Rewrote Fill2.pm to C++, deleted Perl infills for good.
Removed dependency on Perl Math::PlanePath module. Fixed compilation with Visual Studio and SLIC3R_DEBUG: Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead. C++11 move semantics enabled.
This commit is contained in:
parent
3a31d37d35
commit
95ede7c4b8
1
Build.PL
1
Build.PL
@ -15,7 +15,6 @@ my %prereqs = qw(
|
||||
File::Basename 0
|
||||
File::Spec 0
|
||||
Getopt::Long 0
|
||||
Math::PlanePath 53
|
||||
Module::Build::WithXSpp 0.14
|
||||
Moo 1.003001
|
||||
POSIX 0
|
||||
|
@ -56,8 +56,6 @@ use Slic3r::Config;
|
||||
use Slic3r::ExPolygon;
|
||||
use Slic3r::ExtrusionLoop;
|
||||
use Slic3r::ExtrusionPath;
|
||||
use Slic3r::Fill;
|
||||
use Slic3r::Fill2;
|
||||
use Slic3r::Flow;
|
||||
use Slic3r::Format::AMF;
|
||||
use Slic3r::Format::OBJ;
|
||||
@ -139,7 +137,7 @@ sub spawn_thread {
|
||||
# Otherwise run the task on the current thread.
|
||||
# Used for
|
||||
# Slic3r::Print::Object->layers->make_perimeters : This is a pure C++ function.
|
||||
# Slic3r::Print::Object->layers->make_fill : This requires a rewrite of Fill.pm to C++.
|
||||
# Slic3r::Print::Object->layers->make_fill : This is a pure C++ function.
|
||||
# Slic3r::Print::SupportMaterial::generate_toolpaths
|
||||
sub parallelize {
|
||||
my %params = @_;
|
||||
|
@ -1,308 +0,0 @@
|
||||
package Slic3r::Fill;
|
||||
use Moo;
|
||||
|
||||
use List::Util qw(max);
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
use Slic3r::Fill::3DHoneycomb;
|
||||
use Slic3r::Fill::Base;
|
||||
use Slic3r::Fill::Concentric;
|
||||
use Slic3r::Fill::Honeycomb;
|
||||
use Slic3r::Fill::PlanePath;
|
||||
use Slic3r::Fill::Rectilinear;
|
||||
use Slic3r::Flow ':roles';
|
||||
use Slic3r::Geometry qw(X Y PI scale chained_path deg2rad);
|
||||
use Slic3r::Geometry::Clipper qw(union union_ex diff diff_ex intersection_ex offset offset2);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
|
||||
has 'bounding_box' => (is => 'ro', required => 0);
|
||||
has 'fillers' => (is => 'rw', default => sub { {} });
|
||||
|
||||
our %FillTypes = (
|
||||
archimedeanchords => 'Slic3r::Fill::ArchimedeanChords',
|
||||
rectilinear => 'Slic3r::Fill::Rectilinear',
|
||||
grid => 'Slic3r::Fill::Grid',
|
||||
flowsnake => 'Slic3r::Fill::Flowsnake',
|
||||
octagramspiral => 'Slic3r::Fill::OctagramSpiral',
|
||||
hilbertcurve => 'Slic3r::Fill::HilbertCurve',
|
||||
line => 'Slic3r::Fill::Line',
|
||||
concentric => 'Slic3r::Fill::Concentric',
|
||||
honeycomb => 'Slic3r::Fill::Honeycomb',
|
||||
'3dhoneycomb' => 'Slic3r::Fill::3DHoneycomb',
|
||||
);
|
||||
|
||||
sub filler {
|
||||
my $self = shift;
|
||||
my ($filler) = @_;
|
||||
|
||||
if (!ref $self) {
|
||||
return $FillTypes{$filler}->new;
|
||||
}
|
||||
|
||||
$self->fillers->{$filler} ||= $FillTypes{$filler}->new(
|
||||
bounding_box => $self->bounding_box,
|
||||
);
|
||||
return $self->fillers->{$filler};
|
||||
}
|
||||
|
||||
sub make_fill {
|
||||
my $self = shift;
|
||||
my ($layerm) = @_;
|
||||
|
||||
Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||||
|
||||
my $fill_density = $layerm->region->config->fill_density;
|
||||
my $infill_flow = $layerm->flow(FLOW_ROLE_INFILL);
|
||||
my $solid_infill_flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL);
|
||||
my $top_solid_infill_flow = $layerm->flow(FLOW_ROLE_TOP_SOLID_INFILL);
|
||||
|
||||
my @surfaces = ();
|
||||
|
||||
# merge adjacent surfaces
|
||||
# in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||||
# without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
my @surfaces_with_bridge_angle = grep { $_->bridge_angle >= 0 } @{$layerm->fill_surfaces};
|
||||
|
||||
# group surfaces by distinct properties
|
||||
my @groups = @{$layerm->fill_surfaces->group};
|
||||
|
||||
# merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
# cache flow widths and patterns used for all solid groups
|
||||
# (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
# we can only merge solid non-bridge surfaces, so discard
|
||||
# non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
# loop through solid groups
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
# find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $#groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
# groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
# subtract surfaces having a defined bridge_angle from any other
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
}
|
||||
|
||||
# subtract any other surface already processed
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
# we need to detect any narrow surfaces that might collapse
|
||||
# when adding spacing below
|
||||
# such narrow surfaces are often generated in sloping walls
|
||||
# by bridge_over_infill() and combine_infill() as a result of the
|
||||
# subtraction of the combinable area from the layer infill area,
|
||||
# which leaves small areas near the perimeters
|
||||
# we are going to grow such regions by overlapping them with the void (if any)
|
||||
# TODO: detect and investigate whether there could be narrow regions without
|
||||
# any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
}
|
||||
|
||||
my @fills = ();
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
|
||||
# get filler object
|
||||
my $f = $self->filler($filler);
|
||||
|
||||
# calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
);
|
||||
|
||||
# calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
# it's internal infill, so we can calculate a generic flow spacing
|
||||
# for all layers, for avoiding the ugly effect of
|
||||
# misaligned infill on first layer because of different extrusion width and
|
||||
# layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, # TODO: handle infill_every_layers?
|
||||
0, # no bridge
|
||||
0, # no first layer
|
||||
-1, # auto width
|
||||
$layerm->layer->object,
|
||||
);
|
||||
$f->spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
# } elsif ($surface->surface_type == S_TYPE_INTERNALBRIDGE) {
|
||||
# # The internal bridging layer will be sparse.
|
||||
# $f->spacing($flow->spacing * 2.);
|
||||
} else {
|
||||
$f->spacing($flow->spacing);
|
||||
}
|
||||
|
||||
my $old_spacing = $f->spacing;
|
||||
|
||||
$f->layer_id($layerm->layer->id);
|
||||
$f->z($layerm->layer->print_z);
|
||||
$f->angle(deg2rad($layerm->region->config->fill_angle));
|
||||
$f->loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
|
||||
# apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = map $f->fill_surface(
|
||||
$_,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
#FIXME Vojtech disabled the automatic extrusion width adjustment as this feature quite often
|
||||
# generated extrusions with excessive widths.
|
||||
# The goal of the automatic line width adjustment was to fill in a region without a gap, but because
|
||||
# the filled regions are mostly not aligned with the fill direction, very likely
|
||||
# the extrusion width adjustment causes more harm than good.
|
||||
dont_adjust => 1,
|
||||
), @{ $surface->offset(-scale($f->spacing)/2) };
|
||||
|
||||
next unless @polylines;
|
||||
|
||||
# calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
# pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
# if we used the internal flow we're not doing a solid infill
|
||||
# so we can safely ignore the slight variation that might have
|
||||
# been applied to $f->flow_spacing
|
||||
} else {
|
||||
if (abs($old_spacing - $f->spacing) > 0.3 * $old_spacing) {
|
||||
print "Infill: Extreme spacing adjustment, from: ", $old_spacing, " to: ", $f->spacing, "\n";
|
||||
}
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
}
|
||||
my $mm3_per_mm = $flow->mm3_per_mm;
|
||||
|
||||
# save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), @polylines,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
# add thin fill regions
|
||||
foreach my $thin_fill (@{$layerm->thin_fills}) {
|
||||
push @fills, Slic3r::ExtrusionPath::Collection->new($thin_fill);
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
|
||||
1;
|
@ -1,230 +0,0 @@
|
||||
package Slic3r::Fill::3DHoneycomb;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
|
||||
use POSIX qw(ceil fmod);
|
||||
use Slic3r::Geometry qw(scale scaled_epsilon);
|
||||
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
||||
|
||||
# require bridge flow since most of this pattern hangs in air
|
||||
sub use_bridge_flow { 1 }
|
||||
|
||||
sub fill_surface {
|
||||
my ($self, $surface, %params) = @_;
|
||||
|
||||
my $expolygon = $surface->expolygon;
|
||||
my $bb = $expolygon->bounding_box;
|
||||
my $size = $bb->size;
|
||||
|
||||
my $distance = scale($self->spacing) / $params{density};
|
||||
|
||||
# align bounding box to a multiple of our honeycomb grid module
|
||||
# (a module is 2*$distance since one $distance half-module is
|
||||
# growing while the other $distance half-module is shrinking)
|
||||
{
|
||||
my $min = $bb->min_point;
|
||||
$min->translate(
|
||||
-($bb->x_min % (2*$distance)),
|
||||
-($bb->y_min % (2*$distance)),
|
||||
);
|
||||
$bb->merge_point($min);
|
||||
}
|
||||
|
||||
# generate pattern
|
||||
my @polylines = map Slic3r::Polyline->new(@$_),
|
||||
makeGrid(
|
||||
scale($self->z),
|
||||
$distance,
|
||||
ceil($size->x / $distance) + 1,
|
||||
ceil($size->y / $distance) + 1, #//
|
||||
(($self->layer_id / $surface->thickness_layers) % 2) + 1,
|
||||
);
|
||||
|
||||
# move pattern in place
|
||||
$_->translate($bb->x_min, $bb->y_min) for @polylines;
|
||||
|
||||
# clip pattern to boundaries
|
||||
@polylines = @{intersection_pl(\@polylines, \@$expolygon)};
|
||||
|
||||
# connect lines
|
||||
unless ($params{dont_connect} || !@polylines) { # prevent calling leftmost_point() on empty collections
|
||||
my ($expolygon_off) = @{$expolygon->offset_ex(scaled_epsilon)};
|
||||
my $collection = Slic3r::Polyline::Collection->new(@polylines);
|
||||
@polylines = ();
|
||||
foreach my $polyline (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
||||
# try to append this polyline to previous one if any
|
||||
if (@polylines) {
|
||||
my $line = Slic3r::Line->new($polylines[-1]->last_point, $polyline->first_point);
|
||||
if ($line->length <= 1.5*$distance && $expolygon_off->contains_line($line)) {
|
||||
$polylines[-1]->append_polyline($polyline);
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
||||
# make a clone before $collection goes out of scope
|
||||
push @polylines, $polyline->clone;
|
||||
}
|
||||
}
|
||||
|
||||
# TODO: return ExtrusionLoop objects to get better chained paths
|
||||
return @polylines;
|
||||
}
|
||||
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
Creates a contiguous sequence of points at a specified height that make
|
||||
up a horizontal slice of the edges of a space filling truncated
|
||||
octahedron tesselation. The octahedrons are oriented so that the
|
||||
square faces are in the horizontal plane with edges parallel to the X
|
||||
and Y axes.
|
||||
|
||||
Credits: David Eccles (gringer).
|
||||
|
||||
=head2 makeGrid(z, gridSize, gridWidth, gridHeight, curveType)
|
||||
|
||||
Generate a set of curves (array of array of 2d points) that describe a
|
||||
horizontal slice of a truncated regular octahedron with a specified
|
||||
grid square size.
