Tech ENABLE_PROCESS_G2_G3_LINES - Processing of gcode G2 and G3 lines

This commit is contained in:
enricoturri1966 2022-03-18 13:34:53 +01:00
parent ff2b8da8dc
commit 8c8e908325
4 changed files with 311 additions and 17 deletions

View File

@ -36,6 +36,10 @@ static const float DEFAULT_FILAMENT_DIAMETER = 1.75f;
static const float DEFAULT_FILAMENT_DENSITY = 1.245f;
static const Slic3r::Vec3f DEFAULT_EXTRUDER_OFFSET = Slic3r::Vec3f::Zero();
#if ENABLE_PROCESS_G2_G3_LINES
static const std::string INTERNAL_G2G3_TAG = "!#!#! from G2/G3 expansion !#!#!";
#endif // ENABLE_PROCESS_G2_G3_LINES
namespace Slic3r {
const std::vector<std::string> GCodeProcessor::Reserved_Tags = {
@ -1596,6 +1600,10 @@ void GCodeProcessor::process_gcode_line(const GCodeReader::GCodeLine& line, bool
switch (cmd[1]) {
case '0': { process_G0(line); break; } // Move
case '1': { process_G1(line); break; } // Move
#if ENABLE_PROCESS_G2_G3_LINES
case '2': { process_G2_G3(line, true); break; } // CW Arc Move
case '3': { process_G2_G3(line, false); break; } // CCW Arc Move
#endif // ENABLE_PROCESS_G2_G3_LINES
default: break;
}
break;
@ -2453,9 +2461,10 @@ void GCodeProcessor::process_G0(const GCodeReader::GCodeLine& line)
void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
{
float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back();
float filament_radius = 0.5f * filament_diameter;
float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius);
const float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back();
const float filament_radius = 0.5f * filament_diameter;
const float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius);
#if !ENABLE_PROCESS_G2_G3_LINES
auto absolute_position = [this, area_filament_cross_section](Axis axis, const GCodeReader::GCodeLine& lineG1) {
bool is_relative = (m_global_positioning_type == EPositioningType::Relative);
if (axis == E)
@ -2471,6 +2480,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
else
return m_start_position[axis];
};
#endif // !ENABLE_PROCESS_G2_G3_LINES
auto move_type = [this](const AxisCoords& delta_pos) {
EMoveType type = EMoveType::Noop;
@ -2498,7 +2508,11 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
// updates axes positions from line
for (unsigned char a = X; a <= E; ++a) {
#if ENABLE_PROCESS_G2_G3_LINES
m_end_position[a] = extract_absolute_position_on_axis((Axis)a, line, double(area_filament_cross_section));
#else
m_end_position[a] = absolute_position((Axis)a, line);
#endif // ENABLE_PROCESS_G2_G3_LINES
}
// updates feedrate from line, if present
@ -2517,11 +2531,11 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
if (max_abs_delta == 0.0f)
return;
EMoveType type = move_type(delta_pos);
const EMoveType type = move_type(delta_pos);
if (type == EMoveType::Extrude) {
float delta_xyz = std::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
float volume_extruded_filament = area_filament_cross_section * delta_pos[E];
float area_toolpath_cross_section = volume_extruded_filament / delta_xyz;
const float delta_xyz = std::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
const float volume_extruded_filament = area_filament_cross_section * delta_pos[E];
const float area_toolpath_cross_section = volume_extruded_filament / delta_xyz;
// save extruded volume to the cache
m_used_filaments.increase_caches(volume_extruded_filament);
@ -2532,12 +2546,23 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
m_mm3_per_mm_compare.update(area_toolpath_cross_section, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
#if ENABLE_PROCESS_G2_G3_LINES
if (m_forced_height > 0.0f)
m_height = m_forced_height;
else if (m_layer_id == 0)
m_height = (m_end_position[Z] <= double(m_first_layer_height)) ? m_end_position[Z] : m_first_layer_height;
