.x < p.x)
if (p2.x() < p.x())
p = p2;
}
return p;

View file

@ -538,9 +538,9 @@ bool Print::has_skirt() const
std::string Print::validate() const
{
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(config.bed_shape.values));
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x), unscale(bed_box_2D.min.y), 0.0), Pointf3(unscale(bed_box_2D.max.x), unscale(bed_box_2D.max.y), config.max_print_height));
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x()), unscale(bed_box_2D.min.y()), 0.0), Pointf3(unscale(bed_box_2D.max.x()), unscale(bed_box_2D.max.y()), config.max_print_height));
// Allow the objects to protrude below the print bed, only the part of the object above the print bed will be sliced.
print_volume.min.z = -1e10;
print_volume.min.z() = -1e10;
unsigned int printable_count = 0;
for (PrintObject *po : this->objects) {
po->model_object()->check_instances_print_volume_state(print_volume);
@ -585,7 +585,7 @@ std::string Print::validate() const
{
std::vector<coord_t> object_height;
for (const PrintObject *object : this->objects)
object_height.insert(object_height.end(), object->copies().size(), object->size.z);
object_height.insert(object_height.end(), object->copies().size(), object->size.z());
std::sort(object_height.begin(), object_height.end());
// Ignore the tallest *copy* (this is why we repeat height for all of them):
// it will be printed as last one so its height doesn't matter.

View file

@ -2067,7 +2067,7 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
ConfigOptionPoint p;
p.deserialize(value);
std::ostringstream oss;
oss << "0x0," << p.value.x << "x0," << p.value.x << "x" << p.value.y << ",0x" << p.value.y;
oss << "0x0," << p.value.x() << "x0," << p.value.x() << "x" << p.value.y() << ",0x" << p.value.y();
value = oss.str();
// Maybe one day we will rename octoprint_host to print_host as it has been done in the upstream Slic3r.
// Commenting this out fixes github issue #869 for now.

View file

@ -48,10 +48,10 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
this->_copies_shift = Point::new_scale(modobj_bbox.min.x, modobj_bbox.min.y);
this->_copies_shift = Point::new_scale(modobj_bbox.min.x(), modobj_bbox.min.y());
// Scale the object size and store it
Pointf3 size = modobj_bbox.size();
this->size = Point3::new_scale(size.x, size.y, size.z);
this->size = Point3::new_scale(size.x(), size.y(), size.z());
}
this->reload_model_instances();
@ -62,7 +62,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
bool PrintObject::add_copy(const Pointf &point)
{
Points points = this->_copies;
points.push_back(Point::new_scale(point.x, point.y));
points.push_back(Point::new_scale(point.x(), point.y()));
return this->set_copies(points);
}
@ -104,7 +104,7 @@ bool PrintObject::reload_model_instances()
for (const ModelInstance *mi : this->_model_object->instances)
{
if (mi->is_printable())
copies.emplace_back(Point::new_scale(mi->offset.x, mi->offset.y));
copies.emplace_back(Point::new_scale(mi->offset.x(), mi->offset.y()));
}
return this->set_copies(copies);
}
@ -1122,7 +1122,7 @@ SlicingParameters PrintObject::slicing_parameters() const
{
return SlicingParameters::create_from_config(
this->print()->config, this->config,
unscale(this->size.z), this->print()->object_extruders());
unscale(this->size.z()), this->print()->object_extruders());
}
bool PrintObject::update_layer_height_profile(std::vector<coordf_t> &layer_height_profile) const
@ -1336,7 +1336,7 @@ std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::
// consider the first one
this->model_object()->instances.front()->transform_mesh(&mesh, true);
// align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
mesh.translate(- float(unscale(this->_copies_shift.x)), - float(unscale(this->_copies_shift.y)), -float(this->model_object()->bounding_box().min.z));
mesh.translate(- float(unscale(this->_copies_shift.x())), - float(unscale(this->_copies_shift.y())), -float(this->model_object()->bounding_box().min.z()));
// perform actual slicing
TriangleMeshSlicer mslicer(&mesh);
mslicer.slice(z, &layers);

View file

@ -32,8 +32,8 @@ bool SVG::open(const char* afilename, const BoundingBox &bbox, const coord_t bbo
this->f = boost::nowide::fopen(afilename, "w");
if (f == NULL)
return false;
float w = COORD(bbox.max.x - bbox.min.x + 2 * bbox_offset);
float h = COORD(bbox.max.y - bbox.min.y + 2 * bbox_offset);
float w = COORD(bbox.max.x() - bbox.min.x() + 2 * bbox_offset);
float h = COORD(bbox.max.y() - bbox.min.y() + 2 * bbox_offset);
fprintf(this->f,
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
@ -50,7 +50,7 @@ SVG::draw(const Line &line, std::string stroke, coordf_t stroke_width)
{
fprintf(this->f,
" <line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" style=\"stroke: %s; stroke-width: %f\"",
COORD(line.a.x - origin.x), COORD(line.a.y - origin.y), COORD(line.b.x - origin.x), COORD(line.b.y - origin.y), stroke.c_str(), (stroke_width == 0) ? 1.f : COORD(stroke_width));
COORD(line.a.x() - origin.x()), COORD(line.a.y() - origin.y()), COORD(line.b.x() - origin.x()), COORD(line.b.y() - origin.y()), stroke.c_str(), (stroke_width == 0) ? 1.f : COORD(stroke_width));
if (this->arrows)
fprintf(this->f, " marker-end=\"url(#endArrow)\"");
fprintf(this->f, "/>\n");
@ -58,21 +58,21 @@ SVG::draw(const Line &line, std::string stroke, coordf_t stroke_width)
void SVG::draw(const ThickLine &line, const std::string &fill, const std::string &stroke, coordf_t stroke_width)
{
Pointf dir(line.b.x-line.a.x, line.b.y-line.a.y);
Pointf perp(-dir.y, dir.x);
coordf_t len = sqrt(perp.x*perp.x + perp.y*perp.y);
Pointf dir(line.b.x()-line.a.x(), line.b.y()-line.a.y());
Pointf perp(-dir.y(), dir.x());
coordf_t len = sqrt(perp.x()*perp.x() + perp.y()*perp.y());
coordf_t da = coordf_t(0.5)*line.a_width/len;
coordf_t db = coordf_t(0.5)*line.b_width/len;
fprintf(this->f,
" <polygon points=\"%f,%f %f,%f %f,%f %f,%f\" style=\"fill:%s; stroke: %s; stroke-width: %f\"/>\n",
COORD(line.a.x-da*perp.x-origin.x),
COORD(line.a.y-da*perp.y-origin.y),
COORD(line.b.x-db*perp.x-origin.x),
COORD(line.b.y-db*perp.y-origin.y),
COORD(line.b.x+db*perp.x-origin.x),
COORD(line.b.y+db*perp.y-origin.y),
COORD(line.a.x+da*perp.x-origin.x),
COORD(line.a.y+da*perp.y-origin.y),
COORD(line.a.x()-da*perp.x()-origin.x()),
COORD(line.a.y()-da*perp.y()-origin.y()),
COORD(line.b.x()-db*perp.x()-origin.x()),
COORD(line.b.y()-db*perp.y()-origin.y()),
COORD(line.b.x()+db*perp.x()-origin.x()),
COORD(line.b.y()+db*perp.y()-origin.y()),
COORD(line.a.x()+da*perp.x()-origin.x()),
COORD(line.a.y()+da*perp.y()-origin.y()),
fill.c_str(), stroke.c_str(),
(stroke_width == 0) ? 1.f : COORD(stroke_width));
}
@ -220,7 +220,7 @@ SVG::draw(const Point &point, std::string fill, coord_t iradius)
{
float radius = (iradius == 0) ? 3.f : COORD(iradius);
std::ostringstream svg;
svg << " <circle cx=\"" << COORD(point.x - origin.x) << "\" cy=\"" << COORD(point.y - origin.y)
svg << " <circle cx=\"" << COORD(point.x() - origin.x()) << "\" cy=\"" << COORD(point.y() - origin.y())
<< "\" r=\"" << radius << "\" "
<< "style=\"stroke: none; fill: " << fill << "\" />";
@ -287,8 +287,8 @@ SVG::get_path_d(const MultiPoint &mp, bool closed) const
std::ostringstream d;
d << "M ";
for (Points::const_iterator p = mp.points.begin(); p != mp.points.end(); ++p) {
d << COORD(p->x - origin.x) << " ";
d << COORD(p->y - origin.y) << " ";
d << COORD(p->x() - origin.x()) << " ";
d << COORD(p->y() - origin.y()) << " ";
}
if (closed) d << "z";
return d.str();
@ -300,8 +300,8 @@ SVG::get_path_d(const ClipperLib::Path &path, double scale, bool closed) const
std::ostringstream d;
d << "M ";
for (ClipperLib::Path::const_iterator p = path.begin(); p != path.end(); ++p) {
d << COORD(scale * p->X - origin.x) << " ";
d << COORD(scale * p->Y - origin.y) << " ";
d << COORD(scale * p->X - origin.x()) << " ";
d << COORD(scale * p->Y - origin.y()) << " ";
}
if (closed) d << "z";
return d.str();
@ -311,8 +311,8 @@ void SVG::draw_text(const Point &pt, const char *text, const char *color)
{
fprintf(this->f,
"<text x=\"%f\" y=\"%f\" font-family=\"sans-serif\" font-size=\"20px\" fill=\"%s\">%s</text>",
COORD(pt.x-origin.x),
COORD(pt.y-origin.y),
COORD(pt.x()-origin.x()),
COORD(pt.y()-origin.y()),
color, text);
}
@ -320,13 +320,13 @@ void SVG::draw_legend(const Point &pt, const char *text, const char *color)
{
fprintf(this->f,
"<circle cx=\"%f\" cy=\"%f\" r=\"10\" fill=\"%s\"/>",
COORD(pt.x-origin.x),
COORD(pt.y-origin.y),
COORD(pt.x()-origin.x()),
COORD(pt.y()-origin.y()),
color);
fprintf(this->f,
"<text x=\"%f\" y=\"%f\" font-family=\"sans-serif\" font-size=\"10px\" fill=\"%s\">%s</text>",
COORD(pt.x-origin.x) + 20.f,
COORD(pt.y-origin.y),
COORD(pt.x()-origin.x()) + 20.f,
COORD(pt.y()-origin.y()),
"black", text);
}

View file

@ -608,17 +608,17 @@ int generate_layer_height_texture(
coordf_t intensity = cos(M_PI * 0.7 * (mid - z) / h);
// Color mapping from layer height to RGB.
Pointf3 color(
intensity * lerp(coordf_t(color1.x), coordf_t(color2.x), t),
intensity * lerp(coordf_t(color1.y), coordf_t(color2.y), t),
intensity * lerp(coordf_t(color1.z), coordf_t(color2.z), t));
intensity * lerp(coordf_t(color1.x()), coordf_t(color2.x()), t),
intensity * lerp(coordf_t(color1.y()), coordf_t(color2.y()), t),
intensity * lerp(coordf_t(color1.z()), coordf_t(color2.z()), t));
int row = cell / (cols - 1);
int col = cell - row * (cols - 1);
assert(row >= 0 && row < rows);
assert(col >= 0 && col < cols);
unsigned char *ptr = (unsigned char*)data + (row * cols + col) * 4;
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color.x + 0.5)));
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color.y + 0.5)));
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color.z + 0.5)));
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color.x() + 0.5)));
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color.y() + 0.5)));
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color.z() + 0.5)));
ptr[3] = 255;
if (col == 0 && row > 0) {
// Duplicate the first value in a row as a last value of the preceding row.
@ -640,17 +640,17 @@ int generate_layer_height_texture(
const Point3 &color2 = palette_raw[idx2];
// Color mapping from layer height to RGB.
Pointf3 color(
lerp(coordf_t(color1.x), coordf_t(color2.x), t),
lerp(coordf_t(color1.y), coordf_t(color2.y), t),
lerp(coordf_t(color1.z), coordf_t(color2.z), t));
lerp(coordf_t(color1.x()), coordf_t(color2.x()), t),
lerp(coordf_t(color1.y()), coordf_t(color2.y()), t),
lerp(coordf_t(color1.z()), coordf_t(color2.z()), t));
int row = cell / (cols1 - 1);
int col = cell - row * (cols1 - 1);
assert(row >= 0 && row < rows/2);
assert(col >= 0 && col < cols/2);
unsigned char *ptr = data1 + (row * cols1 + col) * 4;
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color.x + 0.5)));
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color.y + 0.5)));
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color.z + 0.5)));
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color.x() + 0.5)));
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color.y() + 0.5)));
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color.z() + 0.5)));
ptr[3] = 255;
if (col == 0 && row > 0) {
// Duplicate the first value in a row as a last value of the preceding row.