|
||||
|
||||
=cut
|
||||
|
||||
sub makeGrid {
|
||||
my ($z, $gridSize, $gridWidth, $gridHeight, $curveType) = @_;
|
||||
my $scaleFactor = $gridSize;
|
||||
my $normalisedZ = $z / $scaleFactor;
|
||||
my @points = makeNormalisedGrid($normalisedZ, $gridWidth, $gridHeight, $curveType);
|
||||
foreach my $lineRef (@points) {
|
||||
foreach my $pointRef (@$lineRef) {
|
||||
$pointRef->[0] *= $scaleFactor;
|
||||
$pointRef->[1] *= $scaleFactor;
|
||||
}
|
||||
}
|
||||
return @points;
|
||||
}
|
||||
|
||||
=head1 FUNCTIONS
|
||||
=cut
|
||||
|
||||
=head2 colinearPoints(offset, gridLength)
|
||||
|
||||
Generate an array of points that are in the same direction as the
|
||||
basic printing line (i.e. Y points for columns, X points for rows)
|
||||
|
||||
Note: a negative offset only causes a change in the perpendicular
|
||||
direction
|
||||
|
||||
=cut
|
||||
|
||||
sub colinearPoints {
|
||||
my ($offset, $baseLocation, $gridLength) = @_;
|
||||
|
||||
my @points = ();
|
||||
push @points, $baseLocation - abs($offset/2);
|
||||
for (my $i = 0; $i < $gridLength; $i++) {
|
||||
push @points, $baseLocation + $i + abs($offset/2);
|
||||
push @points, $baseLocation + ($i+1) - abs($offset/2);
|
||||
}
|
||||
push @points, $baseLocation + $gridLength + abs($offset/2);
|
||||
return @points;
|
||||
}
|
||||
|
||||
=head2 colinearPoints(offset, baseLocation, gridLength)
|
||||
|
||||
Generate an array of points for the dimension that is perpendicular to
|
||||
the basic printing line (i.e. X points for columns, Y points for rows)
|
||||
|
||||
=cut
|
||||
|
||||
sub perpendPoints {
|
||||
my ($offset, $baseLocation, $gridLength) = @_;
|
||||
|
||||
my @points = ();
|
||||
my $side = 2*(($baseLocation) % 2) - 1;
|
||||
push @points, $baseLocation - $offset/2 * $side;
|
||||
for (my $i = 0; $i < $gridLength; $i++) {
|
||||
$side = 2*(($i+$baseLocation) % 2) - 1;
|
||||
push @points, $baseLocation + $offset/2 * $side;
|
||||
push @points, $baseLocation + $offset/2 * $side;
|
||||
}
|
||||
push @points, $baseLocation - $offset/2 * $side;
|
||||
|
||||
return @points;
|
||||
}
|
||||
|
||||
=head2 trim(pointArrayRef, minX, minY, maxX, maxY)
|
||||
|
||||
Trims an array of points to specified rectangular limits. Point
|
||||
components that are outside these limits are set to the limits.
|
||||
|
||||
=cut
|
||||
|
||||
sub trim {
|
||||
my ($pointArrayRef, $minX, $minY, $maxX, $maxY) = @_;
|
||||
|
||||
foreach (@$pointArrayRef) {
|
||||
$_->[0] = ($_->[0] < $minX) ? $minX : (($_->[0] > $maxX) ? $maxX : $_->[0]);
|
||||
$_->[1] = ($_->[1] < $minY) ? $minY : (($_->[1] > $maxY) ? $maxY : $_->[1]);
|
||||
}
|
||||
}
|
||||
|
||||
=head2 makeNormalisedGrid(z, gridWidth, gridHeight, curveType)
|
||||
|
||||
Generate a set of curves (array of array of 2d points) that describe a
|
||||
horizontal slice of a truncated regular octahedron with edge length 1.
|
||||
|
||||
curveType specifies which lines to print, 1 for vertical lines
|
||||
(columns), 2 for horizontal lines (rows), and 3 for both.
|
||||
|
||||
=cut
|
||||
|
||||
sub makeNormalisedGrid {
|
||||
my ($z, $gridWidth, $gridHeight, $curveType) = @_;
|
||||
|
||||
## offset required to create a regular octagram
|
||||
my $octagramGap = 0.5;
|
||||
|
||||
# sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
|
||||
my $a = sqrt(2); # period
|
||||
my $wave = abs(fmod($z, $a) - $a/2)/$a*4 - 1;
|
||||
my $offset = $wave * $octagramGap;
|
||||
|
||||
my @points = ();
|
||||
if (($curveType & 1) != 0) {
|
||||
for (my $x = 0; $x <= $gridWidth; $x++) {
|
||||
my @xPoints = perpendPoints($offset, $x, $gridHeight);
|
||||
my @yPoints = colinearPoints($offset, 0, $gridHeight);
|
||||
# This is essentially @newPoints = zip(@xPoints, @yPoints)
|
||||
my @newPoints = map [ $xPoints[$_], $yPoints[$_] ], 0..$#xPoints;
|
||||
|
||||
# trim points to grid edges
|
||||
#trim(\@newPoints, 0, 0, $gridWidth, $gridHeight);
|
||||
|
||||
if ($x % 2 == 0){
|
||||
push @points, [ @newPoints ];
|
||||
} else {
|
||||
push @points, [ reverse @newPoints ];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (($curveType & 2) != 0) {
|
||||
for (my $y = 0; $y <= $gridHeight; $y++) {
|
||||
my @xPoints = colinearPoints($offset, 0, $gridWidth);
|
||||
my @yPoints = perpendPoints($offset, $y, $gridWidth);
|
||||
my @newPoints = map [ $xPoints[$_], $yPoints[$_] ], 0..$#xPoints;
|
||||
|
||||
# trim points to grid edges
|
||||
#trim(\@newPoints, 0, 0, $gridWidth, $gridHeight);
|
||||
|
||||
if ($y % 2 == 0) {
|
||||
push @points, [ @newPoints ];
|
||||
} else {
|
||||
push @points, [ reverse @newPoints ];
|
||||
}
|
||||
}
|
||||
}
|
||||
return @points;
|
||||
}
|
||||
|
||||
1;
|
@ -1,101 +0,0 @@
|
||||
package Slic3r::Fill::Base;
|
||||
use Moo;
|
||||
|
||||
has 'layer_id' => (is => 'rw');
|
||||
has 'z' => (is => 'rw'); # in unscaled coordinates
|
||||
has 'angle' => (is => 'rw'); # in radians, ccw, 0 = East
|
||||
has 'spacing' => (is => 'rw'); # in unscaled coordinates
|
||||
has 'loop_clipping' => (is => 'rw', default => sub { 0 }); # in scaled coordinates
|
||||
has 'bounding_box' => (is => 'ro', required => 0); # Slic3r::Geometry::BoundingBox object
|
||||
|
||||
sub set_spacing {
|
||||
my ($self, $spacing) = @_;
|
||||
$self->spacing($spacing);
|
||||
}
|
||||
|
||||
sub set_angle {
|
||||
my ($self, $angle) = @_;
|
||||
$self->angle($angle);
|
||||
}
|
||||
|
||||
sub adjust_solid_spacing {
|
||||
my $self = shift;
|
||||
my %params = @_;
|
||||
|
||||
my $number_of_lines = int($params{width} / $params{distance}) + 1;
|
||||
return $params{distance} if $number_of_lines <= 1;
|
||||
|
||||
my $extra_space = $params{width} % $params{distance};
|
||||
return $params{distance} + $extra_space / ($number_of_lines - 1);
|
||||
}
|
||||
|
||||
sub no_sort { 0 }
|
||||
sub use_bridge_flow { 0 }
|
||||
|
||||
|
||||
package Slic3r::Fill::WithDirection;
|
||||
use Moo::Role;
|
||||
|
||||
use Slic3r::Geometry qw(PI rad2deg);
|
||||
|
||||
sub angles () { [0, PI/2] }
|
||||
|
||||
sub infill_direction {
|
||||
my $self = shift;
|
||||
my ($surface) = @_;
|
||||
|
||||
if (!defined $self->angle) {
|
||||
warn "Using undefined infill angle";
|
||||
$self->angle(0);
|
||||
}
|
||||
|
||||
# set infill angle
|
||||
my (@rotate);
|
||||
$rotate[0] = $self->angle;
|
||||
$rotate[1] = $self->bounding_box
|
||||
? $self->bounding_box->center
|
||||
: $surface->expolygon->bounding_box->center;
|
||||
my $shift = $rotate[1]->clone;
|
||||
|
||||
if (defined $self->layer_id) {
|
||||
# alternate fill direction
|
||||
my $layer_num = $self->layer_id / $surface->thickness_layers;
|
||||
my $angle = $self->angles->[$layer_num % @{$self->angles}];
|
||||
$rotate[0] = $self->angle + $angle if $angle;
|
||||
}
|
||||
|
||||
# use bridge angle
|
||||
if ($surface->bridge_angle >= 0) {
|
||||
Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
|
||||
$rotate[0] = $surface->bridge_angle;
|
||||
}
|
||||
|
||||
$rotate[0] += PI/2;
|
||||
$shift->rotate(@rotate);
|
||||
return [\@rotate, $shift];
|
||||
}
|
||||
|
||||
# this method accepts any object that implements rotate() and translate()
|
||||
sub rotate_points {
|
||||
my $self = shift;
|
||||
my ($expolygon, $rotate_vector) = @_;
|
||||
|
||||
# rotate points
|
||||
my ($rotate, $shift) = @$rotate_vector;
|
||||
$rotate = [ -$rotate->[0], $rotate->[1] ];
|
||||
$expolygon->rotate(@$rotate);
|
||||
$expolygon->translate(@$shift);
|
||||
}
|
||||
|
||||
sub rotate_points_back {
|
||||
my $self = shift;
|
||||
my ($paths, $rotate_vector) = @_;
|
||||
|
||||
my ($rotate, $shift) = @$rotate_vector;
|
||||
$shift = [ map -$_, @$shift ];
|
||||
|
||||
$_->translate(@$shift) for @$paths;
|
||||
$_->rotate(@$rotate) for @$paths;
|
||||
}
|
||||
|
||||
1;
|
@ -1,57 +0,0 @@
|
||||
package Slic3r::Fill::Concentric;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
|
||||
use Slic3r::Geometry qw(scale unscale X);
|
||||
use Slic3r::Geometry::Clipper qw(offset offset2 union_pt_chained);
|
||||
|
||||
sub no_sort { 1 }
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
# no rotation is supported for this infill pattern
|
||||
|
||||
my $expolygon = $surface->expolygon;
|
||||
my $bounding_box = $expolygon->bounding_box;
|
||||
|
||||
my $min_spacing = scale($self->spacing);
|
||||
my $distance = $min_spacing / $params{density};
|
||||
|
||||
if ($params{density} == 1 && !$params{dont_adjust}) {
|
||||
$distance = $self->adjust_solid_spacing(
|
||||
width => $bounding_box->size->[X],
|
||||
distance => $distance,
|
||||
);
|
||||
$self->spacing(unscale $distance);
|
||||
}
|
||||
|
||||
my @loops = my @last = map $_->clone, @$expolygon;
|
||||
while (@last) {
|
||||
push @loops, @last = @{offset2(\@last, -($distance + 0.5*$min_spacing), +0.5*$min_spacing)};
|
||||
}