else if (line.comment() != INTERNAL_G2G3_TAG){
if (m_end_position[Z] > m_extruded_last_z + EPSILON && delta_pos[Z] == 0.0)
m_height = m_end_position[Z] - m_extruded_last_z;
}
#else
if (m_forced_height > 0.0f)
m_height = m_forced_height;
else {
if (m_end_position[Z] > m_extruded_last_z + EPSILON)
m_height = m_end_position[Z] - m_extruded_last_z;
}
#endif // ENABLE_PROCESS_G2_G3_LINES
if (m_height == 0.0f)
m_height = DEFAULT_TOOLPATH_HEIGHT;
@ -2545,7 +2570,10 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
if (m_end_position[Z] == 0.0f)
m_end_position[Z] = m_height;
m_extruded_last_z = m_end_position[Z];
#if ENABLE_PROCESS_G2_G3_LINES
if (line.comment() != INTERNAL_G2G3_TAG)
#endif // ENABLE_PROCESS_G2_G3_LINES
m_extruded_last_z = m_end_position[Z];
m_options_z_corrector.update(m_height);
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
@ -2585,9 +2613,9 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
return delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f && delta_pos[Z] == 0.0f && delta_pos[E] != 0.0f;
};
float distance = move_length(delta_pos);
const float distance = move_length(delta_pos);
assert(distance != 0.0f);
float inv_distance = 1.0f / distance;
const float inv_distance = 1.0f / distance;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
TimeMachine& machine = m_time_processor.machines[i];
@ -2618,7 +2646,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
curr.abs_axis_feedrate[a] = std::abs(curr.axis_feedrate[a]);
if (curr.abs_axis_feedrate[a] != 0.0f) {
float axis_max_feedrate = get_axis_max_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
const float axis_max_feedrate = get_axis_max_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (axis_max_feedrate != 0.0f)
min_feedrate_factor = std::min<float>(min_feedrate_factor, axis_max_feedrate / curr.abs_axis_feedrate[a]);
}
@ -2641,7 +2669,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
get_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)));
for (unsigned char a = X; a <= E; ++a) {
float axis_max_acceleration = get_axis_max_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
const float axis_max_acceleration = get_axis_max_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (acceleration * std::abs(delta_pos[a]) * inv_distance > axis_max_acceleration)
acceleration = axis_max_acceleration;
}
@ -2652,7 +2680,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
curr.safe_feedrate = block.feedrate_profile.cruise;
for (unsigned char a = X; a <= E; ++a) {
float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
const float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (curr.abs_axis_feedrate[a] > axis_max_jerk)
curr.safe_feedrate = std::min(curr.safe_feedrate, axis_max_jerk);
}
@ -2686,7 +2714,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
const float jerk =
(v_exit > v_entry) ?
((v_entry > 0.0f || v_exit < 0.0f) ?
// coasting
@ -2700,7 +2728,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
// axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
const float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (jerk > axis_max_jerk) {
v_factor *= axis_max_jerk / jerk;
limited = true;
@ -2712,14 +2740,14 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
const float vmax_junction_threshold = vmax_junction * 0.99f;
// Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if (prev.safe_feedrate > vmax_junction_threshold && curr.safe_feedrate > vmax_junction_threshold)
vmax_junction = curr.safe_feedrate;
}
float v_allowable = max_allowable_speed(-acceleration, curr.safe_feedrate, block.distance);
const float v_allowable = max_allowable_speed(-acceleration, curr.safe_feedrate, block.distance);
block.feedrate_profile.entry = std::min(vmax_junction, v_allowable);
block.max_entry_speed = vmax_junction;