View file

@ -67,9 +67,9 @@ Point export_support_surface_type_legend_to_svg_box_size()
void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
{
// 1st row
coord_t pos_x0 = pos.x + scale_(1.);
coord_t pos_x0 = pos.x() + scale_(1.);
coord_t pos_x = pos_x0;
coord_t pos_y = pos.y + scale_(1.5);
coord_t pos_y = pos.y() + scale_(1.5);
coord_t step_x = scale_(10.);
svg.draw_legend(Point(pos_x, pos_y), "top contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
pos_x += step_x;
@ -82,7 +82,7 @@ void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
// 2nd row
pos_x = pos_x0;
pos_y = pos.y+scale_(2.8);
pos_y = pos.y()+scale_(2.8);
svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "raft base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
@ -98,8 +98,8 @@ void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial
for (int i = 0; i < n_layers; ++ i)
bbox.merge(get_extents(layers[i]->polygons));
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (int i = 0; i < n_layers; ++ i)
@ -120,8 +120,8 @@ void export_print_z_polygons_and_extrusions_to_svg(
for (int i = 0; i < n_layers; ++ i)
bbox.merge(get_extents(layers[i]->polygons));
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (int i = 0; i < n_layers; ++ i)
@ -519,12 +519,12 @@ public:
Points::const_iterator i = contour.points.begin();
Points::const_iterator j = contour.points.end() - 1;
for (; i != contour.points.end(); j = i ++) {
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y well.
// Does the ray with y == point.y intersect this line segment?
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y() well.
// Does the ray with y == point.y() intersect this line segment?
for (auto &sample_inside : samples_inside) {
if ((i->y > sample_inside.first.y) != (j->y > sample_inside.first.y)) {
double x1 = (double)sample_inside.first.x;
double x2 = (double)i->x + (double)(j->x - i->x) * (double)(sample_inside.first.y - i->y) / (double)(j->y - i->y);
if ((i->y() > sample_inside.first.y()) != (j->y() > sample_inside.first.y())) {
double x1 = (double)sample_inside.first.x();
double x2 = (double)i->x() + (double)(j->x() - i->x()) * (double)(sample_inside.first.y() - i->y()) / (double)(j->y() - i->y());
if (x1 < x2)
sample_inside.second = !sample_inside.second;
}
@ -585,11 +585,11 @@ private:
const Point &p3 = (pt_min == &expoly.contour.points.back()) ? expoly.contour.points.front() : *(pt_min + 1);
Vector v = (p3 - p2) + (p1 - p2);
double l2 = double(v.x)*double(v.x)+double(v.y)*double(v.y);
double l2 = double(v.x())*double(v.x())+double(v.y())*double(v.y());
if (l2 == 0.)
return p2;
double coef = 20. / sqrt(l2);
return Point(p2.x + coef * v.x, p2.y + coef * v.y);
return Point(p2.x() + coef * v.x(), p2.y() + coef * v.y());
}
static Points island_samples(const ExPolygons &expolygons)
@ -789,7 +789,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
// workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
for (Polyline &polyline : overhang_perimeters)
polyline.points[0].x += 1;
polyline.points[0].x() += 1;
// Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
@ -2057,8 +2057,8 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
const Point &p1 = *(it-1);
const Point &p2 = *it;
// Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
const Pointf v_seg(coordf_t(p2.x) - coordf_t(p1.x), coordf_t(p2.y) - coordf_t(p1.y));
const Pointf v_cntr(coordf_t(p1.x - center_last.x), coordf_t(p1.y - center_last.y));
const Pointf v_seg(coordf_t(p2.x()) - coordf_t(p1.x()), coordf_t(p2.y()) - coordf_t(p1.y()));
const Pointf v_cntr(coordf_t(p1.x() - center_last.x()), coordf_t(p1.y() - center_last.y()));
coordf_t a = dot(v_seg);
coordf_t b = 2. * dot(v_seg, v_cntr);
coordf_t c = dot(v_cntr) - circle_distance * circle_distance;
@ -2081,7 +2081,7 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
}
seg_current_pt = &p1;
seg_current_t = t;
center_last = Point(p1.x + coord_t(v_seg.x * t), p1.y + coord_t(v_seg.y * t));
center_last = Point(p1.x() + coord_t(v_seg.x() * t), p1.y() + coord_t(v_seg.y() * t));
// It has been verified that the new point is far enough from center_last.
// Ensure, that it is far enough from all the centers.
std::pair<const Point*, coordf_t> circle_closest = circle_centers_lookup.find(center_last);
@ -2887,9 +2887,9 @@ void PrintObjectSupportMaterial::clip_by_pillars(
BoundingBox bbox;
for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
bbox.merge(get_extents((*it)->polygons));
grid.reserve(size_t(ceil(bb.size().x / pillar_spacing)) * size_t(ceil(bb.size().y / pillar_spacing)));
for (coord_t x = bb.min.x; x <= bb.max.x - pillar_size; x += pillar_spacing) {
for (coord_t y = bb.min.y; y <= bb.max.y - pillar_size; y += pillar_spacing) {
grid.reserve(size_t(ceil(bb.size().x() / pillar_spacing)) * size_t(ceil(bb.size().y() / pillar_spacing)));
for (coord_t x = bb.min.x(); x <= bb.max.x() - pillar_size; x += pillar_spacing) {
for (coord_t y = bb.min.y(); y <= bb.max.y() - pillar_size; y += pillar_spacing) {
grid.push_back(pillar);
for (size_t i = 0; i < pillar.points.size(); ++ i)
grid.back().points[i].translate(Point(x, y));

View file

@ -106,9 +106,9 @@ Point export_surface_type_legend_to_svg_box_size()
void export_surface_type_legend_to_svg(SVG &svg, const Point &pos)
{
// 1st row
coord_t pos_x0 = pos.x + scale_(1.);
coord_t pos_x0 = pos.x() + scale_(1.);
coord_t pos_x = pos_x0;
coord_t pos_y = pos.y + scale_(1.5);
coord_t pos_y = pos.y() + scale_(1.5);
coord_t step_x = scale_(10.);
svg.draw_legend(Point(pos_x, pos_y), "perimeter" , surface_type_to_color_name(stPerimeter));
pos_x += step_x;
@ -121,7 +121,7 @@ void export_surface_type_legend_to_svg(SVG &svg, const Point &pos)
svg.draw_legend(Point(pos_x, pos_y), "invalid" , surface_type_to_color_name(SurfaceType(-1)));
// 2nd row
pos_x = pos_x0;
pos_y = pos.y+scale_(2.8);
pos_y = pos.y()+scale_(2.8);
svg.draw_legend(Point(pos_x, pos_y), "internal" , surface_type_to_color_name(stInternal));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "internal solid" , surface_type_to_color_name(stInternalSolid));

View file

@ -170,8 +170,8 @@ void SurfaceCollection::export_to_svg(const char *path, bool show_labels)
for (Surfaces::const_iterator surface = this->surfaces.begin(); surface != this->surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
Point legend_pos(bbox.min.x(), bbox.max.y());
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
SVG svg(path, bbox);
const float transparency = 0.5f;