|
||||
|
||||
# generate paths from the outermost to the innermost, to avoid
|
||||
# adhesion problems of the first central tiny loops
|
||||
@loops = map Slic3r::Polygon->new(@$_),
|
||||
reverse @{union_pt_chained(\@loops)};
|
||||
|
||||
# split paths using a nearest neighbor search
|
||||
my @paths = ();
|
||||
my $last_pos = Slic3r::Point->new(0,0);
|
||||
foreach my $loop (@loops) {
|
||||
push @paths, $loop->split_at_index($last_pos->nearest_point_index(\@$loop));
|
||||
$last_pos = $paths[-1]->last_point;
|
||||
}
|
||||
|
||||
# clip the paths to prevent the extruder from getting exactly on the first point of the loop
|
||||
$_->clip_end($self->loop_clipping) for @paths;
|
||||
@paths = grep $_->is_valid, @paths; # remove empty paths (too short, thus eaten by clipping)
|
||||
|
||||
# TODO: return ExtrusionLoop objects to get better chained paths
|
||||
return @paths;
|
||||
}
|
||||
|
||||
1;
|
@ -1,129 +0,0 @@
|
||||
package Slic3r::Fill::Honeycomb;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
with qw(Slic3r::Fill::WithDirection);
|
||||
|
||||
has 'cache' => (is => 'rw', default => sub {{}});
|
||||
|
||||
use Slic3r::Geometry qw(PI X Y MIN MAX scale scaled_epsilon);
|
||||
use Slic3r::Geometry::Clipper qw(intersection intersection_pl);
|
||||
|
||||
sub angles () { [0, PI/3, PI/3*2] }
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
my $rotate_vector = $self->infill_direction($surface);
|
||||
|
||||
# cache hexagons math
|
||||
my $cache_id = sprintf "d%s_s%s", $params{density}, $self->spacing;
|
||||
my $m;
|
||||
if (!($m = $self->cache->{$cache_id})) {
|
||||
$m = $self->cache->{$cache_id} = {};
|
||||
my $min_spacing = scale($self->spacing);
|
||||
$m->{distance} = $min_spacing / $params{density};
|
||||
$m->{hex_side} = $m->{distance} / (sqrt(3)/2);
|
||||
$m->{hex_width} = $m->{distance} * 2; # $m->{hex_width} == $m->{hex_side} * sqrt(3);
|
||||
my $hex_height = $m->{hex_side} * 2;
|
||||
$m->{pattern_height} = $hex_height + $m->{hex_side};
|
||||
$m->{y_short} = $m->{distance} * sqrt(3)/3;
|
||||
$m->{x_offset} = $min_spacing / 2;
|
||||
$m->{y_offset} = $m->{x_offset} * sqrt(3)/3;
|
||||
$m->{hex_center} = Slic3r::Point->new($m->{hex_width}/2, $m->{hex_side});
|
||||
}
|
||||
|
||||
my @polygons = ();
|
||||
{
|
||||
# adjust actual bounding box to the nearest multiple of our hex pattern
|
||||
# and align it so that it matches across layers
|
||||
|
||||
my $bounding_box = $surface->expolygon->bounding_box;
|
||||
{
|
||||
# rotate bounding box according to infill direction
|
||||
my $bb_polygon = $bounding_box->polygon;
|
||||
$bb_polygon->rotate($rotate_vector->[0][0], $m->{hex_center});
|
||||
$bounding_box = $bb_polygon->bounding_box;
|
||||
|
||||
# extend bounding box so that our pattern will be aligned with other layers
|
||||
# $bounding_box->[X1] and [Y1] represent the displacement between new bounding box offset and old one
|
||||
$bounding_box->merge_point(Slic3r::Point->new(
|
||||
$bounding_box->x_min - ($bounding_box->x_min % $m->{hex_width}),
|
||||
$bounding_box->y_min - ($bounding_box->y_min % $m->{pattern_height}),
|
||||
));
|
||||
}
|
||||
|
||||
my $x = $bounding_box->x_min;
|
||||
while ($x <= $bounding_box->x_max) {
|
||||
my $p = [];
|
||||
|
||||
my @x = ($x + $m->{x_offset}, $x + $m->{distance} - $m->{x_offset});
|
||||
for (1..2) {
|
||||
@$p = reverse @$p; # turn first half upside down
|
||||
my @p = ();
|
||||
for (my $y = $bounding_box->y_min; $y <= $bounding_box->y_max; $y += $m->{y_short} + $m->{hex_side} + $m->{y_short} + $m->{hex_side}) {
|
||||
push @$p,
|
||||
[ $x[1], $y + $m->{y_offset} ],
|
||||
[ $x[0], $y + $m->{y_short} - $m->{y_offset} ],
|
||||
[ $x[0], $y + $m->{y_short} + $m->{hex_side} + $m->{y_offset} ],
|
||||
[ $x[1], $y + $m->{y_short} + $m->{hex_side} + $m->{y_short} - $m->{y_offset} ],
|
||||
[ $x[1], $y + $m->{y_short} + $m->{hex_side} + $m->{y_short} + $m->{hex_side} + $m->{y_offset} ];
|
||||
}
|
||||
@x = map $_ + $m->{distance}, reverse @x; # draw symmetrical pattern
|
||||
$x += $m->{distance};
|
||||
}
|
||||
|
||||
push @polygons, Slic3r::Polygon->new(@$p);
|
||||
}
|
||||
|
||||
$_->rotate(-$rotate_vector->[0][0], $m->{hex_center}) for @polygons;
|
||||
}
|
||||
|
||||
my @paths;
|
||||
if ($params{complete} || 1) {
|
||||
# we were requested to complete each loop;
|
||||
# in this case we don't try to make more continuous paths
|
||||
@paths = map $_->split_at_first_point,
|
||||
@{intersection([ $surface->p ], \@polygons)};
|
||||
|
||||
} else {
|
||||
# consider polygons as polylines without re-appending the initial point:
|
||||
# this cuts the last segment on purpose, so that the jump to the next
|
||||
# path is more straight
|
||||
@paths = @{intersection_pl(
|
||||
[ map Slic3r::Polyline->new(@$_), @polygons ],
|
||||
[ @{$surface->expolygon} ],
|
||||
)};
|
||||
|
||||
# connect paths
|
||||
if (@paths) { # prevent calling leftmost_point() on empty collections
|
||||
my $collection = Slic3r::Polyline::Collection->new(@paths);
|
||||
@paths = ();
|
||||
foreach my $path (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
||||
if (@paths) {
|
||||
# distance between first point of this path and last point of last path
|
||||
my $distance = $paths[-1]->last_point->distance_to($path->first_point);
|
||||
|
||||
if ($distance <= $m->{hex_width}) {
|
||||
$paths[-1]->append_polyline($path);
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
||||
# make a clone before $collection goes out of scope
|
||||
push @paths, $path->clone;
|
||||
}
|
||||
}
|
||||
|
||||
# clip paths again to prevent connection segments from crossing the expolygon boundaries
|
||||
@paths = @{intersection_pl(
|
||||
\@paths,
|
||||
[ map @$_, @{$surface->expolygon->offset_ex(scaled_epsilon)} ],
|
||||
)};
|
||||
}
|
||||
|
||||
return @paths;
|
||||
}
|
||||
|
||||
1;
|
@ -1,118 +0,0 @@
|
||||
package Slic3r::Fill::PlanePath;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
with qw(Slic3r::Fill::WithDirection);
|
||||
|
||||
use Slic3r::Geometry qw(scale X1 Y1 X2 Y2);
|
||||
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
||||
|
||||
sub angles () { [0] }
|
||||
sub multiplier () { 1 }
|
||||
|
||||
sub process_polyline {}
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
# rotate polygons
|
||||
my $expolygon = $surface->expolygon->clone;
|
||||
my $rotate_vector = $self->infill_direction($surface);
|
||||
$self->rotate_points($expolygon, $rotate_vector);
|
||||
|
||||
my $distance_between_lines = scale($self->spacing) / $params{density} * $self->multiplier;
|
||||
|
||||
# align infill across layers using the object's bounding box
|
||||
my $bb_polygon = $self->bounding_box->polygon;
|
||||
$self->rotate_points($bb_polygon, $rotate_vector);
|
||||
my $bounding_box = $bb_polygon->bounding_box;
|
||||
|
||||
(ref $self) =~ /::([^:]+)$/;
|
||||
my $path = "Math::PlanePath::$1"->new;
|
||||
|
||||
my $translate = Slic3r::Point->new(0,0); # vector
|
||||
if ($path->x_negative || $path->y_negative) {
|
||||
# if the curve extends on both positive and negative coordinate space,
|
||||
# center our expolygon around origin
|
||||
$translate = $bounding_box->center->negative;
|
||||
} else {
|
||||
# if the curve does not extend in negative coordinate space,
|
||||
# move expolygon entirely in positive coordinate space
|
||||
$translate = $bounding_box->min_point->negative;
|
||||
}
|
||||
$expolygon->translate(@$translate);
|
||||
$bounding_box->translate(@$translate);
|
||||
|
||||
my ($n_lo, $n_hi) = $path->rect_to_n_range(
|
||||
map { $_ / $distance_between_lines }
|
||||
@{$bounding_box->min_point},
|
||||
@{$bounding_box->max_point},
|
||||
);
|
||||
|
||||
my $polyline = Slic3r::Polyline->new(
|
||||
map [ map { $_ * $distance_between_lines } $path->n_to_xy($_) ], ($n_lo..$n_hi)
|
||||
);
|
||||
return {} if @$polyline <= 1;
|
||||
|
||||
$self->process_polyline($polyline, $bounding_box);
|
||||
|
||||
my @paths = @{intersection_pl([$polyline], \@$expolygon)};
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill.svg",
|
||||
no_arrows => 1,
|
||||
polygons => \@$expolygon,
|
||||
green_polygons => [ $bounding_box->polygon ],
|
||||
polylines => [ $polyline ],
|
||||
red_polylines => \@paths,
|
||||
);
|
||||
}
|
||||
|
||||
# paths must be repositioned and rotated back
|
||||
$_->translate(@{$translate->negative}) for @paths;
|
||||
$self->rotate_points_back(\@paths, $rotate_vector);
|
||||
|
||||
return @paths;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::ArchimedeanChords;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::ArchimedeanChords;
|
||||
|
||||
|
||||
package Slic3r::Fill::Flowsnake;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::Flowsnake;
|
||||
use Slic3r::Geometry qw(X);