@ -2781,6 +2809,211 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
store_move_vertex(type);
}
#if ENABLE_PROCESS_G2_G3_LINES
void GCodeProcessor::process_G2_G3(const GCodeReader::GCodeLine& line, bool clockwise)
{
if (!line.has('X') || !line.has('Y') || !line.has('I') || !line.has('J'))
return;
// relative center
Vec3f rel_center = Vec3f::Zero();
if (!line.has_value('I', rel_center.x()) || !line.has_value('J', rel_center.y()))
return;
// scale center, if needed
if (m_units == EUnits::Inches)
rel_center *= INCHES_TO_MM;
struct Arc
{
Vec3d start{ Vec3d::Zero() };
Vec3d end{ Vec3d::Zero() };
Vec3d center{ Vec3d::Zero() };
double angle{ 0.0 };
double delta_x() const { return end.x() - start.x(); }
double delta_y() const { return end.y() - start.y(); }
double delta_z() const { return end.z() - start.z(); }
double length() const { return angle * start_radius(); }
double travel_length() const { return std::sqrt(sqr(length() + sqr(delta_z()))); }
double start_radius() const { return (start - center).norm(); }
double end_radius() const { return (end - center).norm(); }
Vec3d relative_start() const { return start - center; }
Vec3d relative_end() const { return end - center; }
bool closed() const { return end.isApprox(start); }
};
Arc arc;
// arc start endpoint
arc.start = Vec3d(m_start_position[X], m_start_position[Y], m_start_position[Z]);
// arc center
arc.center = arc.start + rel_center.cast<double>();
const float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back();
const float filament_radius = 0.5f * filament_diameter;
const float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius);
AxisCoords end_position = m_start_position;
for (unsigned char a = X; a <= E; ++a) {
end_position[a] = extract_absolute_position_on_axis((Axis)a, line, double(area_filament_cross_section));
}
// arc end endpoint
arc.end = Vec3d(end_position[X], end_position[Y], end_position[Z]);
// radii
if (std::abs(arc.end_radius() - arc.start_radius()) > EPSILON) {
// what to do ???
}
// updates feedrate from line
std::optional<float> feedrate;
if (line.has_f())
feedrate = m_feed_multiply.current * line.f() * MMMIN_TO_MMSEC;
// updates extrusion from line
std::optional<float> extrusion;
if (line.has_e())
extrusion = end_position[E] - m_start_position[E];
// relative arc endpoints
const Vec3d rel_arc_start = arc.relative_start();
const Vec3d rel_arc_end = arc.relative_end();
// arc angle
if (arc.closed())
arc.angle = 2.0 * PI;
else {
arc.angle = std::atan2(rel_arc_start.x() * rel_arc_end.y() - rel_arc_start.y() * rel_arc_end.x(),
rel_arc_start.x() * rel_arc_end.x() + rel_arc_start.y() * rel_arc_end.y());
if (arc.angle < 0.0)
arc.angle += 2.0 * PI;
if (clockwise)
arc.angle -= 2.0 * PI;
}
const double travel_length = arc.travel_length();
if (travel_length < 0.001)
return;
auto adjust_target = [this, area_filament_cross_section](const AxisCoords& target, const AxisCoords& prev_position) {
AxisCoords ret = target;
if (m_global_positioning_type == EPositioningType::Relative) {
for (unsigned char a = X; a <= E; ++a) {
ret[a] -= prev_position[a];
}
}
else if (m_e_local_positioning_type == EPositioningType::Relative)
ret[E] -= prev_position[E];
if (m_use_volumetric_e)
ret[E] *= area_filament_cross_section;
const double lengthsScaleFactor = (m_units == EUnits::Inches) ? double(INCHES_TO_MM) : 1.0;
for (unsigned char a = X; a <= E; ++a) {
ret[a] /= lengthsScaleFactor;
}
return ret;
};
auto fake_g1_line = [this](const AxisCoords& target, bool has_z, const std::optional<float>& feedrate, const std::optional<float>& extrusion) {
std::string ret = (boost::format("G1 X%1% Y%2%") % target[X] % target[Y]).str();
if (has_z)
ret += (boost::format(" Z%1%") % target[Z]).str();
if (feedrate.has_value())
ret += (boost::format(" F%1%") % feedrate.value()).str();