View file

@ -52,20 +52,20 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Point3>& fa
for (int i = 0; i < stl.stats.number_of_facets; i++) {
stl_facet facet;
const Pointf3& ref_f1 = points[facets[i].x];
facet.vertex[0].x = ref_f1.x;
facet.vertex[0].y = ref_f1.y;
facet.vertex[0].z = ref_f1.z;
const Pointf3& ref_f1 = points[facets[i].x()];
facet.vertex[0].x = ref_f1.x();
facet.vertex[0].y = ref_f1.y();
facet.vertex[0].z = ref_f1.z();
const Pointf3& ref_f2 = points[facets[i].y];
facet.vertex[1].x = ref_f2.x;
facet.vertex[1].y = ref_f2.y;
facet.vertex[1].z = ref_f2.z;
const Pointf3& ref_f2 = points[facets[i].y()];
facet.vertex[1].x = ref_f2.x();
facet.vertex[1].y = ref_f2.y();
facet.vertex[1].z = ref_f2.z();
const Pointf3& ref_f3 = points[facets[i].z];
facet.vertex[2].x = ref_f3.x;
facet.vertex[2].y = ref_f3.y;
facet.vertex[2].z = ref_f3.z;
const Pointf3& ref_f3 = points[facets[i].z()];
facet.vertex[2].x = ref_f3.x();
facet.vertex[2].y = ref_f3.y();
facet.vertex[2].z = ref_f3.z();
facet.extra[0] = 0;
facet.extra[1] = 0;
@ -303,9 +303,9 @@ void TriangleMesh::scale(float factor)
void TriangleMesh::scale(const Pointf3 &versor)
{
float fversor[3];
fversor[0] = versor.x;
fversor[1] = versor.y;
fversor[2] = versor.z;
fversor[0] = versor.x();
fversor[1] = versor.y();
fversor[2] = versor.z();
stl_scale_versor(&this->stl, fversor);
stl_invalidate_shared_vertices(&this->stl);
}
@ -400,9 +400,9 @@ void TriangleMesh::rotate(double angle, Point* center)
{
if (angle == 0.)
return;
this->translate(float(-center->x), float(-center->y), 0);
this->translate(float(-center->x()), float(-center->y()), 0);
stl_rotate_z(&(this->stl), (float)angle);
this->translate(float(+center->x), float(+center->y), 0);
this->translate(float(+center->x()), float(+center->y()), 0);
}
bool TriangleMesh::has_multiple_patches() const
@ -588,12 +588,12 @@ TriangleMesh::bounding_box() const
{
BoundingBoxf3 bb;
bb.defined = true;
bb.min.x = this->stl.stats.min.x;
bb.min.y = this->stl.stats.min.y;
bb.min.z = this->stl.stats.min.z;
bb.max.x = this->stl.stats.max.x;
bb.max.y = this->stl.stats.max.y;
bb.max.z = this->stl.stats.max.z;
bb.min.x() = this->stl.stats.min.x;
bb.min.y() = this->stl.stats.min.y;
bb.min.z() = this->stl.stats.min.z;
bb.max.x() = this->stl.stats.max.x;
bb.max.y() = this->stl.stats.max.y;
bb.max.z() = this->stl.stats.max.z;
return bb;
}
@ -813,10 +813,10 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
std::swap(a_id, b_id);
const stl_vertex *a = &this->v_scaled_shared[a_id];
const stl_vertex *b = &this->v_scaled_shared[b_id];
il.a.x = a->x;
il.a.y = a->y;
il.b.x = b->x;
il.b.y = b->y;
il.a.x() = a->x;
il.a.y() = a->y;
il.b.x() = b->x;
il.b.y() = b->y;
il.a_id = a_id;
il.b_id = b_id;
(*lines)[layer_idx].push_back(il);
@ -894,10 +894,10 @@ bool TriangleMeshSlicer::slice_facet(
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
line_out->edge_type = feBottom;
}
line_out->a.x = a->x;
line_out->a.y = a->y;
line_out->b.x = b->x;
line_out->b.y = b->y;
line_out->a.x() = a->x;
line_out->a.y() = a->y;
line_out->b.x() = b->x;
line_out->b.y() = b->y;
line_out->a_id = a_id;
line_out->b_id = b_id;
return true;
@ -907,21 +907,21 @@ bool TriangleMeshSlicer::slice_facet(
// Only point a alings with the cutting plane.
points_on_layer[num_points_on_layer ++] = num_points;
IntersectionPoint &point = points[num_points ++];
point.x = a->x;
point.y = a->y;
point.x() = a->x;
point.y() = a->y;
point.point_id = a_id;
} else if (b->z == slice_z) {
// Only point b alings with the cutting plane.
points_on_layer[num_points_on_layer ++] = num_points;
IntersectionPoint &point = points[num_points ++];
point.x = b->x;
point.y = b->y;
point.x() = b->x;
point.y() = b->y;
point.point_id = b_id;
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
// A general case. The face edge intersects the cutting plane. Calculate the intersection point.
IntersectionPoint &point = points[num_points ++];
point.x = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
point.y = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
point.x() = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
point.y() = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
point.edge_id = edge_id;
}
}
@ -1202,7 +1202,7 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
// Orient the patched up polygons CCW. This heuristic may close some holes and cavities.
double area = 0.;
for (size_t i = 0, j = opl.points.size() - 1; i < opl.points.size(); j = i ++)
area += double(opl.points[j].x + opl.points[i].x) * double(opl.points[i].y - opl.points[j].y);
area += double(opl.points[j].x() + opl.points[i].x()) * double(opl.points[i].y() - opl.points[j].y());
if (area < 0)
std::reverse(opl.points.begin(), opl.points.end());
loops->emplace_back(std::move(opl.points));
@ -1492,8 +1492,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
facet.normal.y = 0;
facet.normal.z = -1;
for (size_t i = 0; i <= 2; ++i) {
facet.vertex[i].x = unscale(p.points[i].x);
facet.vertex[i].y = unscale(p.points[i].y);
facet.vertex[i].x = unscale(p.points[i].x());
facet.vertex[i].y = unscale(p.points[i].y());
facet.vertex[i].z = z;
}
stl_add_facet(&upper->stl, &facet);
@ -1518,8 +1518,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
facet.normal.y = 0;
facet.normal.z = 1;
for (size_t i = 0; i <= 2; ++i) {
facet.vertex[i].x = unscale(polygon->points[i].x);
facet.vertex[i].y = unscale(polygon->points[i].y);
facet.vertex[i].x = unscale(polygon->points[i].x());
facet.vertex[i].y = unscale(polygon->points[i].y());
facet.vertex[i].z = z;
}
stl_add_facet(&lower->stl, &facet);

View file

@ -485,8 +485,8 @@ SV* to_SV_pureperl(const Point* THIS)
{
AV* av = newAV();
av_fill(av, 1);
av_store(av, 0, newSViv(THIS->x));
av_store(av, 1, newSViv(THIS->y));
av_store(av, 0, newSViv(THIS->x()));
av_store(av, 1, newSViv(THIS->y()));
return newRV_noinc((SV*)av);
}
@ -495,8 +495,8 @@ void from_SV(SV* point_sv, Point* point)
AV* point_av = (AV*)SvRV(point_sv);
// get a double from Perl and round it, otherwise
// it would get truncated
point->x = lrint(SvNV(*av_fetch(point_av, 0, 0)));
point->y = lrint(SvNV(*av_fetch(point_av, 1, 0)));
point->x() = lrint(SvNV(*av_fetch(point_av, 0, 0)));
point->y() = lrint(SvNV(*av_fetch(point_av, 1, 0)));
}
void from_SV_check(SV* point_sv, Point* point)
@ -514,8 +514,8 @@ SV* to_SV_pureperl(const Pointf* point)
{
AV* av = newAV();
av_fill(av, 1);
av_store(av, 0, newSVnv(point->x));
av_store(av, 1, newSVnv(point->y));
av_store(av, 0, newSVnv(point->x()));
av_store(av, 1, newSVnv(point->y()));
return newRV_noinc((SV*)av);
}
@ -526,8 +526,8 @@ bool from_SV(SV* point_sv, Pointf* point)
SV* sv_y = *av_fetch(point_av, 1, 0);
if (!looks_like_number(sv_x) || !looks_like_number(sv_y)) return false;
point->x = SvNV(sv_x);
point->y = SvNV(sv_y);
point->x() = SvNV(sv_x);
point->y() = SvNV(sv_y);
return true;
}

View file

@ -41,8 +41,8 @@ void Bed_2D::repaint()
cbb.max.translate(0, -13);
// read new size
cw = cbb.size().x;
ch = cbb.size().y;
cw = cbb.size().x();
ch = cbb.size().y();
auto ccenter = cbb.center();
@ -51,19 +51,19 @@ void Bed_2D::repaint()
auto bed_polygon = Polygon::new_scale(m_bed_shape);
auto bb = BoundingBoxf(m_bed_shape);
bb.merge(Pointf(0, 0)); // origin needs to be in the visible area
auto bw = bb.size().x;
auto bh = bb.size().y;
auto bw = bb.size().x();
auto bh = bb.size().y();
auto bcenter = bb.center();
// calculate the scaling factor for fitting bed shape in canvas area
auto sfactor = std::min(cw/bw, ch/bh);
auto shift = Pointf(
ccenter.x - bcenter.x * sfactor,
ccenter.y - bcenter.y * sfactor
ccenter.x() - bcenter.x() * sfactor,
ccenter.y() - bcenter.y() * sfactor
);
m_scale_factor = sfactor;
m_shift = Pointf(shift.x + cbb.min.x,
shift.y - (cbb.max.y - GetSize().GetHeight()));
m_shift = Pointf(shift.x() + cbb.min.x(),
shift.y() - (cbb.max.y() - GetSize().GetHeight()));
// draw bed fill
dc.SetBrush(wxBrush(wxColour(255, 255, 255), wxSOLID));
@ -71,19 +71,19 @@ void Bed_2D::repaint()
for (auto pt: m_bed_shape)
{
Point pt_pix = to_pixels(pt);
pt_list.push_back(new wxPoint(pt_pix.x, pt_pix.y));
pt_list.push_back(new wxPoint(pt_pix.x(), pt_pix.y()));
}
dc.DrawPolygon(&pt_list, 0, 0);
// draw grid
auto step = 10; // 1cm grid
Polylines polylines;
for (auto x = bb.min.x - fmod(bb.min.x, step) + step; x < bb.max.x; x += step) {
Polyline pl = Polyline::new_scale({ Pointf(x, bb.min.y), Pointf(x, bb.max.y) });
for (auto x = bb.min.x() - fmod(bb.min.x(), step) + step; x < bb.max.x(); x += step) {
Polyline pl = Polyline::new_scale({ Pointf(x, bb.min.y()), Pointf(x, bb.max.y()) });
polylines.push_back(pl);
}
for (auto y = bb.min.y - fmod(bb.min.y, step) + step; y < bb.max.y; y += step) {
polylines.push_back(Polyline::new_scale({ Pointf(bb.min.x, y), Pointf(bb.max.x, y) }));
for (auto y = bb.min.y() - fmod(bb.min.y(), step) + step; y < bb.max.y(); y += step) {
polylines.push_back(Polyline::new_scale({ Pointf(bb.min.x(), y), Pointf(bb.max.x(), y) }));
}
polylines = intersection_pl(polylines, bed_polygon);
@ -93,7 +93,7 @@ void Bed_2D::repaint()
for (size_t i = 0; i < pl.points.size()-1; i++){
Point pt1 = to_pixels(Pointf::new_unscale(pl.points[i]));
Point pt2 = to_pixels(Pointf::new_unscale(pl.points[i+1]));
dc.DrawLine(pt1.x, pt1.y, pt2.x, pt2.y);
dc.DrawLine(pt1.x(), pt1.y(), pt2.x(), pt2.y());
}
}
@ -109,36 +109,36 @@ void Bed_2D::repaint()
auto arrow_len = 6;
auto arrow_angle = Geometry::deg2rad(45.0);
dc.SetPen(wxPen(wxColour(255, 0, 0), 2, wxSOLID)); // red
auto x_end = Pointf(origin_px.x + axes_len, origin_px.y);
dc.DrawLine(wxPoint(origin_px.x, origin_px.y), wxPoint(x_end.x, x_end.y));
auto x_end = Pointf(origin_px.x() + axes_len, origin_px.y());
dc.DrawLine(wxPoint(origin_px.x(), origin_px.y()), wxPoint(x_end.x(), x_end.y()));
for (auto angle : { -arrow_angle, arrow_angle }){
auto end = x_end;
end.translate(-arrow_len, 0);
end.rotate(angle, x_end);
dc.DrawLine(wxPoint(x_end.x, x_end.y), wxPoint(end.x, end.y));
dc.DrawLine(wxPoint(x_end.x(), x_end.y()), wxPoint(end.x(), end.y()));
}
dc.SetPen(wxPen(wxColour(0, 255, 0), 2, wxSOLID)); // green
auto y_end = Pointf(origin_px.x, origin_px.y - axes_len);
dc.DrawLine(wxPoint(origin_px.x, origin_px.y), wxPoint(y_end.x, y_end.y));
auto y_end = Pointf(origin_px.x(), origin_px.y() - axes_len);
dc.DrawLine(wxPoint(origin_px.x(), origin_px.y()), wxPoint(y_end.x(), y_end.y()));
for (auto angle : { -arrow_angle, arrow_angle }) {
auto end = y_end;
end.translate(0, +arrow_len);
end.rotate(angle, y_end);
dc.DrawLine(wxPoint(y_end.x, y_end.y), wxPoint(end.x, end.y));
dc.DrawLine(wxPoint(y_end.x(), y_end.y()), wxPoint(end.x(), end.y()));
}
// draw origin
dc.SetPen(wxPen(wxColour(0, 0, 0), 1, wxSOLID));
dc.SetBrush(wxBrush(wxColour(0, 0, 0), wxSOLID));
dc.DrawCircle(origin_px.x, origin_px.y, 3);
dc.DrawCircle(origin_px.x(), origin_px.y(), 3);
static const auto origin_label = wxString("(0,0)");
dc.SetTextForeground(wxColour(0, 0, 0));
dc.SetFont(wxFont(10, wxDEFAULT, wxNORMAL, wxNORMAL));
auto extent = dc.GetTextExtent(origin_label);
const auto origin_label_x = origin_px.x <= cw / 2 ? origin_px.x + 1 : origin_px.x - 1 - extent.GetWidth();
const auto origin_label_y = origin_px.y <= ch / 2 ? origin_px.y + 1 : origin_px.y - 1 - extent.GetHeight();
const auto origin_label_x = origin_px.x() <= cw / 2 ? origin_px.x() + 1 : origin_px.x() - 1 - extent.GetWidth();
const auto origin_label_y = origin_px.y() <= ch / 2 ? origin_px.y() + 1 : origin_px.y() - 1 - extent.GetHeight();
dc.DrawText(origin_label, origin_label_x, origin_label_y);
// draw current position
@ -146,10 +146,10 @@ void Bed_2D::repaint()
auto pos_px = to_pixels(m_pos);
dc.SetPen(wxPen(wxColour(200, 0, 0), 2, wxSOLID));
dc.SetBrush(wxBrush(wxColour(200, 0, 0), wxTRANSPARENT));
dc.DrawCircle(pos_px.x, pos_px.y, 5);
dc.DrawCircle(pos_px.x(), pos_px.y(), 5);
dc.DrawLine(pos_px.x - 15, pos_px.y, pos_px.x + 15, pos_px.y);
dc.DrawLine(pos_px.x, pos_px.y - 15, pos_px.x, pos_px.y + 15);
dc.DrawLine(pos_px.x() - 15, pos_px.y(), pos_px.x() + 15, pos_px.y());
dc.DrawLine(pos_px.x(), pos_px.y() - 15, pos_px.x(), pos_px.y() + 15);
}
m_painted = true;
@ -160,7 +160,7 @@ Point Bed_2D::to_pixels(Pointf point){
auto p = Pointf(point);
p.scale(m_scale_factor);
p.translate(m_shift);
return Point(p.x, GetSize().GetHeight() - p.y);
return Point(p.x(), GetSize().GetHeight() - p.y());
}
void Bed_2D::mouse_event(wxMouseEvent event){
@ -168,7 +168,7 @@ void Bed_2D::mouse_event(wxMouseEvent event){
if (!m_painted) return;
auto pos = event.GetPosition();
auto point = to_units(Point(pos.x, pos.y));
auto point = to_units(Point(pos.x, pos.y));
if (event.LeftDown() || event.Dragging()) {
if (m_on_move)
m_on_move(point) ;
@ -178,7 +178,7 @@ void Bed_2D::mouse_event(wxMouseEvent event){
// convert pixels into G - code coordinates
Pointf Bed_2D::to_units(Point point){
auto p = Pointf(point.x, GetSize().GetHeight() - point.y);
auto p = Pointf(point.x(), GetSize().GetHeight() - point.y());
p.translate(m_shift.negative());
p.scale(1 / m_scale_factor);
return p;