|
||||
|
||||
# Sorry, this fill is currently broken.
|
||||
|
||||
sub process_polyline {
|
||||
my $self = shift;
|
||||
my ($polyline, $bounding_box) = @_;
|
||||
|
||||
$_->[X] += $bounding_box->center->[X] for @$polyline;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::HilbertCurve;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::HilbertCurve;
|
||||
|
||||
|
||||
package Slic3r::Fill::OctagramSpiral;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::OctagramSpiral;
|
||||
|
||||
sub multiplier () { sqrt(2) }
|
||||
|
||||
|
||||
|
||||
1;
|
@ -1,172 +0,0 @@
|
||||
package Slic3r::Fill::Rectilinear;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
with qw(Slic3r::Fill::WithDirection);
|
||||
|
||||
has '_min_spacing' => (is => 'rw');
|
||||
has '_line_spacing' => (is => 'rw');
|
||||
has '_diagonal_distance' => (is => 'rw');
|
||||
has '_line_oscillation' => (is => 'rw');
|
||||
|
||||
use Slic3r::Geometry qw(scale unscale scaled_epsilon);
|
||||
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
||||
|
||||
sub horizontal_lines { 0 }
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
# rotate polygons so that we can work with vertical lines here
|
||||
my $expolygon = $surface->expolygon->clone;
|
||||
my $rotate_vector = $self->infill_direction($surface);
|
||||
$self->rotate_points($expolygon, $rotate_vector);
|
||||
|
||||
$self->_min_spacing(scale $self->spacing);
|
||||
$self->_line_spacing($self->_min_spacing / $params{density});
|
||||
$self->_diagonal_distance($self->_line_spacing * 2);
|
||||
$self->_line_oscillation($self->_line_spacing - $self->_min_spacing); # only for Line infill
|
||||
my $bounding_box = $expolygon->bounding_box;
|
||||
|
||||
# define flow spacing according to requested density
|
||||
if ($params{density} == 1 && !$params{dont_adjust}) {
|
||||
my $old_spacing = $self->spacing;
|
||||
$self->_line_spacing($self->adjust_solid_spacing(
|
||||
width => $bounding_box->size->x,
|
||||
distance => $self->_line_spacing,
|
||||
));
|
||||
$self->spacing(unscale $self->_line_spacing);
|
||||
if (abs($old_spacing - $self->spacing) > 0.3 * $old_spacing) {
|
||||
print "Infill2: Extreme spacing adjustment, from: ", $old_spacing, " to: ", $self->spacing, "\n";
|
||||
}
|
||||
} else {
|
||||
# extend bounding box so that our pattern will be aligned with other layers
|
||||
$bounding_box->merge_point(Slic3r::Point->new(
|
||||
$bounding_box->x_min - ($bounding_box->x_min % $self->_line_spacing),
|
||||
$bounding_box->y_min - ($bounding_box->y_min % $self->_line_spacing),
|
||||
));
|
||||
}
|
||||
|
||||
# generate the basic pattern
|
||||
my $x_max = $bounding_box->x_max + scaled_epsilon;
|
||||
my @lines = ();
|
||||
for (my $x = $bounding_box->x_min; $x <= $x_max; $x += $self->_line_spacing) {
|
||||
push @lines, $self->_line($#lines, $x, $bounding_box->y_min, $bounding_box->y_max);
|
||||
}
|
||||
if ($self->horizontal_lines) {
|
||||
my $y_max = $bounding_box->y_max + scaled_epsilon;
|
||||
for (my $y = $bounding_box->y_min; $y <= $y_max; $y += $self->_line_spacing) {
|
||||
push @lines, Slic3r::Polyline->new(
|
||||
[$bounding_box->x_min, $y],
|
||||
[$bounding_box->x_max, $y],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
# clip paths against a slightly larger expolygon, so that the first and last paths
|
||||
# are kept even if the expolygon has vertical sides
|
||||
# the minimum offset for preventing edge lines from being clipped is scaled_epsilon;
|
||||
# however we use a larger offset to support expolygons with slightly skewed sides and
|
||||
# not perfectly straight
|
||||
my @polylines = @{intersection_pl(\@lines, $expolygon->offset(+scale 0.02))};
|
||||
|
||||
my $extra = $self->_min_spacing * &Slic3r::INFILL_OVERLAP_OVER_SPACING;
|
||||
foreach my $polyline (@polylines) {
|
||||
my ($first_point, $last_point) = @$polyline[0,-1];
|
||||
if ($first_point->y > $last_point->y) { #>
|
||||
($first_point, $last_point) = ($last_point, $first_point);
|
||||
}
|
||||
$first_point->set_y($first_point->y - $extra); #--
|
||||
$last_point->set_y($last_point->y + $extra); #++
|
||||
}
|
||||
|
||||
# connect lines
|
||||
unless ($params{dont_connect} || !@polylines) { # prevent calling leftmost_point() on empty collections
|
||||
# offset the expolygon by max(min_spacing/2, extra)
|
||||
my ($expolygon_off) = @{$expolygon->offset_ex($self->_min_spacing/2)};
|
||||
my $collection = Slic3r::Polyline::Collection->new(@polylines);
|
||||
@polylines = ();
|
||||
|
||||
foreach my $polyline (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
||||
if (@polylines) {
|
||||
my $first_point = $polyline->first_point;
|
||||
my $last_point = $polylines[-1]->last_point;
|
||||
my @distance = map abs($first_point->$_ - $last_point->$_), qw(x y);
|
||||
|
||||
# TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
# connecting paths on the boundaries of internal regions
|
||||
if ($self->_can_connect(@distance) && $expolygon_off->contains_line(Slic3r::Line->new($last_point, $first_point))) {
|
||||
$polylines[-1]->append_polyline($polyline);
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
||||
# make a clone before $collection goes out of scope
|
||||
push @polylines, $polyline->clone;
|
||||
}
|
||||
}
|
||||
|
||||
# paths must be rotated back
|
||||
$self->rotate_points_back(\@polylines, $rotate_vector);
|
||||
|
||||
return @polylines;
|
||||
}
|
||||
|
||||
sub _line {
|
||||
my ($self, $i, $x, $y_min, $y_max) = @_;
|
||||
|
||||
return Slic3r::Polyline->new(
|
||||
[$x, $y_min],
|
||||
[$x, $y_max],
|
||||
);
|
||||
}
|
||||
|
||||
sub _can_connect {
|
||||
my ($self, $dist_X, $dist_Y) = @_;
|
||||
|
||||
return $dist_X <= $self->_diagonal_distance
|
||||
&& $dist_Y <= $self->_diagonal_distance;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::Line;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::Rectilinear';
|
||||
|
||||
use Slic3r::Geometry qw(scaled_epsilon);
|
||||
|
||||
sub _line {
|
||||
my ($self, $i, $x, $y_min, $y_max) = @_;
|
||||
|
||||
if ($i % 2) {
|
||||
return Slic3r::Polyline->new(
|
||||
[$x - $self->_line_oscillation, $y_min],
|
||||
[$x + $self->_line_oscillation, $y_max],
|
||||
);
|
||||
} else {
|
||||
return Slic3r::Polyline->new(
|
||||
[$x, $y_min],
|
||||
[$x, $y_max],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
sub _can_connect {
|
||||
my ($self, $dist_X, $dist_Y) = @_;
|
||||
|
||||
my $TOLERANCE = 10 * scaled_epsilon;
|
||||
return ($dist_X >= ($self->_line_spacing - $self->_line_oscillation) - $TOLERANCE)
|
||||
&& ($dist_X <= ($self->_line_spacing + $self->_line_oscillation) + $TOLERANCE)
|
||||
&& $dist_Y <= $self->_diagonal_distance;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::Grid;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::Rectilinear';
|
||||
|
||||
sub angles () { [0] }
|
||||
sub horizontal_lines { 1 }
|
||||
|
||||
1;
|
@ -1,294 +0,0 @@
|
||||
# This is derived from Fill.pm
|
||||
# and it uses the C++ fillers.
|
||||
package Slic3r::Fill2;
|
||||
use Moo;
|
||||
|
||||
use List::Util qw(max);
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
|
||||
use Slic3r::Flow ':roles';
|
||||
use Slic3r::Geometry qw(X Y PI scale chained_path deg2rad);
|
||||
use Slic3r::Geometry::Clipper qw(union union_ex diff diff_ex intersection_ex offset offset2);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
has 'bounding_box' => (is => 'ro', required => 0);
|
||||
has 'fillers' => (is => 'rw', default => sub { {} });
|
||||
|
||||
sub filler {
|
||||
my $self = shift;
|
||||
my ($filler) = @_;
|
||||
|
||||
if (!ref $self) {
|
||||
return Slic3r::Filler->new_from_type($filler);
|
||||
}
|
||||
|
||||
#print "Filler: ", $filler, "\n";
|
||||
$self->fillers->{$filler} ||= Slic3r::Filler->new_from_type($filler);
|
||||
$self->fillers->{$filler}->set_bounding_box($self->bounding_box);
|
||||
return $self->fillers->{$filler};
|
||||
}
|
||||
|
||||
|
||||
# Generate infills for Slic3r::Layer::Region.
|
||||
# The Slic3r::Layer::Region at this point of time may contain
|
||||
# surfaces of various types (internal/bridge/top/bottom/solid).
|
||||
# The infills are generated on the groups of surfaces with a compatible type.
|
||||
# Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
|
||||
# and the thin fills generated by generate_perimeters().
|
||||
sub make_fill {
|
||||
my $self = shift;
|
||||
# of type - C++: LayerRegion, Perl: Slic3r::Layer::Region
|
||||
my ($layerm) = @_;
|
||||
|
||||
Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||||
|
||||
my $fill_density = $layerm->region->config->fill_density;
|
||||
my $infill_flow = $layerm->flow(FLOW_ROLE_INFILL);
|
||||
my $solid_infill_flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL);
|
||||
my $top_solid_infill_flow = $layerm->flow(FLOW_ROLE_TOP_SOLID_INFILL);
|
||||
|
||||
# Surfaces are of the type Slic3r::Surface
|
||||
my @surfaces = ();
|
||||
|
||||
# merge adjacent surfaces
|
||||
# in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||||
# without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
my @surfaces_with_bridge_angle = grep { $_->bridge_angle >= 0 } @{$layerm->fill_surfaces};
|
||||
|
||||
# group surfaces by distinct properties
|
||||
# group is of type Slic3r::SurfaceCollection
|
||||
my @groups = @{$layerm->fill_surfaces->group};
|
||||
|
||||
# merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
# cache flow widths and patterns used for all solid groups
|
||||
# (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
# we can only merge solid non-bridge surfaces, so discard
|
||||
# non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
# loop through solid groups
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
# find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $#groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
# groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
# Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
# Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
}
|
||||
|
||||
# subtract any other surface already processed
|
||||
#FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
# we need to detect any narrow surfaces that might collapse
|
||||
# when adding spacing below
|
||||
# such narrow surfaces are often generated in sloping walls
|
||||
# by bridge_over_infill() and combine_infill() as a result of the
|
||||
# subtraction of the combinable area from the layer infill area,
|
||||
# which leaves small areas near the perimeters
|
||||
# we are going to grow such regions by overlapping them with the void (if any)
|
||||
# TODO: detect and investigate whether there could be narrow regions without
|
||||
# any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
}
|
||||
|
||||
# Fills are of perl type Slic3r::ExtrusionPath::Collection, c++ type ExtrusionEntityCollection
|
||||
my @fills = ();
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
|
||||
# get filler object
|
||||
my $f = $self->filler($filler);
|
||||
|
||||
# calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
);
|
||||
|
||||
# calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
# it's internal infill, so we can calculate a generic flow spacing
|
||||
# for all layers, for avoiding the ugly effect of
|
||||
# misaligned infill on first layer because of different extrusion width and
|
||||
# layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, # TODO: handle infill_every_layers?
|
||||
0, # no bridge
|
||||
0, # no first layer
|
||||
-1, # auto width
|
||||
$layerm->layer->object,
|
||||
);
|
||||
$f->set_spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
} else {
|
||||
$f->set_spacing($flow->spacing);
|
||||
}
|
||||
|
||||
$f->set_layer_id($layerm->layer->id);
|
||||
$f->set_z($layerm->layer->print_z);
|
||||
$f->set_angle(deg2rad($layerm->region->config->fill_angle));
|
||||
$f->set_loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
|
||||
# apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = $f->fill_surface(
|
||||
$surface,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
);
|
||||
next unless @polylines;
|
||||
|
||||
|
||||
# calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
# pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
# if we used the internal flow we're not doing a solid infill
|
||||
# so we can safely ignore the slight variation that might have
|
||||
# been applied to $f->flow_spacing
|
||||
} else {
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
}
|
||||
|
||||
# save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
# Only concentric fills are not sorted.
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $flow->mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), map @$_, @polylines,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
# add thin fill regions
|
||||
# thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
|
||||
# Unpacks the collection, creates multiple collections per path.
|
||||
# The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||||
# Why the paths are unpacked?
|
||||
foreach my $thin_fill (@{$layerm->thin_fills}) {
|
||||
push @fills, Slic3r::ExtrusionPath::Collection->new($thin_fill);
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
|
||||
1;
|
@ -31,17 +31,6 @@ sub regions {
|
||||
return [ map $self->get_region($_), 0..($self->region_count-1) ];
|
||||
}
|
||||
|
||||
sub make_fill {
|
||||
my ($self) = @_;
|
||||
|
||||
foreach my $layerm (@{$self->regions}) {
|
||||
$layerm->fills->clear;
|
||||
# Fearlessly enable the C++ fillers.
|
||||
$layerm->fills->append($_) for $self->object->fill_maker2->make_fill($layerm);
|
||||
# $layerm->fills->append($_) for $self->object->fill_maker->make_fill($layerm);
|
||||
}
|
||||
}
|
||||
|
||||
package Slic3r::Layer::Support;
|
||||
our @ISA = qw(Slic3r::Layer);
|
||||
|
||||
|
@ -544,8 +544,8 @@ sub process_layer {
|
||||
}
|
||||
|
||||
# process infill
|
||||
# $layerm->fills is a collection of ExtrusionPath::Collection objects, each one containing
|
||||
# the ExtrusionPath objects of a certain infill "group" (also called "surface"
|
||||
# $layerm->fills is a collection of Slic3r::ExtrusionPath::Collection objects (C++ class ExtrusionEntityCollection),
|
||||
# each one containing the ExtrusionPath objects of a certain infill "group" (also called "surface"
|
||||
# throughout the code). We can redefine the order of such Collections but we have to
|
||||
# do each one completely at once.
|
||||
foreach my $fill (@{$layerm->fills}) {
|
||||
|
@ -14,19 +14,6 @@ use Slic3r::Surface ':types';
|
||||
# If enabled, phases of prepare_infill will be written into SVG files to an "out" directory.
|
||||
our $SLIC3R_DEBUG_SLICE_PROCESSING = 0;
|
||||
|
||||
# TODO: lazy
|
||||
sub fill_maker {
|
||||
my $self = shift;
|
||||
return Slic3r::Fill->new(bounding_box => $self->bounding_box);