if (extrusion.has_value())
ret += (boost::format(" E%1%") % target[E]).str();
ret += (boost::format(" ;%1%\n") % INTERNAL_G2G3_TAG).str();
return ret;
};
// calculate arc segments
// reference:
// Prusa-Firmware\Firmware\motion_control.cpp - mc_arc()
// segments count
static const double MM_PER_ARC_SEGMENT = 1.0;
const size_t segments = std::max<size_t>(std::floor(travel_length / MM_PER_ARC_SEGMENT), 1);
const double theta_per_segment = arc.angle / double(segments);
const double z_per_segment = arc.delta_z() / double(segments);
const double extruder_per_segment = (extrusion.has_value()) ? extrusion.value() / double(segments) : 0.0;
double cos_T = 1.0 - 0.5 * sqr(theta_per_segment); // Small angle approximation
double sin_T = theta_per_segment;
AxisCoords prev_target = m_start_position;
AxisCoords arc_target;
double sin_Ti;
double cos_Ti;
double r_axisi;
size_t count = 0;
// Initialize the linear axis
arc_target[Z] = m_start_position[Z];
// Initialize the extruder axis
arc_target[E] = m_start_position[E];
static const size_t N_ARC_CORRECTION = 25;
Vec3d curr_rel_arc_start = arc.relative_start();
Vec3d curr_rel_arc_end = arc.relative_end();
std::string gcode;
for (size_t i = 1; i < segments; ++i) { // Increment (segments-1)
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix
r_axisi = curr_rel_arc_start.x() * sin_T + curr_rel_arc_start.y() * cos_T;
curr_rel_arc_start.x() = curr_rel_arc_start.x() * cos_T - curr_rel_arc_start.y() * sin_T;
curr_rel_arc_start.y() = r_axisi;
count++;
}
else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = ::cos(double(i) * theta_per_segment);
sin_Ti = ::sin(double(i) * theta_per_segment);
curr_rel_arc_start.x() = -double(rel_center.x()) * cos_Ti + double(rel_center.y()) * sin_Ti;
curr_rel_arc_start.y() = -double(rel_center.x()) * sin_Ti - double(rel_center.y()) * cos_Ti;
count = 0;
}
// Update arc_target location
arc_target[X] = arc.center.x() + curr_rel_arc_start.x();
arc_target[Y] = arc.center.y() + curr_rel_arc_start.y();
arc_target[Z] += z_per_segment;
arc_target[E] += extruder_per_segment;
gcode += fake_g1_line(adjust_target(arc_target, prev_target), z_per_segment != 0.0, feedrate, extrusion);
prev_target = arc_target;
// feedrate is constant, we do not need to repeat it
feedrate.reset();
}
// Ensure last segment arrives at target location.
gcode += fake_g1_line(adjust_target(end_position, prev_target), arc.delta_z() != 0.0, feedrate, extrusion);
// process fake gcode lines
GCodeReader parser;
parser.parse_buffer(gcode, [this](GCodeReader&, const GCodeReader::GCodeLine& line) {
// force all lines to share the same id
--m_line_id;
process_gcode_line(line, false);
});
}
#endif // ENABLE_PROCESS_G2_G3_LINES
void GCodeProcessor::process_G10(const GCodeReader::GCodeLine& line)
{
// stores retract move
@ -3502,5 +3735,24 @@ void GCodeProcessor::update_estimated_times_stats()
m_result.print_statistics.used_filaments_per_role = m_used_filaments.filaments_per_role;
}
#if ENABLE_PROCESS_G2_G3_LINES
double GCodeProcessor::extract_absolute_position_on_axis(Axis axis, const GCodeReader::GCodeLine& line, double area_filament_cross_section)
{
if (line.has(Slic3r::Axis(axis))) {
bool is_relative = (m_global_positioning_type == EPositioningType::Relative);
if (axis == E)
is_relative |= (m_e_local_positioning_type == EPositioningType::Relative);
const double lengthsScaleFactor = (m_units == EUnits::Inches) ? double(INCHES_TO_MM) : 1.0;
double ret = line.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
if (axis == E && m_use_volumetric_e)
ret /= area_filament_cross_section;
return is_relative ? m_start_position[axis] + ret : m_origin[axis] + ret;
}
else
return m_start_position[axis];
}
#endif // ENABLE_PROCESS_G2_G3_LINES
} /* namespace Slic3r */