View file

@ -284,7 +284,7 @@ const std::vector<float>& GLVolume::world_matrix() const
if (m_dirty)
{
Eigen::Transform<float, 3, Eigen::Affine> m = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
m.translate(Eigen::Vector3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z));
m.translate(Eigen::Vector3f((float)m_origin.x(), (float)m_origin.y(), (float)m_origin.z()));
m.rotate(Eigen::AngleAxisf(m_angle_z, Eigen::Vector3f::UnitZ()));
m.scale(m_scale_factor);
::memcpy((void*)m_world_mat.data(), (const void*)m.data(), 16 * sizeof(float));
@ -344,7 +344,7 @@ void GLVolume::render() const
::glCullFace(GL_BACK);
::glPushMatrix();
::glTranslated(m_origin.x, m_origin.y, m_origin.z);
::glTranslated(m_origin.x(), m_origin.y(), m_origin.z());
::glRotatef(m_angle_z * 180.0f / PI, 0.0f, 0.0f, 1.0f);
::glScalef(m_scale_factor, m_scale_factor, m_scale_factor);
if (this->indexed_vertex_array.indexed())
@ -378,7 +378,7 @@ void GLVolume::render_using_layer_height() const
glUniform1f(z_texture_row_to_normalized_id, (GLfloat)(1.0f / layer_height_texture_height()));
if (z_cursor_id >= 0)
glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max.z * layer_height_texture_data.z_cursor_relative));
glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max.z() * layer_height_texture_data.z_cursor_relative));
if (z_cursor_band_width_id >= 0)
glUniform1f(z_cursor_band_width_id, (GLfloat)layer_height_texture_data.edit_band_width);
@ -470,7 +470,7 @@ void GLVolume::render_VBOs(int color_id, int detection_id, int worldmatrix_id) c
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
::glPushMatrix();
::glTranslated(m_origin.x, m_origin.y, m_origin.z);
::glTranslated(m_origin.x(), m_origin.y(), m_origin.z());
::glRotatef(m_angle_z * 180.0f / PI, 0.0f, 0.0f, 1.0f);
::glScalef(m_scale_factor, m_scale_factor, m_scale_factor);
@ -515,7 +515,7 @@ void GLVolume::render_legacy() const
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), indexed_vertex_array.vertices_and_normals_interleaved.data());
::glPushMatrix();
::glTranslated(m_origin.x, m_origin.y, m_origin.z);
::glTranslated(m_origin.x(), m_origin.y(), m_origin.z());
::glRotatef(m_angle_z * 180.0f / PI, 0.0f, 0.0f, 1.0f);
::glScalef(m_scale_factor, m_scale_factor, m_scale_factor);
@ -530,7 +530,7 @@ void GLVolume::render_legacy() const
double GLVolume::layer_height_texture_z_to_row_id() const
{
return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max.z);
return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max.z());
}
void GLVolume::generate_layer_height_texture(PrintObject *print_object, bool force)
@ -634,7 +634,7 @@ std::vector<int> GLVolumeCollection::load_object(
}
v.is_modifier = model_volume->modifier;
v.outside_printer_detection_enabled = !model_volume->modifier;
v.set_origin(Pointf3(instance->offset.x, instance->offset.y, 0.0));
v.set_origin(Pointf3(instance->offset.x(), instance->offset.y(), 0.0));
v.set_angle_z(instance->rotation);
v.set_scale_factor(instance->scaling_factor);
}
@ -748,9 +748,9 @@ bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, M
return false;
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x), unscale(bed_box_2D.min.y), 0.0), Pointf3(unscale(bed_box_2D.max.x), unscale(bed_box_2D.max.y), config->opt_float("max_print_height")));
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x()), unscale(bed_box_2D.min.y()), 0.0), Pointf3(unscale(bed_box_2D.max.x()), unscale(bed_box_2D.max.y()), config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min.z = -1e10;
print_volume.min.z() = -1e10;
ModelInstance::EPrintVolumeState state = ModelInstance::PVS_Inside;
bool all_contained = true;
@ -945,8 +945,8 @@ static void thick_lines_to_indexed_vertex_array(
Pointf b2 = b;
{
double dist = 0.5 * width; // scaled
double dx = dist * v.x;
double dy = dist * v.y;
double dx = dist * v.x();
double dy = dist * v.y();
a1.translate(+dy, -dx);
a2.translate(-dy, +dx);
b1.translate(+dy, -dx);
@ -955,7 +955,7 @@ static void thick_lines_to_indexed_vertex_array(
// calculate new XY normals
Vector n = line.normal();
Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x, n.y, 0);
Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x(), n.y(), 0);
xy_right_normal.scale(inv_len);
int idx_a[4];
@ -974,7 +974,7 @@ static void thick_lines_to_indexed_vertex_array(
// Share top / bottom vertices if possible.
if (is_first) {
idx_a[TOP] = idx_last++;
volume.push_geometry(a.x, a.y, top_z , 0., 0., 1.);
volume.push_geometry(a.x(), a.y(), top_z , 0., 0., 1.);
} else {
idx_a[TOP] = idx_prev[TOP];
}
@ -982,11 +982,11 @@ static void thick_lines_to_indexed_vertex_array(
if (is_first || bottom_z_different) {
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last ++;
volume.push_geometry(a.x, a.y, bottom_z, 0., 0., -1.);
volume.push_geometry(a.x(), a.y(), bottom_z, 0., 0., -1.);
idx_a[LEFT ] = idx_last ++;
volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
volume.push_geometry(a2.x(), a2.y(), middle_z, -xy_right_normal.x(), -xy_right_normal.y(), -xy_right_normal.z());
idx_a[RIGHT] = idx_last ++;
volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
volume.push_geometry(a1.x(), a1.y(), middle_z, xy_right_normal.x(), xy_right_normal.y(), xy_right_normal.z());
}
else {
idx_a[BOTTOM] = idx_prev[BOTTOM];
@ -1007,9 +1007,9 @@ static void thick_lines_to_indexed_vertex_array(
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
volume.push_geometry(a1.x(), a1.y(), middle_z, xy_right_normal.x(), xy_right_normal.y(), xy_right_normal.z());
idx_a[LEFT] = idx_last++;
volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
volume.push_geometry(a2.x(), a2.y(), middle_z, -xy_right_normal.x(), -xy_right_normal.y(), -xy_right_normal.z());
}
}
if (v_dot > 0.9) {
@ -1035,17 +1035,17 @@ static void thick_lines_to_indexed_vertex_array(
float *p_left_prev = n_left_prev + 3;
float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
float *p_right_prev = n_right_prev + 3;
p_left_prev [0] = float(a2.x);
p_left_prev [1] = float(a2.y);
p_right_prev[0] = float(a1.x);
p_right_prev[1] = float(a1.y);
xy_right_normal.x += n_right_prev[0];
xy_right_normal.y += n_right_prev[1];
p_left_prev [0] = float(a2.x());
p_left_prev [1] = float(a2.y());
p_right_prev[0] = float(a1.x());
p_right_prev[1] = float(a1.y());
xy_right_normal.x() += n_right_prev[0];
xy_right_normal.y() += n_right_prev[1];
xy_right_normal.scale(1. / length(xy_right_normal));
n_left_prev [0] = float(-xy_right_normal.x);
n_left_prev [1] = float(-xy_right_normal.y);
n_right_prev[0] = float( xy_right_normal.x);
n_right_prev[1] = float( xy_right_normal.y);
n_left_prev [0] = float(-xy_right_normal.x());
n_left_prev [1] = float(-xy_right_normal.y());
n_right_prev[0] = float( xy_right_normal.x());
n_right_prev[1] = float( xy_right_normal.y());
idx_a[LEFT ] = idx_prev[LEFT ];
idx_a[RIGHT] = idx_prev[RIGHT];
}
@ -1086,20 +1086,20 @@ static void thick_lines_to_indexed_vertex_array(
idx_b[TOP] = idx_initial[TOP];
} else {
idx_b[TOP] = idx_last ++;
volume.push_geometry(b.x, b.y, top_z , 0., 0., 1.);
volume.push_geometry(b.x(), b.y(), top_z , 0., 0., 1.);
}
if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) {
idx_b[BOTTOM] = idx_initial[BOTTOM];
} else {
idx_b[BOTTOM] = idx_last ++;
volume.push_geometry(b.x, b.y, bottom_z, 0., 0., -1.);
volume.push_geometry(b.x(), b.y(), bottom_z, 0., 0., -1.);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT ] = idx_last ++;
volume.push_geometry(b2.x, b2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
volume.push_geometry(b2.x(), b2.y(), middle_z, -xy_right_normal.x(), -xy_right_normal.y(), -xy_right_normal.z());
idx_b[RIGHT ] = idx_last ++;
volume.push_geometry(b1.x, b1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
volume.push_geometry(b1.x(), b1.y(), middle_z, xy_right_normal.x(), xy_right_normal.y(), xy_right_normal.z());
memcpy(idx_prev, idx_b, 4 * sizeof(int));
bottom_z_prev = bottom_z;
@ -1184,10 +1184,10 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
Vectorf3 n_right;
Vectorf3 unit_positive_z(0.0, 0.0, 1.0);
if ((line.a.x == line.b.x) && (line.a.y == line.b.y))
if ((line.a.x() == line.b.x()) && (line.a.y() == line.b.y()))
{
// vertical segment
n_right = (line.a.z < line.b.z) ? Vectorf3(-1.0, 0.0, 0.0) : Vectorf3(1.0, 0.0, 0.0);
n_right = (line.a.z() < line.b.z()) ? Vectorf3(-1.0, 0.0, 0.0) : Vectorf3(1.0, 0.0, 0.0);
n_top = Vectorf3(0.0, 1.0, 0.0);
}
else
@ -1218,8 +1218,8 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
int idx_b[4];
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool z_different = (z_prev != l_a.z);
z_prev = l_b.z;
bool z_different = (z_prev != l_a.z());
z_prev = l_b.z();
// Share top / bottom vertices if possible.
if (ii == 0)
@ -1288,25 +1288,25 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
// updates previous line normals
float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6;
normal_left_prev[0] = float(average_n_left.x);
normal_left_prev[1] = float(average_n_left.y);
normal_left_prev[2] = float(average_n_left.z);
normal_left_prev[0] = float(average_n_left.x());
normal_left_prev[1] = float(average_n_left.y());
normal_left_prev[2] = float(average_n_left.z());
float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
normal_right_prev[0] = float(average_n_right.x);
normal_right_prev[1] = float(average_n_right.y);
normal_right_prev[2] = float(average_n_right.z);
normal_right_prev[0] = float(average_n_right.x());
normal_right_prev[1] = float(average_n_right.y());
normal_right_prev[2] = float(average_n_right.z());
// updates previous line's vertices around b
float* b_left_prev = normal_left_prev + 3;
b_left_prev[0] = float(a[LEFT].x);
b_left_prev[1] = float(a[LEFT].y);
b_left_prev[2] = float(a[LEFT].z);
b_left_prev[0] = float(a[LEFT].x());
b_left_prev[1] = float(a[LEFT].y());
b_left_prev[2] = float(a[LEFT].z());
float* b_right_prev = normal_right_prev + 3;
b_right_prev[0] = float(a[RIGHT].x);
b_right_prev[1] = float(a[RIGHT].y);
b_right_prev[2] = float(a[RIGHT].z);
b_right_prev[0] = float(a[RIGHT].x());
b_right_prev[1] = float(a[RIGHT].y());
b_right_prev[2] = float(a[RIGHT].z());
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];

