Painter gizmos should now work with non-uniformly scaled models

This commit is contained in:
Lukas Matena 2020-10-05 09:08:03 +02:00
parent f4e3eb7482
commit 8bcdbb7a60
3 changed files with 123 additions and 51 deletions

View File

@ -34,16 +34,15 @@ void TriangleSelector::Triangle::set_division(int sides_to_split, int special_si
void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
const Vec3f& source, const Vec3f& dir,
float radius, CursorType cursor_type,
EnforcerBlockerType new_state)
const Vec3f& source, float radius,
CursorType cursor_type, EnforcerBlockerType new_state,
const Transform3d& trafo)
{
assert(facet_start < m_orig_size_indices);
assert(is_approx(dir.norm(), 1.f));
// Save current cursor center, squared radius and camera direction,
// so we don't have to pass it around.
m_cursor = {hit, source, dir, radius*radius, cursor_type};
// Save current cursor center, squared radius and camera direction, so we don't
// have to pass it around.
m_cursor = Cursor(hit, source, radius, cursor_type, trafo);
// In case user changed cursor size since last time, update triangle edge limit.
if (m_old_cursor_radius != radius) {
@ -176,10 +175,24 @@ void TriangleSelector::split_triangle(int facet_idx)
const double limit_squared = m_edge_limit_sqr;
std::array<int, 3>& facet = tr->verts_idxs;
const stl_vertex* pts[3] = { &m_vertices[facet[0]].v, &m_vertices[facet[1]].v, &m_vertices[facet[2]].v};
double sides[3] = { (*pts[2]-*pts[1]).squaredNorm(),
(*pts[0]-*pts[2]).squaredNorm(),
(*pts[1]-*pts[0]).squaredNorm() };
std::array<const stl_vertex*, 3> pts = { &m_vertices[facet[0]].v,
&m_vertices[facet[1]].v,
&m_vertices[facet[2]].v};
std::array<stl_vertex, 3> pts_transformed; // must stay in scope of pts !!!
// In case the object is non-uniformly scaled, transform the
// points to world coords.
if (! m_cursor.uniform_scaling) {
for (size_t i=0; i<pts.size(); ++i) {
pts_transformed[i] = m_cursor.trafo * (*pts[i]);
pts[i] = &pts_transformed[i];
}
}
std::array<double, 3> sides;
sides = { (*pts[2]-*pts[1]).squaredNorm(),
(*pts[0]-*pts[2]).squaredNorm(),
(*pts[1]-*pts[0]).squaredNorm() };
std::vector<int> sides_to_split;
int side_to_keep = -1;
@ -204,38 +217,14 @@ void TriangleSelector::split_triangle(int facet_idx)
}
// Calculate distance of a point from a line.
bool TriangleSelector::is_point_inside_cursor(const Vec3f& point) const
{
Vec3f diff = m_cursor.center - point;
if (m_cursor.type == CIRCLE)
return (diff - diff.dot(m_cursor.dir) * m_cursor.dir).squaredNorm() < m_cursor.radius_sqr;
else // SPHERE
return diff.squaredNorm() < m_cursor.radius_sqr;
}
// Is pointer in a triangle?
bool TriangleSelector::is_pointer_in_triangle(int facet_idx) const
{
auto signed_volume_sign = [](const Vec3f& a, const Vec3f& b,
const Vec3f& c, const Vec3f& d) -> bool {
return ((b-a).cross(c-a)).dot(d-a) > 0.;
};
const Vec3f& p1 = m_vertices[m_triangles[facet_idx].verts_idxs[0]].v;
const Vec3f& p2 = m_vertices[m_triangles[facet_idx].verts_idxs[1]].v;
const Vec3f& p3 = m_vertices[m_triangles[facet_idx].verts_idxs[2]].v;
const Vec3f& q1 = m_cursor.center + m_cursor.dir;
const Vec3f q2 = m_cursor.center - m_cursor.dir;
if (signed_volume_sign(q1,p1,p2,p3) != signed_volume_sign(q2,p1,p2,p3)) {
bool pos = signed_volume_sign(q1,q2,p1,p2);
if (signed_volume_sign(q1,q2,p2,p3) == pos && signed_volume_sign(q1,q2,p3,p1) == pos)
return true;
}
return false;
return m_cursor.is_pointer_in_triangle(p1, p2, p3);
}
@ -245,7 +234,13 @@ bool TriangleSelector::faces_camera(int facet) const
{
assert(facet < m_orig_size_indices);
// The normal is cached in mesh->stl, use it.
return (m_mesh->stl.facet_start[facet].normal.dot(m_cursor.dir) < 0.);
Vec3f normal = m_mesh->stl.facet_start[facet].normal;
if (! m_cursor.uniform_scaling) {
// Transform the normal into world coords.
normal = m_cursor.trafo_normal * normal;
}
return (normal.dot(m_cursor.dir) < 0.);
}
@ -254,7 +249,7 @@ int TriangleSelector::vertices_inside(int facet_idx) const
{
int inside = 0;
for (size_t i=0; i<3; ++i) {
if (is_point_inside_cursor(m_vertices[m_triangles[facet_idx].verts_idxs[i]].v))
if (m_cursor.is_mesh_point_inside(m_vertices[m_triangles[facet_idx].verts_idxs[i]].v))
++inside;
}
return inside;
@ -264,9 +259,12 @@ int TriangleSelector::vertices_inside(int facet_idx) const
// Is edge inside cursor?
bool TriangleSelector::is_edge_inside_cursor(int facet_idx) const
{
Vec3f pts[3];
for (int i=0; i<3; ++i)
std::array<Vec3f, 3> pts;
for (int i=0; i<3; ++i) {
pts[i] = m_vertices[m_triangles[facet_idx].verts_idxs[i]].v;
if (! m_cursor.uniform_scaling)
pts[i] = m_cursor.trafo * pts[i];
}
const Vec3f& p = m_cursor.center;
@ -690,6 +688,79 @@ void TriangleSelector::deserialize(const std::map<int, std::vector<bool>> data)
}
TriangleSelector::Cursor::Cursor(
const Vec3f& center_, const Vec3f& source_, float radius_world,
CursorType type_, const Transform3d& trafo_)
: center{center_},
source{source_},
type{type_},
trafo{trafo_.cast<float>()}
{
Vec3d sf = Geometry::Transformation(trafo_).get_scaling_factor();
if (is_approx(sf(0), sf(1)) && is_approx(sf(1), sf(2))) {
radius_sqr = std::pow(radius_world / sf(0), 2);
uniform_scaling = true;
}
else {
// In case that the transformation is non-uniform, all checks whether
// something is inside the cursor should be done in world coords.
// First transform center, source and dir in world coords and remember
// that we did this.
center = trafo * center;
source = trafo * source;
uniform_scaling = false;
radius_sqr = radius_world * radius_world;
trafo_normal = trafo.linear().inverse().transpose();
}
// Calculate dir, in whatever coords is appropriate.
dir = (center - source).normalized();
}
// Is a point (in mesh coords) inside a cursor?
bool TriangleSelector::Cursor::is_mesh_point_inside(Vec3f point) const
{
if (! uniform_scaling)
point = trafo * point;
Vec3f diff = center - point;
if (type == CIRCLE)
return (diff - diff.dot(dir) * dir).squaredNorm() < radius_sqr;
else // SPHERE
return diff.squaredNorm() < radius_sqr;
}
// p1, p2, p3 are in mesh coords!
bool TriangleSelector::Cursor::is_pointer_in_triangle(const Vec3f& p1_,
const Vec3f& p2_,
const Vec3f& p3_) const
{
const Vec3f& q1 = center + dir;
const Vec3f& q2 = center - dir;
auto signed_volume_sign = [](const Vec3f& a, const Vec3f& b,
const Vec3f& c, const Vec3f& d) -> bool {
return ((b-a).cross(c-a)).dot(d-a) > 0.;
};
// In case the object is non-uniformly scaled, do the check in world coords.
const Vec3f& p1 = uniform_scaling ? p1_ : Vec3f(trafo * p1_);
const Vec3f& p2 = uniform_scaling ? p2_ : Vec3f(trafo * p2_);
const Vec3f& p3 = uniform_scaling ? p3_ : Vec3f(trafo * p3_);
if (signed_volume_sign(q1,p1,p2,p3) != signed_volume_sign(q2,p1,p2,p3)) {
bool pos = signed_volume_sign(q1,q2,p1,p2);
if (signed_volume_sign(q1,q2,p2,p3) == pos && signed_volume_sign(q1,q2,p3,p1) == pos)
return true;
}
return false;
}
} // namespace Slic3r