View File

@ -652,6 +652,11 @@ namespace Slic3r {
void process_G0(const GCodeReader::GCodeLine& line);
void process_G1(const GCodeReader::GCodeLine& line);
#if ENABLE_PROCESS_G2_G3_LINES
// Arc Move
void process_G2_G3(const GCodeReader::GCodeLine& line, bool clockwise);
#endif // ENABLE_PROCESS_G2_G3_LINES
// Retract
void process_G10(const GCodeReader::GCodeLine& line);
@ -777,6 +782,10 @@ namespace Slic3r {
void simulate_st_synchronize(float additional_time = 0.0f);
void update_estimated_times_stats();
#if ENABLE_PROCESS_G2_G3_LINES
double extract_absolute_position_on_axis(Axis axis, const GCodeReader::GCodeLine& line, double area_filament_cross_section);
#endif // ENABLE_PROCESS_G2_G3_LINES
};
} /* namespace Slic3r */

View File

@ -84,6 +84,8 @@
#define ENABLE_NEW_CAMERA_MOVEMENTS (1 && ENABLE_2_5_0_ALPHA1)
// Enable modified rectangle selection
#define ENABLE_NEW_RECTANGLE_SELECTION (1 && ENABLE_2_5_0_ALPHA1)
// Enable processing of gcode G2 and G3 lines
#define ENABLE_PROCESS_G2_G3_LINES (1 && ENABLE_2_5_0_ALPHA1)
#endif // _prusaslicer_technologies_h_

View File

@ -859,6 +859,36 @@ void Preview::update_moves_slider()
if (view.endpoints.last < view.endpoints.first)
return;
#if ENABLE_PROCESS_G2_G3_LINES
assert(view.endpoints.first <= view.current.first && view.current.first <= view.endpoints.last);
assert(view.endpoints.first <= view.current.last && view.current.last <= view.endpoints.last);
std::vector<double> values;
values.reserve(view.endpoints.last - view.endpoints.first + 1);
std::vector<double> alternate_values;
alternate_values.reserve(view.endpoints.last - view.endpoints.first + 1);
unsigned int last_gcode_id = view.gcode_ids[view.endpoints.first];
for (unsigned int i = view.endpoints.first; i <= view.endpoints.last; ++i) {
if (i > view.endpoints.first) {
// skip consecutive moves with same gcode id (resulting from processing G2 and G3 lines)
if (last_gcode_id == view.gcode_ids[i]) {
values.back() = static_cast<double>(i + 1);
alternate_values.back() = static_cast<double>(view.gcode_ids[i]);
continue;
}
else
last_gcode_id = view.gcode_ids[i];
}
values.emplace_back(static_cast<double>(i + 1));
alternate_values.emplace_back(static_cast<double>(view.gcode_ids[i]));
}
m_moves_slider->SetSliderValues(values);
m_moves_slider->SetSliderAlternateValues(alternate_values);
m_moves_slider->SetMaxValue(int(values.size()) - 1);
m_moves_slider->SetSelectionSpan(values.front() - 1, values.back() - 1);
#else
std::vector<double> values(view.endpoints.last - view.endpoints.first + 1);
std::vector<double> alternate_values(view.endpoints.last - view.endpoints.first + 1);
unsigned int count = 0;
@ -873,6 +903,7 @@ void Preview::update_moves_slider()
m_moves_slider->SetSliderAlternateValues(alternate_values);
m_moves_slider->SetMaxValue(view.endpoints.last - view.endpoints.first);
m_moves_slider->SetSelectionSpan(view.current.first - view.endpoints.first, view.current.last - view.endpoints.first);
#endif // ENABLE_PROCESS_G2_G3_LINES
}
void Preview::enable_moves_slider(bool enable)