View file

@ -120,7 +120,7 @@ public:
}
inline void push_geometry(const Pointf3& p, const Vectorf3& n) {
push_geometry(p.x, p.y, p.z, n.x, n.y, n.z);
push_geometry(p.x(), p.y(), p.z(), n.x(), n.y(), n.z());
}
inline void push_triangle(int idx1, int idx2, int idx3) {
@ -176,17 +176,17 @@ public:
BoundingBoxf3 bbox;
if (! this->vertices_and_normals_interleaved.empty()) {
bbox.defined = true;
bbox.min.x = bbox.max.x = this->vertices_and_normals_interleaved[3];
bbox.min.y = bbox.max.y = this->vertices_and_normals_interleaved[4];
bbox.min.z = bbox.max.z = this->vertices_and_normals_interleaved[5];
bbox.min.x() = bbox.max.x() = this->vertices_and_normals_interleaved[3];
bbox.min.y() = bbox.max.y() = this->vertices_and_normals_interleaved[4];
bbox.min.z() = bbox.max.z() = this->vertices_and_normals_interleaved[5];
for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) {
const float *verts = this->vertices_and_normals_interleaved.data() + i;
bbox.min.x = std::min<coordf_t>(bbox.min.x, verts[0]);
bbox.min.y = std::min<coordf_t>(bbox.min.y, verts[1]);
bbox.min.z = std::min<coordf_t>(bbox.min.z, verts[2]);
bbox.max.x = std::max<coordf_t>(bbox.max.x, verts[0]);
bbox.max.y = std::max<coordf_t>(bbox.max.y, verts[1]);
bbox.max.z = std::max<coordf_t>(bbox.max.z, verts[2]);
bbox.min.x() = std::min<coordf_t>(bbox.min.x(), verts[0]);
bbox.min.y() = std::min<coordf_t>(bbox.min.y(), verts[1]);
bbox.min.z() = std::min<coordf_t>(bbox.min.z(), verts[2]);
bbox.max.x() = std::max<coordf_t>(bbox.max.x(), verts[0]);
bbox.max.y() = std::max<coordf_t>(bbox.max.y(), verts[1]);
bbox.max.z() = std::max<coordf_t>(bbox.max.z(), verts[2]);
}
}
return bbox;

View file

@ -148,13 +148,13 @@ void BedShapePanel::set_shape(ConfigOptionPoints* points)
// find origin
// the || 0 hack prevents "-0" which might confuse the user
int x_min, x_max, y_min, y_max;
x_max = x_min = points->values[0].x;
y_max = y_min = points->values[0].y;
x_max = x_min = points->values[0].x();
y_max = y_min = points->values[0].y();
for (auto pt : points->values){
if (x_min > pt.x) x_min = pt.x;
if (x_max < pt.x) x_max = pt.x;
if (y_min > pt.y) y_min = pt.y;
if (y_max < pt.y) y_max = pt.y;
if (x_min > pt.x()) x_min = pt.x();
if (x_max < pt.x()) x_max = pt.x();
if (y_min > pt.y()) y_min = pt.y();
if (y_max < pt.y()) y_max = pt.y();
}
if (x_min < 0) x_min = 0;
if (x_max < 0) x_max = 0;
@ -242,8 +242,8 @@ void BedShapePanel::update_shape()
catch (const std::exception &e){
return;}
auto x = rect_size.x;
auto y = rect_size.y;
auto x = rect_size.x();
auto y = rect_size.y();
// empty strings or '-' or other things
if (x == 0 || y == 0) return;
double x0 = 0.0;
@ -251,8 +251,8 @@ void BedShapePanel::update_shape()
double x1 = x;
double y1 = y;
auto dx = rect_origin.x;
auto dy = rect_origin.y;
auto dx = rect_origin.x();
auto dy = rect_origin.y();
x0 -= dx;
x1 -= dx;

View file

@ -629,9 +629,9 @@ void PointCtrl::BUILD()
wxSize field_size(40, -1);
auto default_pt = static_cast<ConfigOptionPoints*>(m_opt.default_value)->values.at(0);
double val = default_pt.x;
double val = default_pt.x();
wxString X = val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None);
val = default_pt.y;
val = default_pt.y();
wxString Y = val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None);
x_textctrl = new wxTextCtrl(m_parent, wxID_ANY, X, wxDefaultPosition, field_size);
@ -656,9 +656,9 @@ void PointCtrl::set_value(const Pointf& value, bool change_event)
{
m_disable_change_event = !change_event;
double val = value.x;
double val = value.x();
x_textctrl->SetValue(val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None));
val = value.y;
val = value.y();
y_textctrl->SetValue(val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None));
m_disable_change_event = false;
@ -683,9 +683,9 @@ boost::any& PointCtrl::get_value()
Pointf ret_point;
double val;
x_textctrl->GetValue().ToDouble(&val);
ret_point.x = val;
ret_point.x() = val;
y_textctrl->GetValue().ToDouble(&val);
ret_point.y = val;
ret_point.y() = val;
return m_value = ret_point;
}