|
||||
}
|
||||
|
||||
# Vojtech's implementation: Create the C++ filler.
|
||||
# TODO: lazy
|
||||
sub fill_maker2 {
|
||||
my $self = shift;
|
||||
return Slic3r::Fill2->new(bounding_box => $self->bounding_box);
|
||||
}
|
||||
|
||||
sub region_volumes {
|
||||
my $self = shift;
|
||||
return [ map $self->get_region_volumes($_), 0..($self->region_count - 1) ];
|
||||
@ -617,12 +604,12 @@ sub infill {
|
||||
thread_cb => sub {
|
||||
my $q = shift;
|
||||
while (defined (my $i = $q->dequeue)) {
|
||||
$self->get_layer($i)->make_fill;
|
||||
$self->get_layer($i)->make_fills;
|
||||
}
|
||||
},
|
||||
no_threads_cb => sub {
|
||||
foreach my $layer (@{$self->layers}) {
|
||||
$layer->make_fill;
|
||||
$layer->make_fills;
|
||||
}
|
||||
},
|
||||
);
|
||||
@ -678,14 +665,7 @@ sub _support_material {
|
||||
);
|
||||
} else {
|
||||
# New supports, C++ implementation.
|
||||
return Slic3r::Print::SupportMaterial2->new(
|
||||
print_config => $self->print->config,
|
||||
object_config => $self->config,
|
||||
first_layer_flow => $first_layer_flow,
|
||||
flow => $self->support_material_flow,
|
||||
interface_flow => $self->support_material_flow(FLOW_ROLE_SUPPORT_MATERIAL_INTERFACE),
|
||||
soluble_interface => ($self->config->support_material_contact_distance == 0),
|
||||
);
|
||||
return Slic3r::Print::SupportMaterial2->new($self);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -761,9 +761,12 @@ sub generate_toolpaths {
|
||||
# Allocate the fillers exclusively in the worker threads! Don't allocate them at the main thread,
|
||||
# as Perl copies the C++ pointers by default, so then the C++ objects are shared between threads!
|
||||
my %fillers = (
|
||||
interface => $object->fill_maker2->filler('rectilinear'),
|
||||
support => $object->fill_maker2->filler($pattern),
|
||||
interface => Slic3r::Filler->new_from_type('rectilinear'),
|
||||
support => Slic3r::Filler->new_from_type($pattern),
|
||||
);
|
||||
my $bounding_box = $object->bounding_box;
|
||||
$fillers{interface}->set_bounding_box($object->bounding_box);
|
||||
$fillers{support}->set_bounding_box($object->bounding_box);
|
||||
|
||||
# interface and contact infill
|
||||
if (@$interface || @$contact_infill) {
|
||||
|
60
t/fill.t
60
t/fill.t
@ -18,27 +18,11 @@ use Slic3r::Test;
|
||||
|
||||
sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
|
||||
{
|
||||
my $print = Slic3r::Print->new;
|
||||
my $filler = Slic3r::Fill::Rectilinear->new(
|
||||
print => $print,
|
||||
bounding_box => Slic3r::Geometry::BoundingBox->new_from_points([ Slic3r::Point->new(0, 0), Slic3r::Point->new(10, 10) ]),
|
||||
);
|
||||
my $surface_width = 250;
|
||||
my $distance = $filler->adjust_solid_spacing(
|
||||
width => $surface_width,
|
||||
distance => 100,
|
||||
);
|
||||
is $distance, 125, 'adjusted solid distance';
|
||||
is $surface_width % $distance, 0, 'adjusted solid distance';
|
||||
}
|
||||
|
||||
{
|
||||
my $expolygon = Slic3r::ExPolygon->new([ scale_points [0,0], [50,0], [50,50], [0,50] ]);
|
||||
my $filler = Slic3r::Fill::Rectilinear->new(
|
||||
bounding_box => $expolygon->bounding_box,
|
||||
angle => 0,
|
||||
);
|
||||
my $filler = Slic3r::Filler->new_from_type('rectilinear');
|
||||
$filler->set_bounding_box($expolygon->bounding_box);
|
||||
$filler->set_angle(0);
|
||||
my $surface = Slic3r::Surface->new(
|
||||
surface_type => S_TYPE_TOP,
|
||||
expolygon => $expolygon,
|
||||
@ -48,11 +32,11 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
height => 0.4,
|
||||
nozzle_diameter => 0.50,
|
||||
);
|
||||
$filler->spacing($flow->spacing);
|
||||
$filler->set_spacing($flow->spacing);
|
||||
foreach my $angle (0, 45) {
|
||||
$surface->expolygon->rotate(Slic3r::Geometry::deg2rad($angle), [0,0]);
|
||||
my @paths = $filler->fill_surface($surface, layer_height => 0.4, density => 0.4);
|
||||
is scalar @paths, 1, 'one continuous path';
|
||||
my $paths = $filler->fill_surface($surface, layer_height => 0.4, density => 0.4);
|
||||
is scalar @$paths, 1, 'one continuous path';
|
||||
}
|
||||
}
|
||||
|
||||
@ -60,10 +44,12 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
my $test = sub {
|
||||
my ($expolygon, $flow_spacing, $angle, $density) = @_;
|
||||
|
||||
my $filler = Slic3r::Fill::Rectilinear->new(
|
||||
bounding_box => $expolygon->bounding_box,
|
||||
angle => $angle // 0,
|
||||
);
|
||||
my $filler = Slic3r::Filler->new_from_type('rectilinear');
|
||||
$filler->set_bounding_box($expolygon->bounding_box);
|
||||
$filler->set_angle($angle // 0);
|
||||
# Adjust line spacing to fill the region.
|
||||
$filler->set_dont_adjust(0);
|
||||
$filler->set_link_max_length(scale(1.2*$flow_spacing));
|
||||
my $surface = Slic3r::Surface->new(
|
||||
surface_type => S_TYPE_BOTTOM,
|
||||
expolygon => $expolygon,
|
||||
@ -73,28 +59,30 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
height => 0.4,
|
||||
nozzle_diameter => $flow_spacing,
|
||||
);
|
||||
$filler->spacing($flow->spacing);
|
||||
my @paths = $filler->fill_surface(
|
||||
$filler->set_spacing($flow->spacing);
|
||||
my $paths = $filler->fill_surface(
|
||||
$surface,
|
||||
layer_height => $flow->height,
|
||||
density => $density // 1,
|
||||
);
|
||||
|
||||
# check whether any part was left uncovered
|
||||
my @grown_paths = map @{Slic3r::Polyline->new(@$_)->grow(scale $filler->spacing/2)}, @paths;
|
||||
my @grown_paths = map @{Slic3r::Polyline->new(@$_)->grow(scale $filler->spacing/2)}, @$paths;
|
||||
my $uncovered = diff_ex([ @$expolygon ], [ @grown_paths ], 1);
|
||||
|
||||
# ignore very small dots
|
||||
@$uncovered = grep $_->area > (scale $flow_spacing)**2, @$uncovered;
|
||||
my $uncovered_filtered = [ grep $_->area > (scale $flow_spacing)**2, @$uncovered ];
|
||||
|
||||
is scalar(@$uncovered), 0, 'solid surface is fully filled';
|
||||
is scalar(@$uncovered_filtered), 0, 'solid surface is fully filled';
|
||||
|
||||
if (0 && @$uncovered) {
|
||||
if (0 && @$uncovered_filtered) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"uncovered.svg",
|
||||
expolygons => [$expolygon],
|
||||
red_expolygons => $uncovered,
|
||||
Slic3r::SVG::output("uncovered.svg",
|
||||
no_arrows => 1,
|
||||
expolygons => [ $expolygon ],
|
||||
blue_expolygons => [ @$uncovered ],
|
||||
red_expolygons => [ @$uncovered_filtered ],
|
||||
polylines => [ @$paths ],
|
||||
);
|
||||
exit;
|
||||
}
|
||||
|
@ -187,7 +187,7 @@ if ($ENV{SLIC3R_DEBUG}) {
|
||||
if ($cpp_guess->is_gcc) {
|
||||
# check whether we're dealing with a buggy GCC version
|
||||
# see https://github.com/alexrj/Slic3r/issues/1965
|
||||
if (`cc --version` =~ / 4\.7\.[012]/) {
|
||||
if (`cc --version` =~ m/ 4\.7\.[012]/) {
|
||||
# Workaround suggested by Boost devs:
|
||||
# https://svn.boost.org/trac/boost/ticket/8695
|
||||
push @cflags, qw(-fno-inline-small-functions);
|
||||
|
@ -38,7 +38,7 @@ BridgeDetector::BridgeDetector(const ExPolygon &_expolygon, const ExPolygonColle
|
||||
intersection(grown, this->lower_slices.contours(), &this->_edges);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf(" bridge has %zu support(s)\n", this->_edges.size());
|
||||
printf(" bridge has " PRINTF_ZU " support(s)\n", this->_edges.size());
|
||||
#endif
|
||||
|
||||
// detect anchors as intersection between our bridge expolygon and the lower slices
|
||||
|
@ -456,7 +456,7 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
|
||||
{
|
||||
TPPLPoly p;
|
||||
p.Init(ex->contour.points.size());
|
||||
//printf("%zu\n0\n", ex->contour.points.size());
|
||||
//printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
|
||||
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
|
||||
p[ point-ex->contour.points.begin() ].x = point->x;
|
||||
p[ point-ex->contour.points.begin() ].y = point->y;
|
||||
@ -470,7 +470,7 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
|
||||
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
|
||||
TPPLPoly p;
|
||||
p.Init(hole->points.size());
|
||||
//printf("%zu\n1\n", hole->points.size());
|
||||
//printf(PRINTF_ZU "\n1\n", hole->points.size());
|
||||
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
|
||||
p[ point-hole->points.begin() ].x = point->x;
|
||||
p[ point-hole->points.begin() ].y = point->y;
|
||||
|
@ -69,7 +69,7 @@ inline Polygons to_polygons(const ExPolygons &src)
|
||||
return polygons;
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline Polygons to_polygons(ExPolygons &&src)
|
||||
{
|
||||
Polygons polygons;
|
||||
@ -83,6 +83,37 @@ inline Polygons to_polygons(ExPolygons &&src)
|
||||
}
|
||||
#endif
|
||||
|
||||
// Count a nuber of polygons stored inside the vector of expolygons.
|
||||
// Useful for allocating space for polygons when converting expolygons to polygons.
|
||||
inline size_t number_polygons(const ExPolygons &expolys)
|
||||
{
|
||||
size_t n_polygons = 0;
|
||||
for (ExPolygons::const_iterator it = expolys.begin(); it != expolys.end(); ++ it)
|
||||
n_polygons += it->holes.size() + 1;
|
||||
return n_polygons;
|
||||
}
|
||||
|
||||
// Append a vector of ExPolygons at the end of another vector of polygons.