View File

@ -32,10 +32,10 @@ public:
void select_patch(const Vec3f& hit, // point where to start
int facet_start, // facet that point belongs to
const Vec3f& source, // camera position (mesh coords)
const Vec3f& dir, // direction of the ray (mesh coords)
float radius, // radius of the cursor
CursorType type, // current type of cursor
EnforcerBlockerType new_state); // enforcer or blocker?
EnforcerBlockerType new_state, // enforcer or blocker?
const Transform3d& trafo); // matrix to get from mesh to world
// Get facets currently in the given state.
indexed_triangle_set get_facets(EnforcerBlockerType state) const;
@ -129,11 +129,20 @@ protected:
// Cache for cursor position, radius and direction.
struct Cursor {
Cursor() = default;
Cursor(const Vec3f& center_, const Vec3f& source_, float radius_world,
CursorType type_, const Transform3d& trafo_);
bool is_mesh_point_inside(Vec3f pt) const;
bool is_pointer_in_triangle(const Vec3f& p1, const Vec3f& p2, const Vec3f& p3) const;
Vec3f center;
Vec3f source;
Vec3f dir;
float radius_sqr;
CursorType type;
Transform3f trafo;
Transform3f trafo_normal;
bool uniform_scaling;
};
Cursor m_cursor;
@ -142,7 +151,6 @@ protected:
// Private functions:
bool select_triangle(int facet_idx, EnforcerBlockerType type,
bool recursive_call = false);
bool is_point_inside_cursor(const Vec3f& point) const;
int vertices_inside(int facet_idx) const;
bool faces_camera(int facet) const;
void undivide_triangle(int facet_idx);

View File

@ -350,19 +350,12 @@ bool GLGizmoPainterBase::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
const Transform3d& trafo_matrix = trafo_matrices[m_rr.mesh_id];
// Calculate how far can a point be from the line (in mesh coords).
// FIXME: The scaling of the mesh can be non-uniform.
const Vec3d sf = Geometry::Transformation(trafo_matrix).get_scaling_factor();
const float avg_scaling = (sf(0) + sf(1) + sf(2))/3.;
const float limit = m_cursor_radius/avg_scaling;
// Calculate direction from camera to the hit (in mesh coords):
Vec3f camera_pos = (trafo_matrix.inverse() * camera.get_position()).cast<float>();
Vec3f dir = (m_rr.hit - camera_pos).normalized();
assert(m_rr.mesh_id < int(m_triangle_selectors.size()));
m_triangle_selectors[m_rr.mesh_id]->select_patch(m_rr.hit, m_rr.facet, camera_pos,
dir, limit, m_cursor_type, new_state);
m_cursor_radius, m_cursor_type, new_state, trafo_matrix);
m_last_mouse_click = mouse_position;
}