View file

@ -68,8 +68,8 @@ bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool
if (generate_tex_coords)
m_tex_coords = std::vector<float>(t_size, 0.0f);
float min_x = (float)unscale(triangles[0].points[0].x);
float min_y = (float)unscale(triangles[0].points[0].y);
float min_x = (float)unscale(triangles[0].points[0].x());
float min_y = (float)unscale(triangles[0].points[0].y());
float max_x = min_x;
float max_y = min_y;
@ -80,8 +80,8 @@ bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool
for (unsigned int v = 0; v < 3; ++v)
{
const Point& p = t.points[v];
float x = (float)unscale(p.x);
float y = (float)unscale(p.y);
float x = (float)unscale(p.x());
float y = (float)unscale(p.y());
m_vertices[v_coord++] = x;
m_vertices[v_coord++] = y;
@ -134,11 +134,11 @@ bool GeometryBuffer::set_from_lines(const Lines& lines, float z)
unsigned int coord = 0;
for (const Line& l : lines)
{
m_vertices[coord++] = (float)unscale(l.a.x);
m_vertices[coord++] = (float)unscale(l.a.y);
m_vertices[coord++] = (float)unscale(l.a.x());
m_vertices[coord++] = (float)unscale(l.a.y());
m_vertices[coord++] = z;
m_vertices[coord++] = (float)unscale(l.b.x);
m_vertices[coord++] = (float)unscale(l.b.y);
m_vertices[coord++] = (float)unscale(l.b.x());
m_vertices[coord++] = (float)unscale(l.b.y());
m_vertices[coord++] = z;
}
@ -312,7 +312,7 @@ void GLCanvas3D::Bed::set_shape(const Pointfs& shape)
ExPolygon poly;
for (const Pointf& p : m_shape)
{
poly.contour.append(Point(scale_(p.x), scale_(p.y)));
poly.contour.append(Point(scale_(p.x()), scale_(p.y())));
}
_calc_triangles(poly);
@ -366,7 +366,7 @@ void GLCanvas3D::Bed::_calc_bounding_box()
m_bounding_box = BoundingBoxf3();
for (const Pointf& p : m_shape)
{
m_bounding_box.merge(Pointf3(p.x, p.y, 0.0));
m_bounding_box.merge(Pointf3(p.x(), p.y(), 0.0));
}
}
@ -382,18 +382,18 @@ void GLCanvas3D::Bed::_calc_triangles(const ExPolygon& poly)
void GLCanvas3D::Bed::_calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox)
{
Polylines axes_lines;
for (coord_t x = bed_bbox.min.x; x <= bed_bbox.max.x; x += scale_(10.0))
for (coord_t x = bed_bbox.min.x(); x <= bed_bbox.max.x(); x += scale_(10.0))
{
Polyline line;
line.append(Point(x, bed_bbox.min.y));
line.append(Point(x, bed_bbox.max.y));
line.append(Point(x, bed_bbox.min.y()));
line.append(Point(x, bed_bbox.max.y()));
axes_lines.push_back(line);
}
for (coord_t y = bed_bbox.min.y; y <= bed_bbox.max.y; y += scale_(10.0))
for (coord_t y = bed_bbox.min.y(); y <= bed_bbox.max.y(); y += scale_(10.0))
{
Polyline line;
line.append(Point(bed_bbox.min.x, y));
line.append(Point(bed_bbox.max.x, y));
line.append(Point(bed_bbox.min.x(), y));
line.append(Point(bed_bbox.max.x(), y));
axes_lines.push_back(line);
}
@ -597,12 +597,12 @@ void GLCanvas3D::Axes::render(bool depth_test) const
::glBegin(GL_LINES);
// draw line for x axis
::glColor3f(1.0f, 0.0f, 0.0f);
::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z);
::glVertex3f((GLfloat)origin.x + length, (GLfloat)origin.y, (GLfloat)origin.z);
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z());
::glVertex3f((GLfloat)origin.x() + length, (GLfloat)origin.y(), (GLfloat)origin.z());
// draw line for y axis
::glColor3f(0.0f, 1.0f, 0.0f);
::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z);
::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y + length, (GLfloat)origin.z);
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z());
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y() + length, (GLfloat)origin.z());
::glEnd();
// draw line for Z axis
// (re-enable depth test so that axis is correctly shown when objects are behind it)
@ -611,8 +611,8 @@ void GLCanvas3D::Axes::render(bool depth_test) const
::glBegin(GL_LINES);
::glColor3f(0.0f, 0.0f, 1.0f);
::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z);
::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z + length);
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z());
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z() + length);
::glEnd();
}
@ -646,10 +646,10 @@ void GLCanvas3D::CuttingPlane::_render_plane(const BoundingBoxf3& bb) const
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
float margin = 20.0f;
float min_x = bb.min.x - margin;
float max_x = bb.max.x + margin;
float min_y = bb.min.y - margin;
float max_y = bb.max.y + margin;
float min_x = bb.min.x() - margin;
float max_x = bb.max.x() + margin;
float min_y = bb.min.y() - margin;
float max_y = bb.max.y() + margin;
::glBegin(GL_QUADS);
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
@ -860,8 +860,8 @@ float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas)
{
const Point& mouse_pos = canvas.get_local_mouse_position();
const Rect& rect = get_bar_rect_screen(canvas);
float x = (float)mouse_pos.x;
float y = (float)mouse_pos.y;
float x = (float)mouse_pos.x();
float y = (float)mouse_pos.y();
float t = rect.get_top();
float b = rect.get_bottom();
@ -970,7 +970,7 @@ void GLCanvas3D::LayersEditing::_render_reset_texture(const Rect& reset_rect) co
void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas3D& canvas, const GLVolume& volume, const PrintObject& print_object, const Rect& bar_rect) const
{
float max_z = print_object.model_object()->bounding_box().max.z;
float max_z = print_object.model_object()->bounding_box().max.z();
m_shader.start_using();
@ -1031,7 +1031,7 @@ void GLCanvas3D::LayersEditing::_render_profile(const PrintObject& print_object,
// Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
layer_height_max *= 1.12;
coordf_t max_z = unscale(print_object.size.z);
coordf_t max_z = unscale(print_object.size.z());
double layer_height = dynamic_cast<const ConfigOptionFloat*>(print_object.config.option("layer_height"))->value;
float l = bar_rect.get_left();
float w = bar_rect.get_right() - l;
@ -1951,15 +1951,15 @@ void GLCanvas3D::set_auto_bed_shape()
Pointfs bed_shape;
bed_shape.reserve(4);
bed_shape.emplace_back(center.x - max_size, center.y - max_size);
bed_shape.emplace_back(center.x + max_size, center.y - max_size);
bed_shape.emplace_back(center.x + max_size, center.y + max_size);
bed_shape.emplace_back(center.x - max_size, center.y + max_size);
bed_shape.emplace_back(center.x() - max_size, center.y() - max_size);
bed_shape.emplace_back(center.x() + max_size, center.y() - max_size);
bed_shape.emplace_back(center.x() + max_size, center.y() + max_size);
bed_shape.emplace_back(center.x() - max_size, center.y() + max_size);
set_bed_shape(bed_shape);
// Set the origin for painting of the coordinate system axes.
m_axes.origin = Pointf3(center.x, center.y, (coordf_t)GROUND_Z);
m_axes.origin = Pointf3(center.x(), center.y(), (coordf_t)GROUND_Z);
}
void GLCanvas3D::set_axes_length(float length)
@ -2283,7 +2283,7 @@ void GLCanvas3D::reload_scene(bool force)
if ((extruders_count > 1) && semm && wt && !co)
{
// Height of a print (Show at least a slab)
coordf_t height = std::max(m_model->bounding_box().max.z, 10.0);
coordf_t height = std::max(m_model->bounding_box().max.z(), 10.0);
float x = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_x"))->value;
float y = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_y"))->value;
@ -3031,14 +3031,14 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
// on a volume or not.
int volume_idx = m_hover_volume_id;
m_layers_editing.state = LayersEditing::Unknown;
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos.x, pos.y))
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos.x(), pos.y()))
{
// A volume is selected and the mouse is inside the layer thickness bar.
// Start editing the layer height.
m_layers_editing.state = LayersEditing::Editing;
_perform_layer_editing_action(&evt);
}
else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos.x, pos.y))
else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos.x(), pos.y()))
{
if (evt.LeftDown())
{
@ -3121,7 +3121,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
{
// if right clicking on volume, propagate event through callback
if (m_volumes.volumes[volume_idx]->hover)
m_on_right_click_callback.call(pos.x, pos.y);
m_on_right_click_callback.call(pos.x(), pos.y());
}
}
}
@ -3133,16 +3133,16 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
// Get new position at the same Z of the initial click point.
float z0 = 0.0f;
float z1 = 1.0f;
Pointf3 cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D.z);
Pointf3 cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D.z());
// Clip the new position, so the object center remains close to the bed.
cur_pos.translate(m_mouse.drag.volume_center_offset);
Point cur_pos2(scale_(cur_pos.x), scale_(cur_pos.y));
Point cur_pos2(scale_(cur_pos.x()), scale_(cur_pos.y()));
if (!m_bed.contains(cur_pos2))
{
Point ip = m_bed.point_projection(cur_pos2);
cur_pos.x = unscale(ip.x);
cur_pos.y = unscale(ip.y);
cur_pos.x() = unscale(ip.x());
cur_pos.y() = unscale(ip.y());
}
cur_pos.translate(m_mouse.drag.volume_center_offset.negative());
@ -3171,7 +3171,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
for (GLVolume* v : volumes)
{
Pointf3 origin = v->get_origin();
origin.translate(vector.x, vector.y, 0.0);
origin.translate(vector.x(), vector.y(), 0.0);
v->set_origin(origin);
}
@ -3185,7 +3185,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
m_mouse.dragging = true;
const Pointf3& cur_pos = _mouse_to_bed_3d(pos);
m_gizmos.update(Pointf(cur_pos.x, cur_pos.y));
m_gizmos.update(Pointf(cur_pos.x(), cur_pos.y()));
std::vector<GLVolume*> volumes;
if (m_mouse.drag.gizmo_volume_idx != -1)
@ -3234,7 +3234,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
{
const BoundingBoxf3& bb = volumes[0]->transformed_bounding_box();
const Pointf3& size = bb.size();
m_on_update_geometry_info_callback.call(size.x, size.y, size.z, m_gizmos.get_scale());
m_on_update_geometry_info_callback.call(size.x(), size.y(), size.z(), m_gizmos.get_scale());
}
if ((m_gizmos.get_current_type() != Gizmos::Rotate) && (volumes.size() > 1))
@ -3257,14 +3257,14 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
if (m_mouse.is_start_position_3D_defined())
{
const Pointf3& orig = m_mouse.drag.start_position_3D;
m_camera.phi += (((float)pos.x - (float)orig.x) * TRACKBALLSIZE);
m_camera.set_theta(m_camera.get_theta() - ((float)pos.y - (float)orig.y) * TRACKBALLSIZE);
m_camera.phi += (((float)pos.x() - (float)orig.x()) * TRACKBALLSIZE);
m_camera.set_theta(m_camera.get_theta() - ((float)pos.y() - (float)orig.y()) * TRACKBALLSIZE);
m_on_viewport_changed_callback.call();
m_dirty = true;
}
m_mouse.drag.start_position_3D = Pointf3((coordf_t)pos.x, (coordf_t)pos.y, 0.0);
m_mouse.drag.start_position_3D = Pointf3((coordf_t)pos.x(), (coordf_t)pos.y(), 0.0);
}
else if (evt.MiddleIsDown() || evt.RightIsDown())
{
@ -3355,7 +3355,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
}
else if (evt.Moving())
{
m_mouse.position = Pointf((coordf_t)pos.x, (coordf_t)pos.y);
m_mouse.position = Pointf((coordf_t)pos.x(), (coordf_t)pos.y());
// Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over.
if (m_picking_enabled)
m_dirty = true;
@ -3553,13 +3553,13 @@ float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) co
std::vector<Pointf3> vertices;
vertices.reserve(8);
vertices.push_back(bb_min);
vertices.emplace_back(bb_max.x, bb_min.y, bb_min.z);
vertices.emplace_back(bb_max.x, bb_max.y, bb_min.z);
vertices.emplace_back(bb_min.x, bb_max.y, bb_min.z);
vertices.emplace_back(bb_min.x, bb_min.y, bb_max.z);
vertices.emplace_back(bb_max.x, bb_min.y, bb_max.z);
vertices.emplace_back(bb_max.x(), bb_min.y(), bb_min.z());
vertices.emplace_back(bb_max.x(), bb_max.y(), bb_min.z());
vertices.emplace_back(bb_min.x(), bb_max.y(), bb_min.z());
vertices.emplace_back(bb_min.x(), bb_min.y(), bb_max.z());
vertices.emplace_back(bb_max.x(), bb_min.y(), bb_max.z());
vertices.push_back(bb_max);
vertices.emplace_back(bb_min.x, bb_max.y, bb_max.z);
vertices.emplace_back(bb_min.x(), bb_max.y(), bb_max.z());
coordf_t max_x = 0.0;
coordf_t max_y = 0.0;
@ -3570,7 +3570,7 @@ float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) co
for (const Pointf3 v : vertices)
{
// project vertex on the plane perpendicular to camera forward axis
Pointf3 pos(v.x - bb_center.x, v.y - bb_center.y, v.z - bb_center.z);
Pointf3 pos(v.x() - bb_center.x(), v.y() - bb_center.y(), v.z() - bb_center.z());
Pointf3 proj_on_plane = pos - dot(pos, forward) * forward;
// calculates vertex coordinate along camera xy axes
@ -3654,7 +3654,7 @@ void GLCanvas3D::_camera_tranform() const
::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f); // yaw
Pointf3 neg_target = m_camera.target.negative();
::glTranslatef((GLfloat)neg_target.x, (GLfloat)neg_target.y, (GLfloat)neg_target.z);
::glTranslatef((GLfloat)neg_target.x(), (GLfloat)neg_target.y(), (GLfloat)neg_target.z());
}
void GLCanvas3D::_picking_pass() const
@ -3684,7 +3684,7 @@ void GLCanvas3D::_picking_pass() const
const Size& cnv_size = get_canvas_size();
GLubyte color[4];
::glReadPixels(pos.x, cnv_size.get_height() - pos.y - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
::glReadPixels(pos.x(), cnv_size.get_height() - pos.y() - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
int volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256;
m_hover_volume_id = -1;
@ -3779,7 +3779,7 @@ void GLCanvas3D::_render_objects() const
if (m_config != nullptr)
{
const BoundingBoxf3& bed_bb = m_bed.get_bounding_box();
m_volumes.set_print_box((float)bed_bb.min.x, (float)bed_bb.min.y, 0.0f, (float)bed_bb.max.x, (float)bed_bb.max.y, (float)m_config->opt_float("max_print_height"));
m_volumes.set_print_box((float)bed_bb.min.x(), (float)bed_bb.min.y(), 0.0f, (float)bed_bb.max.x(), (float)bed_bb.max.y(), (float)m_config->opt_float("max_print_height"));
m_volumes.check_outside_state(m_config, nullptr);
}
// do not cull backfaces to show broken geometry, if any
@ -3986,7 +3986,7 @@ void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt)
{
const Rect& rect = LayersEditing::get_bar_rect_screen(*this);
float b = rect.get_bottom();
m_layers_editing.last_z = unscale(selected_obj->size.z) * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
m_layers_editing.last_z = unscale(selected_obj->size.z()) * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
m_layers_editing.last_action = evt->ShiftDown() ? (evt->RightIsDown() ? 3 : 2) : (evt->RightIsDown() ? 0 : 1);
}
@ -4030,15 +4030,15 @@ Pointf3 GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z)
GLdouble projection_matrix[16];
::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix);
GLint y = viewport[3] - (GLint)mouse_pos.y;
GLint y = viewport[3] - (GLint)mouse_pos.y();
GLfloat mouse_z;
if (z == nullptr)
::glReadPixels((GLint)mouse_pos.x, y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z);
::glReadPixels((GLint)mouse_pos.x(), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z);
else
mouse_z = *z;
GLdouble out_x, out_y, out_z;
::gluUnProject((GLdouble)mouse_pos.x, (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z);
::gluUnProject((GLdouble)mouse_pos.x(), (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z);
return Pointf3((coordf_t)out_x, (coordf_t)out_y, (coordf_t)out_z);
}
@ -4389,7 +4389,7 @@ bool GLCanvas3D::_travel_paths_by_type(const GCodePreviewData& preview_data)
TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type));
if (type != types.end())
{
type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z));
type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z()));
type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size());
type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size());
@ -4455,7 +4455,7 @@ bool GLCanvas3D::_travel_paths_by_feedrate(const GCodePreviewData& preview_data)
FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate));
if (feedrate != feedrates.end())
{
feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z));
feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z()));
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size());
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size());
@ -4521,7 +4521,7 @@ bool GLCanvas3D::_travel_paths_by_tool(const GCodePreviewData& preview_data, con
ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id));
if (tool != tools.end())
{
tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z));
tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z()));
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size());
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size());
@ -4546,11 +4546,11 @@ void GLCanvas3D::_load_gcode_retractions(const GCodePreviewData& preview_data)
m_volumes.volumes.emplace_back(volume);
GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z < p2.position.z; });
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z() < p2.position.z(); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.push_back(unscale(position.position.z));
volume->print_zs.push_back(unscale(position.position.z()));
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
@ -4577,11 +4577,11 @@ void GLCanvas3D::_load_gcode_unretractions(const GCodePreviewData& preview_data)
m_volumes.volumes.emplace_back(volume);
GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z < p2.position.z; });
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z() < p2.position.z(); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.push_back(unscale(position.position.z));
volume->print_zs.push_back(unscale(position.position.z()));
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
@ -4621,7 +4621,7 @@ void GLCanvas3D::_load_shells()
}
// adds wipe tower's volume
coordf_t max_z = m_print->objects[0]->model_object()->get_model()->bounding_box().max.z;
coordf_t max_z = m_print->objects[0]->model_object()->get_model()->bounding_box().max.z();
const PrintConfig& config = m_print->config;
unsigned int extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
@ -4716,7 +4716,7 @@ void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
// Move a regular object.
ModelObject* model_object = m_model->objects[obj_idx];
const Pointf3& origin = volume->get_origin();
model_object->instances[instance_idx]->offset = Pointf(origin.x, origin.y);
model_object->instances[instance_idx]->offset = Pointf(origin.x(), origin.y());
model_object->invalidate_bounding_box();
object_moved = true;
}
@ -4729,7 +4729,7 @@ void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
m_on_instance_moved_callback.call();
if (wipe_tower_origin != Pointf3(0.0, 0.0, 0.0))
m_on_wipe_tower_moved_callback.call(wipe_tower_origin.x, wipe_tower_origin.y);
m_on_wipe_tower_moved_callback.call(wipe_tower_origin.x(), wipe_tower_origin.y());
}
void GLCanvas3D::_on_select(int volume_idx)