|
||||
inline void polygons_append(Polygons &dst, const ExPolygons &src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back(it->contour);
|
||||
dst.insert(dst.end(), it->holes.begin(), it->holes.end());
|
||||
}
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline void polygons_append(Polygons &dst, ExPolygons &&src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (ExPolygons::const_iterator it = expolys.begin(); it != expolys.end(); ++ it) {
|
||||
dst.push_back(std::move(it->contour));
|
||||
std::move(std::begin(it->contour), std::end(it->contour), std::back_inserter(dst));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
extern BoundingBox get_extents(const ExPolygon &expolygon);
|
||||
extern BoundingBox get_extents(const ExPolygons &expolygons);
|
||||
|
||||
|
@ -19,8 +19,11 @@ ExtrusionEntityCollection::ExtrusionEntityCollection(const ExtrusionPaths &paths
|
||||
|
||||
ExtrusionEntityCollection& ExtrusionEntityCollection::operator= (const ExtrusionEntityCollection &other)
|
||||
{
|
||||
ExtrusionEntityCollection tmp(other);
|
||||
this->swap(tmp);
|
||||
this->entities = other.entities;
|
||||
for (size_t i = 0; i < this->entities.size(); ++i)
|
||||
this->entities[i] = this->entities[i]->clone();
|
||||
this->orig_indices = other.orig_indices;
|
||||
this->no_sort = other.no_sort;
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -32,10 +35,11 @@ ExtrusionEntityCollection::swap (ExtrusionEntityCollection &c)
|
||||
std::swap(this->no_sort, c.no_sort);
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection::~ExtrusionEntityCollection()
|
||||
void ExtrusionEntityCollection::clear()
|
||||
{
|
||||
for (ExtrusionEntitiesPtr::iterator it = this->entities.begin(); it != this->entities.end(); ++it)
|
||||
delete *it;
|
||||
for (size_t i = 0; i < this->entities.size(); ++i)
|
||||
delete this->entities[i];
|
||||
this->entities.clear();
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection::operator ExtrusionPaths() const
|
||||
@ -52,9 +56,8 @@ ExtrusionEntityCollection*
|
||||
ExtrusionEntityCollection::clone() const
|
||||
{
|
||||
ExtrusionEntityCollection* coll = new ExtrusionEntityCollection(*this);
|
||||
for (size_t i = 0; i < coll->entities.size(); ++i) {
|
||||
for (size_t i = 0; i < coll->entities.size(); ++i)
|
||||
coll->entities[i] = this->entities[i]->clone();
|
||||
}
|
||||
return coll;
|
||||
}
|
||||
|
||||
|
@ -17,7 +17,7 @@ class ExtrusionEntityCollection : public ExtrusionEntity
|
||||
ExtrusionEntityCollection(const ExtrusionEntityCollection &collection);
|
||||
ExtrusionEntityCollection(const ExtrusionPaths &paths);
|
||||
ExtrusionEntityCollection& operator= (const ExtrusionEntityCollection &other);
|
||||
~ExtrusionEntityCollection();
|
||||
~ExtrusionEntityCollection() { clear(); }
|
||||
operator ExtrusionPaths() const;
|
||||
|
||||
bool is_collection() const {
|
||||
@ -29,9 +29,7 @@ class ExtrusionEntityCollection : public ExtrusionEntity
|
||||
bool empty() const {
|
||||
return this->entities.empty();
|
||||
};
|
||||
void clear() {
|
||||
this->entities.clear();
|
||||
};
|
||||
void clear();
|
||||
void swap (ExtrusionEntityCollection &c);
|
||||
void append(const ExtrusionEntity &entity);
|
||||
void append(const ExtrusionEntitiesPtr &entities);
|
||||
|
@ -1,14 +1,17 @@
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../Surface.hpp"
|
||||
#include "../Geometry.hpp"
|
||||
#include "../Layer.hpp"
|
||||
#include "../Print.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
#if 0
|
||||
// Generate infills for Slic3r::Layer::Region.
|
||||
// The Slic3r::Layer::Region at this point of time may contain
|
||||
// surfaces of various types (internal/bridge/top/bottom/solid).
|
||||
@ -31,8 +34,8 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||||
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
SurfacesPtr surfaces_with_bridge_angle;
|
||||
surfaces_with_bridge_angle.reserve(layerm->fill_surfaces.surfaces.size());
|
||||
for (Surfaces::iterator it = layerm->fill_surfaces.surfaces.begin(); it != layerm->fill_surfaces.surfaces.end(); ++ it)
|
||||
surfaces_with_bridge_angle.reserve(layerm.fill_surfaces.surfaces.size());
|
||||
for (Surfaces::iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
|
||||
if (it->bridge_angle >= 0)
|
||||
surfaces_with_bridge_angle.push_back(&(*it));
|
||||
|
||||
@ -40,76 +43,61 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||||
// group is of type Slic3r::SurfaceCollection
|
||||
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
|
||||
std::vector<SurfacesPtr> groups;
|
||||
layerm->fill_surfaces.group(&groups);
|
||||
layerm.fill_surfaces.group(&groups);
|
||||
|
||||
// merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
// cache flow widths and patterns used for all solid groups
|
||||
// (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $num_ groups; $i++) {
|
||||
std::vector<char> is_solid(groups.size(), false);
|
||||
std::vector<float> fw(groups.size(), 0.f);
|
||||
std::vector<int> pattern(groups.size(), -1);
|
||||
for (size_t i = 0; i < groups.size(); ++ i) {
|
||||
// we can only merge solid non-bridge surfaces, so discard
|
||||
// non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
const Surface &surface = *groups[i].front();
|
||||
if (surface.is_solid() && (!surface.is_bridge() || layerm.layer()->id() == 0)) {
|
||||
is_solid[i] = true;
|
||||
fw[i] = (surface.surface_type == stTop) ? top_solid_infill_flow.width : solid_infill_flow.width;
|
||||
pattern[i] = surface.is_external() ? layerm.region()->config.external_fill_pattern.value : ipRectilinear;
|
||||
}
|
||||
}
|
||||
|
||||
// loop through solid groups
|
||||
for (my $i = 0; $i <= $num_groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
// find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $num_groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
// groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
for (size_t i = 0; i < groups.size(); ++ i) {
|
||||
if (is_solid[i]) {
|
||||
// find compatible groups and append them to this one
|
||||
for (size_t j = i + 1; j < groups.size(); ++ j) {
|
||||
if (is_solid[j] && fw[i] == fw[j] && pattern[i] == pattern[j]) {
|
||||
// groups are compatible, merge them
|
||||
groups[i].insert(groups[i].end(), groups[j].begin(), groups[j].end());
|
||||
groups.erase(groups.begin() + j);
|
||||
is_solid.erase(is_solid.begin() + j);
|
||||
fw.erase(fw.begin() + j);
|
||||
pattern.erase(pattern.begin() + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
// Give priority to bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
|
||||
for (size_t round = 0; round < 2; ++ round) {
|
||||
for (std::vector<SurfacesPtr>::iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
|
||||
const SurfacesPtr &group = *it_group;
|
||||
bool is_bridge = group.front()->bridge_angle >= 0;
|
||||
if (is_bridge != (round == 0))
|
||||
continue;
|
||||
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
Polygons union_p = union_(to_polygons(*it_group), true);
|
||||
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (! surfaces_with_bridge_angle.empty() && it_group->front()->bridge_angle < 0)
|
||||
union_p = diff(union_p, to_polygons(surfaces_with_bridge_angle), true);
|
||||
// subtract any other surface already processed
|
||||
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
ExPolygons union_expolys = diff_ex(union_p, to_polygons(surfaces), true);
|
||||
for (ExPolygons::const_iterator it_expoly = union_expolys.begin(); it_expoly != union_expolys.end(); ++ it_expoly)
|
||||
surfaces.push_back(Surface(*it_group->front(), *it_expoly));
|
||||
}
|
||||
|
||||
// subtract any other surface already processed
|
||||
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
@ -123,149 +111,140 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||||
// TODO: detect and investigate whether there could be narrow regions without
|
||||
// any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
coord_t distance_between_surfaces = std::max(
|
||||
std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
|
||||
top_solid_infill_flow.scaled_spacing());
|
||||
Polygons surfaces_polygons = to_polygons(surfaces);
|
||||
Polygons collapsed = diff(
|
||||
surfaces_polygons,
|
||||
offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
|
||||
true);
|
||||
Polygons to_subtract;
|
||||
to_subtract.reserve(collapsed.size() + number_polygons(surfaces));
|
||||
for (Surfaces::const_iterator it_surface = surfaces.begin(); it_surface != surfaces.end(); ++ it_surface)
|
||||
if (it_surface->surface_type == stInternalVoid)
|
||||
polygons_append(to_subtract, *it_surface);
|
||||
polygons_append(to_subtract, collapsed);
|
||||
surfaces_append(
|
||||
surfaces,
|
||||
intersection_ex(
|
||||
offset(collapsed, distance_between_surfaces),
|
||||
to_subtract,
|
||||
true),
|
||||
stInternalSolid);
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
// require "Slic3r/SVG.pm";
|
||||
// Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
// expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
// red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
// );
|
||||
}
|
||||
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
for (Surfaces::const_iterator surface_it = surfaces.begin(); surface_it != surfaces.end(); ++ surface_it) {
|
||||
const Surface &surface = *surface_it;
|
||||
if (surface.surface_type == stInternalVoid)
|
||||
continue;
|
||||
InfillPattern fill_pattern = layerm.region()->config.fill_pattern.value;
|
||||
double density = fill_density;
|
||||
FlowRole role = (surface.surface_type == stTop) ? frTopSolidInfill :
|
||||
(surface.is_solid() ? frSolidInfill : frInfill);
|
||||
bool is_bridge = layerm.layer()->id() > 0 && surface.is_bridge();
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
if (surface.is_solid()) {
|
||||
density = 100;
|
||||
fill_pattern = (surface.is_external() && ! is_bridge) ?
|
||||
layerm.region()->config.external_fill_pattern.value :
|
||||
ipRectilinear;
|
||||
} else if (density <= 0)
|
||||
continue;
|
||||
|
||||
// get filler object
|
||||
my $f = $self->filler($filler);
|
||||
std::auto_ptr<Fill> f = std::auto_ptr<Fill>(Fill::new_from_type(fill_pattern));
|
||||
f->set_bounding_box(layerm.layer()->object()->bounding_box());
|
||||
|
||||
// calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
coordf_t h = (surface.thickness == -1) ? layerm.layer()->height : surface.thickness;
|
||||
Flow flow = layerm.region()->flow(
|
||||
role,
|
||||
h,
|
||||
is_bridge || f->use_bridge_flow(), // bridge flow?
|
||||
layerm.layer()->id() == 0, // first layer?
|
||||
-1, // auto width
|
||||
*layerm.layer()->object()
|
||||
);
|
||||
|
||||
// calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
bool using_internal_flow = false;
|
||||
if (! surface.is_solid() && ! is_bridge) {
|
||||
// it's internal infill, so we can calculate a generic flow spacing
|
||||
// for all layers, for avoiding the ugly effect of
|
||||
// misaligned infill on first layer because of different extrusion width and
|
||||
// layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, // TODO: handle infill_every_layers?
|
||||
0, // no bridge
|
||||
0, // no first layer
|
||||
-1, // auto width
|
||||
$layerm->layer->object,
|
||||
Flow internal_flow = layerm.region()->flow(
|
||||
frInfill,
|
||||
layerm.layer()->object()->config.layer_height.value, // TODO: handle infill_every_layers?
|
||||
false, // no bridge
|
||||
false, // no first layer
|
||||
-1, // auto width
|
||||
*layerm.layer()->object()
|
||||
);
|
||||
$f->set_spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
f->spacing = internal_flow.spacing();
|
||||
using_internal_flow = 1;
|
||||
} else {
|
||||
$f->set_spacing($flow->spacing);
|
||||
f->spacing = flow.spacing();
|
||||
}
|
||||
|
||||
my $link_max_length = 0;
|
||||
if (! $is_bridge) {
|
||||
$link_max_length = $layerm->region->config->get_abs_value_over($surface->is_external ? 'external_fill_link_max_length' : 'fill_link_max_length', $flow->spacing);
|
||||
print "flow spacing: ", $flow->spacing, " is_external: ", $surface->is_external, ", link_max_length: $link_max_length\n";
|
||||
double link_max_length = 0.;
|
||||
if (! is_bridge) {
|
||||
link_max_length = layerm.region()->config.get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
||||
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
||||
}
|
||||
|
||||
$f->set_layer_id($layerm->layer->id);
|
||||
$f->set_z($layerm->layer->print_z);
|
||||
$f->set_angle(deg2rad($layerm->region->config->fill_angle));
|
||||
f->layer_id = layerm.layer()->id();
|
||||
f->z = layerm.layer()->print_z;
|
||||
f->angle = Geometry::deg2rad(layerm.region()->config.fill_angle.value);
|
||||
// Maximum length of the perimeter segment linking two infill lines.
|
||||
$f->set_link_max_length(scale($link_max_length));
|
||||
f->link_max_length = scale_(link_max_length);
|
||||
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||||
$f->set_loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
|
||||
// f->layer_height = h;
|
||||
|
||||
// apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = $f->fill_surface(
|
||||
$surface,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
);
|
||||
next unless @polylines;
|
||||
|
||||
FillParams params;
|
||||
params.density = 0.01 * density;
|
||||
params.dont_adjust = true;
|
||||
Polylines polylines = f->fill_surface(&surface, params);
|
||||
if (polylines.empty())
|
||||
continue;
|
||||
|
||||
// calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
// pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
if (using_internal_flow) {
|
||||
// if we used the internal flow we're not doing a solid infill
|
||||
// so we can safely ignore the slight variation that might have
|
||||
// been applied to $f->flow_spacing
|
||||
} else {
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
flow = Flow::new_from_spacing(f->spacing, flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
|
||||
}
|
||||
|
||||
// save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
out.
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
ExtrusionRole role = is_bridge ? erBridgeInfill :
|
||||
(surface.is_solid() ? ((surface.surface_type == stTop) ? erTopSolidInfill : erSolidInfill) : erInternalInfill);
|
||||
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
||||
out.entities.push_back(&collection);
|
||||
// Only concentric fills are not sorted.
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $flow->mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), map @$_, @polylines,
|
||||
);
|
||||
collection.no_sort = f->no_sort();
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
|
||||
ExtrusionPath *path = new ExtrusionPath(role);
|
||||
collection.entities.push_back(path);
|
||||
path->polyline.points.swap(it->points);
|
||||
path->mm3_per_mm = flow.mm3_per_mm();
|
||||
path->width = flow.width,
|
||||
path->height = flow.height;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -275,12 +254,15 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||||
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||||
// Why the paths are unpacked?
|
||||
for (ExtrusionEntitiesPtr::iterator thin_fill = layerm.thin_fills.entities.begin(); thin_fill != layerm.thin_fills.entities.end(); ++ thin_fill) {
|
||||
// ExtrusionEntityCollection
|
||||
out.append(new ExtrusionEntityCollection->new($thin_fill);
|
||||
#if 0
|
||||
out.entities.push_back((*thin_fill)->clone());
|
||||
assert(dynamic_cast<ExtrusionEntityCollection*>(out.entities.back()) != NULL);
|
||||
#else
|
||||
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
||||
out.entities.push_back(&collection);
|
||||
collection.entities.push_back((*thin_fill)->clone());
|
||||
#endif
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -13,7 +13,8 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
class ExtrusionEntityCollection;
|
||||
class LayerRegion;
|
||||
|
||||
// An interface class to Perl, aggregating an instance of a Fill and a FillData.
|
||||
class Filler
|
||||
@ -28,6 +29,8 @@ public:
|
||||
FillParams params;
|
||||
};
|
||||
|
||||
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_Fill_hpp_
|
||||
|
@ -60,15 +60,25 @@ Polylines Fill::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
|
||||
// Calculate a new spacing to fill width with possibly integer number of lines,
|
||||
// the first and last line being centered at the interval ends.
|
||||
//FIXME Vojtech: This
|
||||
// This function possibly increases the spacing, never decreases,
|
||||
// and for a narrow width the increase in spacing may become severe!
|
||||
// and for a narrow width the increase in spacing may become severe,
|
||||
// therefore the adjustment is limited to 20% increase.
|
||||
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
|
||||
{
|
||||
coord_t number_of_intervals = coord_t(coordf_t(width) / coordf_t(distance));
|
||||
return (number_of_intervals == 0) ?
|
||||
assert(width >= 0);
|
||||
assert(distance > 0);
|
||||
// floor(width / distance)
|
||||
coord_t number_of_intervals = width / distance;
|
||||
coord_t distance_new = (number_of_intervals == 0) ?
|
||||
distance :
|
||||
(width / number_of_intervals);
|
||||
const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
|
||||
assert(factor > 1. - 1e-5);
|
||||
// How much could the extrusion width be increased? By 20%.
|
||||
const coordf_t factor_max = 1.2;
|
||||
if (factor > factor_max)
|
||||
distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
|
||||
return distance_new;
|
||||
}
|
||||
|
||||
// Returns orientation of the infill and the reference point of the infill pattern.
|
||||
|
@ -17,7 +17,8 @@ void FillHoneycomb::_fill_surface_single(
|
||||
CacheID cache_id(params.density, this->spacing);
|
||||
Cache::iterator it_m = this->cache.find(cache_id);
|
||||
if (it_m == this->cache.end()) {
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if 0
|
||||
// #if SLIC3R_CPPVER > 11
|
||||
it_m = this->cache.emplace_hint(it_m);
|
||||
#else
|
||||
it_m = this->cache.insert(it_m, std::pair<CacheID, CacheData>(cache_id, CacheData()));
|
||||
|
@ -67,7 +67,7 @@ public:
|
||||
virtual ~FillGrid() {}
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
// Flag for Slic3r::Fill::Rectilinear to fill both directions.
|
||||
virtual bool _horizontal_lines() const { return true; }
|
||||
|
@ -790,10 +790,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
|
||||
rotate_vector.first += angleBase;
|
||||
|
||||
this->_min_spacing = scale_(this->spacing);
|
||||
myassert(params.density > 0.0001f && params.density <= 1.f);
|
||||
this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density);
|
||||
this->_diagonal_distance = this->_line_spacing * 2;
|
||||
coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
|
||||
|
||||
// On the polygons of poly_with_offset, the infill lines will be connected.
|
||||
ExPolygonWithOffset poly_with_offset(
|
||||
@ -811,24 +809,24 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
// define flow spacing according to requested density
|
||||
bool full_infill = params.density > 0.9999f;
|
||||
if (full_infill && !params.dont_adjust) {
|
||||
// this->_min_spacing = this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
|
||||
// this->spacing = unscale(this->_line_spacing);
|
||||
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing);
|
||||
this->spacing = unscale(line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
|
||||
// _align_to_grid will not work correctly with positive pattern_shift.
|
||||
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % this->_line_spacing;
|
||||
refpt.x -= (pattern_shift_scaled > 0) ? pattern_shift_scaled : (this->_line_spacing + pattern_shift_scaled);
|
||||
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
|
||||
refpt.x -= (pattern_shift_scaled > 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
||||
bounding_box.merge(_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(this->_line_spacing, this->_line_spacing),
|
||||
Point(line_spacing, line_spacing),
|
||||
refpt));
|
||||
}
|
||||
|
||||
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
||||
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / this->_line_spacing;
|
||||
coord_t x0 = bounding_box.min.x + this->_line_spacing;
|
||||
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / line_spacing;
|
||||
coord_t x0 = bounding_box.min.x + line_spacing / 2;
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
static int iRun = 0;
|
||||
@ -847,7 +845,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
|
||||
for (size_t i = 0; i < n_vlines; ++ i) {
|
||||
segs[i].idx = i;
|
||||
segs[i].pos = x0 + i * this->_line_spacing;
|
||||
segs[i].pos = x0 + i * line_spacing;
|
||||
}
|
||||
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
|
||||
const Points &contour = poly_with_offset.contour(iContour).points;
|
||||
@ -864,12 +862,12 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
if (l > r)
|
||||
std::swap(l, r);
|
||||
// il, ir are the left / right indices of vertical lines intersecting a segment
|
||||
int il = (l - x0) / this->_line_spacing;
|
||||
while (il * this->_line_spacing + x0 < l)
|
||||
int il = (l - x0) / line_spacing;
|
||||
while (il * line_spacing + x0 < l)
|
||||
++ il;
|
||||
il = std::max(int(0), il);
|
||||
int ir = (r - x0 + this->_line_spacing) / this->_line_spacing;
|
||||
while (ir * this->_line_spacing + x0 > r)
|
||||
int ir = (r - x0 + line_spacing) / line_spacing;
|
||||
while (ir * line_spacing + x0 > r)
|
||||
-- ir;
|
||||
ir = std::min(int(segs.size()) - 1, ir);
|
||||
if (il > ir)
|
||||
@ -879,7 +877,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
myassert(ir >= 0 && ir < segs.size());
|
||||
for (int i = il; i <= ir; ++ i) {
|
||||
coord_t this_x = segs[i].pos;
|
||||
assert(this_x == i * this->_line_spacing + x0);
|
||||
assert(this_x == i * line_spacing + x0);
|
||||
SegmentIntersection is;
|
||||
is.iContour = iContour;
|
||||
is.iSegment = iSegment;
|
||||
|
@ -17,11 +17,6 @@ public:
|
||||
|
||||
protected:
|
||||
bool fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out);
|
||||
|
||||
coord_t _min_spacing;
|
||||
coord_t _line_spacing;
|
||||
// distance threshold for allowing the horizontal infill lines to be connected into a continuous path
|
||||
coord_t _diagonal_distance;
|
||||
};
|
||||
|
||||
class FillGrid2 : public FillRectilinear2
|
||||
@ -31,7 +26,7 @@ public:
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
@ -42,7 +37,7 @@ public:
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
@ -53,7 +48,7 @@ public:
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
|
@ -362,7 +362,7 @@ GCodeSender::on_read(const boost::system::error_code& error,
|
||||
}
|
||||
this->send();
|
||||
} else {
|
||||
printf("Cannot resend %zu (oldest we have is %zu)\n", toresend, this->sent - this->last_sent.size());
|
||||
printf("Cannot resend " PRINTF_ZU " (oldest we have is " PRINTF_ZU ")\n", toresend, this->sent - this->last_sent.size());
|
||||
}
|
||||
} else if (boost::starts_with(line, "wait")) {
|
||||
// ignore
|
||||
|
@ -372,7 +372,7 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
||||
size_t cellw = size_t(floor((bed_bbox.size().x + gap) / cell_size.x));
|
||||
size_t cellh = size_t(floor((bed_bbox.size().y + gap) / cell_size.y));
|
||||
if (num_parts > cellw * cellh)
|
||||
CONFESS("%zu parts won't fit in your print area!\n", num_parts);
|
||||
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
|
||||
|
||||
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
||||
Pointf cells_size(cellw * cell_size.x - gap, cellh * cell_size.y - gap);
|
||||
@ -446,7 +446,7 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
||||
size_t cellw = floor((area.x + dist) / part.x);
|
||||
size_t cellh = floor((area.y + dist) / part.y);
|
||||
if (total_parts > (cellw * cellh))
|
||||
CONFESS("%zu parts won't fit in your print area!\n", total_parts);
|
||||
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", total_parts);
|
||||
|
||||
// total space used by cells
|
||||
Pointf cells(cellw * part.x, cellh * part.y);
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "Print.hpp"
|
||||
#include "Fill/Fill.hpp"
|
||||
#include "SVG.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
@ -69,8 +70,9 @@ Layer::region_count() const
|
||||
void
|
||||
Layer::clear_regions()
|
||||
{
|
||||
for (int i = this->regions.size()-1; i >= 0; --i)
|
||||
this->delete_region(i);
|
||||
for (size_t i = 0; i < this->regions.size(); ++ i)
|
||||
delete this->regions[i];
|
||||
this->regions.clear();
|
||||
}
|
||||
|
||||
LayerRegion*
|
||||
@ -170,7 +172,7 @@ void
|
||||
Layer::make_perimeters()
|
||||
{
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Making perimeters for layer %zu\n", this->id());
|
||||
printf("Making perimeters for layer " PRINTF_ZU "\n", this->id());
|
||||
#endif
|
||||
|
||||
// keep track of regions whose perimeters we have already generated
|
||||
@ -272,6 +274,22 @@ Layer::make_perimeters()
|
||||
}
|
||||
}
|
||||
|
||||
void Layer::make_fills()
|
||||
{
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Making fills for layer " PRINTF_ZU "\n", this->id());
|
||||
#endif
|
||||
for (LayerRegionPtrs::iterator it_layerm = regions.begin(); it_layerm != regions.end(); ++ it_layerm) {
|
||||
LayerRegion &layerm = *(*it_layerm);
|
||||
layerm.fills.clear();
|
||||
make_fill(layerm, layerm.fills);
|
||||
#ifndef NDEBUG
|
||||
for (size_t i = 0; i < layerm.fills.entities.size(); ++ i)
|
||||
assert(dynamic_cast<ExtrusionEntityCollection*>(layerm.fills.entities[i]) != NULL);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void Layer::export_region_slices_to_svg(const char *path)
|
||||
{
|
||||
BoundingBox bbox;
|
||||
|
@ -116,6 +116,7 @@ public:
|
||||
template <class T> bool any_internal_region_slice_contains(const T &item) const;
|
||||
template <class T> bool any_bottom_region_slice_contains(const T &item) const;
|
||||
void make_perimeters();
|
||||
void make_fills();
|
||||
|
||||
void export_region_slices_to_svg(const char *path);
|
||||
void export_region_fill_surfaces_to_svg(const char *path);
|
||||
|
@ -119,7 +119,7 @@ LayerRegion::process_external_surfaces(const Layer* lower_layer)
|
||||
);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Processing bridge at layer %zu:\n", this->layer()->id();
|
||||
printf("Processing bridge at layer " PRINTF_ZU ":\n", this->layer()->id();
|
||||
#endif
|
||||
|
||||
if (bd.detect_angle()) {
|
||||
@ -257,7 +257,7 @@ LayerRegion::process_external_surfaces(const Layer* lower_layer)
|
||||
this->flow(frInfill, this->layer()->height, true).scaled_width()
|
||||
);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Processing bridge at layer %zu:\n", this->layer()->id();
|
||||
printf("Processing bridge at layer " PRINTF_ZU ":\n", this->layer()->id());
|
||||
#endif
|
||||
if (bd.detect_angle()) {
|
||||
surface.bridge_angle = bd.angle;
|
||||
|
@ -100,7 +100,7 @@ PerimeterGenerator::process()
|
||||
ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &thin_walls);
|
||||
|
||||
#ifdef DEBUG
|
||||
printf(" %zu thin walls detected\n", thin_walls.size());
|
||||
printf(" " PRINTF_ZU " thin walls detected\n", thin_walls.size());
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
@ -58,6 +58,18 @@ extern bool remove_sticks(Polygons &polys);
|
||||
// Remove polygons with less than 3 edges.