View file

@ -35,7 +35,7 @@ void GLGizmoBase::Grabber::render(bool hover) const
float angle_z_in_deg = angle_z * 180.0f / (float)PI;
::glPushMatrix();
::glTranslatef((GLfloat)center.x, (GLfloat)center.y, 0.0f);
::glTranslatef((GLfloat)center.x(), (GLfloat)center.y(), 0.0f);
::glRotatef((GLfloat)angle_z_in_deg, 0.0f, 0.0f, 1.0f);
::glDisable(GL_CULL_FACE);
@ -266,7 +266,7 @@ void GLGizmoRotate::on_render(const BoundingBoxf3& box) const
m_center = box.center();
if (!m_keep_radius)
{
m_radius = Offset + ::sqrt(sqr(0.5f * size.x) + sqr(0.5f * size.y));
m_radius = Offset + ::sqrt(sqr(0.5f * size.x()) + sqr(0.5f * size.y()));
m_keep_radius = true;
}
@ -299,8 +299,8 @@ void GLGizmoRotate::_render_circle() const
for (unsigned int i = 0; i < ScaleStepsCount; ++i)
{
float angle = (float)i * ScaleStepRad;
float x = m_center.x + ::cos(angle) * m_radius;
float y = m_center.y + ::sin(angle) * m_radius;
float x = m_center.x() + ::cos(angle) * m_radius;
float y = m_center.y() + ::sin(angle) * m_radius;
::glVertex3f((GLfloat)x, (GLfloat)y, 0.0f);
}
::glEnd();
@ -317,10 +317,10 @@ void GLGizmoRotate::_render_scale() const
float angle = (float)i * ScaleStepRad;
float cosa = ::cos(angle);
float sina = ::sin(angle);
float in_x = m_center.x + cosa * m_radius;
float in_y = m_center.y + sina * m_radius;
float out_x = (i % ScaleLongEvery == 0) ? m_center.x + cosa * out_radius_long : m_center.x + cosa * out_radius_short;
float out_y = (i % ScaleLongEvery == 0) ? m_center.y + sina * out_radius_long : m_center.y + sina * out_radius_short;
float in_x = m_center.x() + cosa * m_radius;
float in_y = m_center.y() + sina * m_radius;
float out_x = (i % ScaleLongEvery == 0) ? m_center.x() + cosa * out_radius_long : m_center.x() + cosa * out_radius_short;
float out_y = (i % ScaleLongEvery == 0) ? m_center.y() + sina * out_radius_long : m_center.y() + sina * out_radius_short;
::glVertex3f((GLfloat)in_x, (GLfloat)in_y, 0.0f);
::glVertex3f((GLfloat)out_x, (GLfloat)out_y, 0.0f);
}
@ -340,10 +340,10 @@ void GLGizmoRotate::_render_snap_radii() const
float angle = (float)i * step;
float cosa = ::cos(angle);
float sina = ::sin(angle);
float in_x = m_center.x + cosa * in_radius;
float in_y = m_center.y + sina * in_radius;
float out_x = m_center.x + cosa * out_radius;
float out_y = m_center.y + sina * out_radius;
float in_x = m_center.x() + cosa * in_radius;
float in_y = m_center.y() + sina * in_radius;
float out_x = m_center.x() + cosa * out_radius;
float out_y = m_center.y() + sina * out_radius;
::glVertex3f((GLfloat)in_x, (GLfloat)in_y, 0.0f);
::glVertex3f((GLfloat)out_x, (GLfloat)out_y, 0.0f);
}
@ -353,8 +353,8 @@ void GLGizmoRotate::_render_snap_radii() const
void GLGizmoRotate::_render_reference_radius() const
{
::glBegin(GL_LINES);
::glVertex3f((GLfloat)m_center.x, (GLfloat)m_center.y, 0.0f);
::glVertex3f((GLfloat)m_center.x + m_radius + GrabberOffset, (GLfloat)m_center.y, 0.0f);
::glVertex3f((GLfloat)m_center.x(), (GLfloat)m_center.y(), 0.0f);
::glVertex3f((GLfloat)m_center.x() + m_radius + GrabberOffset, (GLfloat)m_center.y(), 0.0f);
::glEnd();
}
@ -367,8 +367,8 @@ void GLGizmoRotate::_render_angle_z() const
for (unsigned int i = 0; i <= AngleResolution; ++i)
{
float angle = (float)i * step_angle;
float x = m_center.x + ::cos(angle) * ex_radius;
float y = m_center.y + ::sin(angle) * ex_radius;
float x = m_center.x() + ::cos(angle) * ex_radius;
float y = m_center.y() + ::sin(angle) * ex_radius;
::glVertex3f((GLfloat)x, (GLfloat)y, 0.0f);
}
::glEnd();
@ -377,14 +377,14 @@ void GLGizmoRotate::_render_angle_z() const
void GLGizmoRotate::_render_grabber() const
{
float grabber_radius = m_radius + GrabberOffset;
m_grabbers[0].center.x = m_center.x + ::cos(m_angle_z) * grabber_radius;
m_grabbers[0].center.y = m_center.y + ::sin(m_angle_z) * grabber_radius;
m_grabbers[0].center.x() = m_center.x() + ::cos(m_angle_z) * grabber_radius;
m_grabbers[0].center.y() = m_center.y() + ::sin(m_angle_z) * grabber_radius;
m_grabbers[0].angle_z = m_angle_z;
::glColor3fv(BaseColor);
::glBegin(GL_LINES);
::glVertex3f((GLfloat)m_center.x, (GLfloat)m_center.y, 0.0f);
::glVertex3f((GLfloat)m_grabbers[0].center.x, (GLfloat)m_grabbers[0].center.y, 0.0f);
::glVertex3f((GLfloat)m_center.x(), (GLfloat)m_center.y(), 0.0f);
::glVertex3f((GLfloat)m_grabbers[0].center.x(), (GLfloat)m_grabbers[0].center.y(), 0.0f);
::glEnd();
::memcpy((void*)m_grabbers[0].color, (const void*)HighlightColor, 3 * sizeof(float));
@ -442,7 +442,7 @@ void GLGizmoScale::on_start_dragging()
void GLGizmoScale::on_update(const Pointf& mouse_pos)
{
Pointf center(0.5 * (m_grabbers[1].center.x + m_grabbers[0].center.x), 0.5 * (m_grabbers[3].center.y + m_grabbers[0].center.y));
Pointf center(0.5 * (m_grabbers[1].center.x() + m_grabbers[0].center.x()), 0.5 * (m_grabbers[3].center.y() + m_grabbers[0].center.y()));
coordf_t orig_len = length(m_starting_drag_position - center);
coordf_t new_len = length(mouse_pos - center);
@ -455,19 +455,19 @@ void GLGizmoScale::on_render(const BoundingBoxf3& box) const
{
::glDisable(GL_DEPTH_TEST);
coordf_t min_x = box.min.x - (coordf_t)Offset;
coordf_t max_x = box.max.x + (coordf_t)Offset;
coordf_t min_y = box.min.y - (coordf_t)Offset;
coordf_t max_y = box.max.y + (coordf_t)Offset;
coordf_t min_x = box.min.x() - (coordf_t)Offset;
coordf_t max_x = box.max.x() + (coordf_t)Offset;
coordf_t min_y = box.min.y() - (coordf_t)Offset;
coordf_t max_y = box.max.y() + (coordf_t)Offset;
m_grabbers[0].center.x = min_x;
m_grabbers[0].center.y = min_y;
m_grabbers[1].center.x = max_x;
m_grabbers[1].center.y = min_y;
m_grabbers[2].center.x = max_x;
m_grabbers[2].center.y = max_y;
m_grabbers[3].center.x = min_x;
m_grabbers[3].center.y = max_y;
m_grabbers[0].center.x() = min_x;
m_grabbers[0].center.y() = min_y;
m_grabbers[1].center.x() = max_x;
m_grabbers[1].center.y() = min_y;
m_grabbers[2].center.x() = max_x;
m_grabbers[2].center.y() = max_y;
m_grabbers[3].center.x() = min_x;
m_grabbers[3].center.y() = max_y;
::glLineWidth(2.0f);
::glColor3fv(BaseColor);
@ -475,7 +475,7 @@ void GLGizmoScale::on_render(const BoundingBoxf3& box) const
::glBegin(GL_LINE_LOOP);
for (unsigned int i = 0; i < 4; ++i)
{
::glVertex3f((GLfloat)m_grabbers[i].center.x, (GLfloat)m_grabbers[i].center.y, 0.0f);
::glVertex3f((GLfloat)m_grabbers[i].center.x(), (GLfloat)m_grabbers[i].center.y(), 0.0f);
}
::glEnd();

View file

@ -68,6 +68,13 @@ extern "C" {
#undef fputc
#undef fwrite
#undef fclose
// Breaks compilation with Eigen matrices embedded into Slic3r::Point.
#undef malloc
#undef realloc
#undef free
#undef Zero
#undef select
#endif /* _MSC_VER */
}
#endif

View file

@ -25,15 +25,15 @@
double radius();
Clone<Point> min_point() %code{% RETVAL = THIS->min; %};
Clone<Point> max_point() %code{% RETVAL = THIS->max; %};
int x_min() %code{% RETVAL = THIS->min.x; %};
int x_max() %code{% RETVAL = THIS->max.x; %};
int y_min() %code{% RETVAL = THIS->min.y; %};
int y_max() %code{% RETVAL = THIS->max.y; %};
void set_x_min(double val) %code{% THIS->min.x = val; %};
void set_x_max(double val) %code{% THIS->max.x = val; %};
void set_y_min(double val) %code{% THIS->min.y = val; %};
void set_y_max(double val) %code{% THIS->max.y = val; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld;%ld,%ld", THIS->min.x, THIS->min.y, THIS->max.x, THIS->max.y); RETVAL = buf; %};
int x_min() %code{% RETVAL = THIS->min.x(); %};
int x_max() %code{% RETVAL = THIS->max.x(); %};
int y_min() %code{% RETVAL = THIS->min.y(); %};
int y_max() %code{% RETVAL = THIS->max.y(); %};
void set_x_min(double val) %code{% THIS->min.x() = val; %};
void set_x_max(double val) %code{% THIS->max.x() = val; %};
void set_y_min(double val) %code{% THIS->min.y() = val; %};
void set_y_max(double val) %code{% THIS->max.y() = val; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld;%ld,%ld", THIS->min.x(), THIS->min.y(), THIS->max.x(), THIS->max.y()); RETVAL = buf; %};
bool defined() %code{% RETVAL = THIS->defined; %};
%{
@ -65,15 +65,15 @@ new_from_points(CLASS, points)
bool empty() %code{% RETVAL = empty(*THIS); %};
Clone<Pointf> min_point() %code{% RETVAL = THIS->min; %};
Clone<Pointf> max_point() %code{% RETVAL = THIS->max; %};
double x_min() %code{% RETVAL = THIS->min.x; %};
double x_max() %code{% RETVAL = THIS->max.x; %};
double y_min() %code{% RETVAL = THIS->min.y; %};
double y_max() %code{% RETVAL = THIS->max.y; %};
void set_x_min(double val) %code{% THIS->min.x = val; %};
void set_x_max(double val) %code{% THIS->max.x = val; %};
void set_y_min(double val) %code{% THIS->min.y = val; %};
void set_y_max(double val) %code{% THIS->max.y = val; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf;%lf,%lf", THIS->min.x, THIS->min.y, THIS->max.x, THIS->max.y); RETVAL = buf; %};
double x_min() %code{% RETVAL = THIS->min.x(); %};
double x_max() %code{% RETVAL = THIS->max.x(); %};
double y_min() %code{% RETVAL = THIS->min.y(); %};
double y_max() %code{% RETVAL = THIS->max.y(); %};
void set_x_min(double val) %code{% THIS->min.x() = val; %};
void set_x_max(double val) %code{% THIS->max.x() = val; %};
void set_y_min(double val) %code{% THIS->min.y() = val; %};
void set_y_max(double val) %code{% THIS->max.y() = val; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf;%lf,%lf", THIS->min.x(), THIS->min.y(), THIS->max.x(), THIS->max.y()); RETVAL = buf; %};
bool defined() %code{% RETVAL = THIS->defined; %};
%{
@ -107,12 +107,12 @@ new_from_points(CLASS, points)
bool empty() %code{% RETVAL = empty(*THIS); %};
Clone<Pointf3> min_point() %code{% RETVAL = THIS->min; %};
Clone<Pointf3> max_point() %code{% RETVAL = THIS->max; %};
double x_min() %code{% RETVAL = THIS->min.x; %};
double x_max() %code{% RETVAL = THIS->max.x; %};
double y_min() %code{% RETVAL = THIS->min.y; %};
double y_max() %code{% RETVAL = THIS->max.y; %};
double z_min() %code{% RETVAL = THIS->min.z; %};
double z_max() %code{% RETVAL = THIS->max.z; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf;%lf,%lf,%lf", THIS->min.x, THIS->min.y, THIS->min.z, THIS->max.x, THIS->max.y, THIS->max.z); RETVAL = buf; %};
double x_min() %code{% RETVAL = THIS->min.x(); %};
double x_max() %code{% RETVAL = THIS->max.x(); %};
double y_min() %code{% RETVAL = THIS->min.y(); %};
double y_max() %code{% RETVAL = THIS->max.y(); %};
double z_min() %code{% RETVAL = THIS->min.z(); %};
double z_max() %code{% RETVAL = THIS->max.z(); %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf;%lf,%lf,%lf", THIS->min.x(), THIS->min.y(), THIS->min.z(), THIS->max.x(), THIS->max.y(), THIS->max.z()); RETVAL = buf; %};
bool defined() %code{% RETVAL = THIS->defined; %};
};

View file

@ -19,13 +19,13 @@
SV* pp()
%code{% RETVAL = to_SV_pureperl(THIS); %};
int x()
%code{% RETVAL = THIS->x; %};
%code{% RETVAL = THIS->x(); %};
int y()
%code{% RETVAL = THIS->y; %};
%code{% RETVAL = THIS->y(); %};
void set_x(int val)
%code{% THIS->x = val; %};
%code{% THIS->x() = val; %};
void set_y(int val)
%code{% THIS->y = val; %};
%code{% THIS->y() = val; %};
int nearest_point_index(Points points);
Clone<Point> nearest_point(Points points)
%code{% Point p; THIS->nearest_point(points, &p); RETVAL = p; %};
@ -49,7 +49,7 @@
%code{% RETVAL = new Point(THIS->negative()); %};
bool coincides_with_epsilon(Point* point)
%code{% RETVAL = THIS->coincides_with_epsilon(*point); %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld", THIS->x, THIS->y); RETVAL = buf; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld", THIS->x(), THIS->y()); RETVAL = buf; %};
%{
@ -82,12 +82,12 @@ Point::coincides_with(point_sv)
Clone<Point3> clone()
%code{% RETVAL = THIS; %};
int x()
%code{% RETVAL = THIS->x; %};
%code{% RETVAL = THIS->x(); %};
int y()
%code{% RETVAL = THIS->y; %};
%code{% RETVAL = THIS->y(); %};
int z()
%code{% RETVAL = THIS->z; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld,%ld", THIS->x, THIS->y, THIS->z); RETVAL = buf; %};
%code{% RETVAL = THIS->z(); %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld,%ld", THIS->x(), THIS->y(), THIS->z()); RETVAL = buf; %};
};
%name{Slic3r::Pointf} class Pointf {
@ -100,13 +100,13 @@ Point::coincides_with(point_sv)
SV* pp()
%code{% RETVAL = to_SV_pureperl(THIS); %};
double x()
%code{% RETVAL = THIS->x; %};
%code{% RETVAL = THIS->x(); %};
double y()
%code{% RETVAL = THIS->y; %};
%code{% RETVAL = THIS->y(); %};
void set_x(double val)
%code{% THIS->x = val; %};
%code{% THIS->x() = val; %};
void set_y(double val)
%code{% THIS->y = val; %};
%code{% THIS->y() = val; %};
void translate(double x, double y);
void scale(double factor);
void rotate(double angle, Pointf* center)
@ -115,7 +115,7 @@ Point::coincides_with(point_sv)
%code{% RETVAL = THIS->negative(); %};
Clone<Pointf> vector_to(Pointf* point)
%code{% RETVAL = THIS->vector_to(*point); %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf", THIS->x, THIS->y); RETVAL = buf; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf", THIS->x(), THIS->y()); RETVAL = buf; %};
};
%name{Slic3r::Pointf3} class Pointf3 {
@ -124,17 +124,17 @@ Point::coincides_with(point_sv)
Clone<Pointf3> clone()
%code{% RETVAL = THIS; %};
double x()
%code{% RETVAL = THIS->x; %};
%code{% RETVAL = THIS->x(); %};
double y()
%code{% RETVAL = THIS->y; %};
%code{% RETVAL = THIS->y(); %};
double z()
%code{% RETVAL = THIS->z; %};
%code{% RETVAL = THIS->z(); %};
void set_x(double val)
%code{% THIS->x = val; %};
%code{% THIS->x() = val; %};
void set_y(double val)
%code{% THIS->y = val; %};
%code{% THIS->y() = val; %};
void set_z(double val)
%code{% THIS->z = val; %};
%code{% THIS->z() = val; %};
void translate(double x, double y, double z);
void scale(double factor);
double distance_to(Pointf3* point)
@ -143,5 +143,5 @@ Point::coincides_with(point_sv)
%code{% RETVAL = THIS->negative(); %};
Clone<Pointf3> vector_to(Pointf3* point)
%code{% RETVAL = THIS->vector_to(*point); %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf", THIS->x, THIS->y, THIS->z); RETVAL = buf; %};
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf", THIS->x(), THIS->y(), THIS->z()); RETVAL = buf; %};
};