|
||||
extern bool remove_degenerate(Polygons &polys);
|
||||
extern bool remove_small(Polygons &polys, double min_area);
|
||||
|
||||
// Append a vector of polygons at the end of another vector of polygons.
|
||||
inline void polygons_append(Polygons &dst, const Polygons &src) { dst.insert(dst.end(), src.begin(), src.end()); }
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline void polygons_append(Polygons &dst, Polygons &&src)
|
||||
{
|
||||
if (dst.empty())
|
||||
dst = std::move(src);
|
||||
else
|
||||
std::move(std::begin(src), std::end(src), std::back_inserter(dst));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// start Boost
|
||||
|
@ -47,7 +47,7 @@ inline int nearest_point_index(const std::vector<Chaining> &pairs, const Point &
|
||||
}
|
||||
|
||||
Polylines PolylineCollection::chained_path_from(
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
Polylines &&src,
|
||||
#else
|
||||
const Polylines &src,
|
||||
@ -70,7 +70,7 @@ Polylines PolylineCollection::chained_path_from(
|
||||
// find nearest point
|
||||
int endpoint_index = nearest_point_index<double>(endpoints, start_near, no_reverse);
|
||||
assert(endpoint_index >= 0 && endpoint_index < endpoints.size() * 2);
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
retval.push_back(std::move(src[endpoints[endpoint_index/2].idx]));
|
||||
#else
|
||||
retval.push_back(src[endpoints[endpoint_index/2].idx]);
|
||||
@ -83,7 +83,7 @@ Polylines PolylineCollection::chained_path_from(
|
||||
return retval;
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
Polylines PolylineCollection::chained_path(Polylines &&src, bool no_reverse)
|
||||
{
|
||||
return (src.empty() || src.front().empty()) ?
|
||||
|
@ -19,7 +19,7 @@ public:
|
||||
void append(const Polylines &polylines);
|
||||
|
||||
static Point leftmost_point(const Polylines &polylines);
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
static Polylines chained_path(Polylines &&src, bool no_reverse = false);
|
||||
static Polylines chained_path_from(Polylines &&src, Point start_near, bool no_reverse = false);
|
||||
static Polylines chained_path(Polylines src, bool no_reverse = false);
|
||||
|
@ -100,7 +100,6 @@ public:
|
||||
|
||||
LayerPtrs layers;
|
||||
SupportLayerPtrs support_layers;
|
||||
// TODO: Fill* fill_maker => (is => 'lazy');
|
||||
PrintState<PrintObjectStep> state;
|
||||
|
||||
Print* print() { return this->_print; }
|
||||
@ -114,7 +113,10 @@ public:
|
||||
bool delete_all_copies();
|
||||
bool set_copies(const Points &points);
|
||||
bool reload_model_instances();
|
||||
BoundingBox bounding_box() const;
|
||||
BoundingBox bounding_box() const {
|
||||
// since the object is aligned to origin, bounding box coincides with size
|
||||
return BoundingBox(Point(0,0), this->size);
|
||||
}
|
||||
|
||||
// adds region_id, too, if necessary
|
||||
void add_region_volume(int region_id, int volume_id);
|
||||
|
@ -89,16 +89,6 @@ PrintObject::reload_model_instances()
|
||||
return this->set_copies(copies);
|
||||
}
|
||||
|
||||
BoundingBox
|
||||
PrintObject::bounding_box() const
|
||||
{
|
||||
// since the object is aligned to origin, bounding box coincides with size
|
||||
Points pp;
|
||||
pp.push_back(Point(0,0));
|
||||
pp.push_back(this->size);
|
||||
return BoundingBox(pp);
|
||||
}
|
||||
|
||||
void
|
||||
PrintObject::add_region_volume(int region_id, int volume_id)
|
||||
{
|
||||
@ -229,8 +219,10 @@ PrintObject::invalidate_state_by_config_options(const std::vector<t_config_optio
|
||||
|| *opt_key == "ensure_vertical_shell_thickness") {
|
||||
steps.insert(posPrepareInfill);
|
||||
} else if (*opt_key == "external_fill_pattern"
|
||||
|| *opt_key == "external_fill_link_max_length"
|
||||
|| *opt_key == "fill_angle"
|
||||
|| *opt_key == "fill_pattern"
|
||||
|| *opt_key == "fill_link_max_length"
|
||||
|| *opt_key == "top_infill_extrusion_width"
|
||||
|| *opt_key == "first_layer_extrusion_width") {
|
||||
steps.insert(posInfill);
|
||||
@ -375,15 +367,9 @@ PrintObject::discover_vertical_shells()
|
||||
++ idx;
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
for (int n = (int)idx_layer - layerm->region()->config.bottom_solid_layers + 1; n < (int)idx_layer + layerm->region()->config.top_solid_layers; ++ n) {
|
||||
if (n < 0 || n >= (int)this->layers.size())
|
||||
continue;
|
||||
ExPolygons &expolys = this->layers[n]->perimeter_expolygons;
|
||||
for (size_t i = 0; i < expolys.size(); ++ i) {
|
||||
shell.push_back(expolys[i].contour);
|
||||
shell.insert(shell.end(), expolys[i].holes.begin(), expolys[i].holes.end());
|
||||
}
|
||||
}
|
||||
for (int n = (int)idx_layer - layerm->region()->config.bottom_solid_layers + 1; n < (int)idx_layer + layerm->region()->config.top_solid_layers; ++ n)
|
||||
if (n >= 0 && n < (int)this->layers.size())
|
||||
polygons_append(shell, this->layers[n]->perimeter_expolygons.expolygons);
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
{
|
||||
static size_t idx = 0;
|
||||
@ -565,7 +551,7 @@ PrintObject::bridge_over_infill()
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id());
|
||||
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
|
||||
#endif
|
||||
|
||||
// compute the remaning internal solid surfaces as difference
|
||||
|
@ -5,11 +5,14 @@
|
||||
#include "Layer.hpp"
|
||||
#include "SupportMaterial.hpp"
|
||||
#include "Fill/FillBase.hpp"
|
||||
#include "SVG.hpp"
|
||||
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
#include <memory>
|
||||
|
||||
#define SLIC3R_DEBUG
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// Increment used to reach MARGIN in steps to avoid trespassing thin objects
|
||||
@ -24,20 +27,26 @@ PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object
|
||||
m_print_config (&object->print()->config),
|
||||
m_object_config (&object->config),
|
||||
|
||||
m_first_layer_flow (0, 0, 0, false), // First layer flow will be set in the constructor code.
|
||||
m_first_layer_flow (Flow::new_from_config_width(
|
||||
frSupportMaterial,
|
||||
(object->print()->config.first_layer_extrusion_width.value > 0) ? object->print()->config.first_layer_extrusion_width : object->config.support_material_extrusion_width,
|
||||
object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1),
|
||||
object->config.get_abs_value("first_layer_height"),
|
||||
false
|
||||
)),
|
||||
m_support_material_flow (Flow::new_from_config_width(
|
||||
frSupportMaterial,
|
||||
object->config.support_material_extrusion_width, // object->config.extrusion_width.value
|
||||
(object->config.support_material_extrusion_width.value > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width,
|
||||
object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1),
|
||||
object->config.layer_height.value,
|
||||
false)),
|
||||
m_support_material_interface_flow(Flow::new_from_config_width(
|
||||
frSupportMaterialInterface,
|
||||
object->config.support_material_extrusion_width, // object->config.extrusion_width.value
|
||||
(object->config.support_material_extrusion_width.value > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width,
|
||||
object->print()->config.nozzle_diameter.get_at(object->config.support_material_interface_extruder-1),
|
||||
object->config.layer_height.value,
|
||||
false)),
|
||||
m_soluble_interface (object->config.support_material_contact_distance.value == 0),
|
||||
m_soluble_interface (object->config.support_material_contact_distance.value == 0),
|
||||
|
||||
m_support_material_raft_base_flow(0, 0, 0, false),
|
||||
m_support_material_raft_interface_flow(0, 0, 0, false),
|
||||
@ -173,10 +182,13 @@ inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const Pr
|
||||
dst.insert(dst.end(), src.begin(), src.end());
|
||||
}
|
||||
|
||||
inline void polygons_append(Polygons &dst, const Polygons &src)
|
||||
// Compare layers lexicographically.
|
||||
struct MyLayersPtrCompare
|
||||
{
|
||||
dst.insert(dst.end(), src.begin(), src.end());
|
||||
}
|
||||
bool operator()(const PrintObjectSupportMaterial::MyLayer* layer1, const PrintObjectSupportMaterial::MyLayer* layer2) const {
|
||||
return *layer1 < *layer2;
|
||||
}
|
||||
};
|
||||
|
||||
void PrintObjectSupportMaterial::generate(PrintObject &object)
|
||||
{
|
||||
@ -204,10 +216,30 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
|
||||
// Nothing is supported, no supports are generated.
|
||||
return;
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
static int iRun = 0;
|
||||
iRun ++;
|
||||
for (MyLayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it) {
|
||||
const MyLayer &layer = *(*it);
|
||||
::Slic3r::SVG svg(debug_out_path("support-top-contacts-%d-%lf.svg", iRun, layer.print_z), get_extents(layer.polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(layer.polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// Determine the bottom contact surfaces of the supports over the top surfaces of the object.
|
||||
// Depending on whether the support is soluble or not, the contact layer thickness is decided.
|
||||
MyLayersPtr bottom_contacts = this->bottom_contact_layers(object, top_contacts, layer_storage);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
for (MyLayersPtr::const_iterator it = bottom_contacts.begin(); it != bottom_contacts.end(); ++ it) {
|
||||
const MyLayer &layer = *(*it);
|
||||
::Slic3r::SVG svg(debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer.print_z), get_extents(layer.polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(layer.polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion
|
||||
// and unwanted strong bonds to the object.
|
||||
// Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding.
|
||||
@ -223,6 +255,15 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
|
||||
// Fill in intermediate layers between the top / bottom support contact layers, trimmed by the object.
|
||||
this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it) {
|
||||
const MyLayer &layer = *(*it);
|
||||
::Slic3r::SVG svg(debug_out_path("support-base-layers-%d-%lf.svg", iRun, layer.print_z), get_extents(layer.polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(layer.polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes.
|
||||
// Add the bottom contacts to the raft, inflate the support bases.
|
||||
// There is a contact layer below the 1st object layer in the bottom contacts.
|
||||
@ -242,6 +283,15 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
|
||||
MyLayersPtr interface_layers = this->generate_interface_layers(
|
||||
object, bottom_contacts, top_contacts, intermediate_layers, layer_storage);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it) {
|
||||
const MyLayer &layer = *(*it);
|
||||
::Slic3r::SVG svg(debug_out_path("support-interface-layers-%d-%lf.svg", iRun, layer.print_z), get_extents(layer.polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(layer.polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
/*
|
||||
// Clip with the pillars.
|
||||
if (! shape.empty()) {
|
||||
@ -257,7 +307,7 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
|
||||
layers_append(layers_sorted, top_contacts);
|
||||
layers_append(layers_sorted, intermediate_layers);
|
||||
layers_append(layers_sorted, interface_layers);
|
||||
std::sort(layers_sorted.begin(), layers_sorted.end());
|
||||
std::sort(layers_sorted.begin(), layers_sorted.end(), MyLayersPtrCompare());
|
||||
|
||||
int layer_id = 0;
|
||||
for (int i = 0; i < int(layers_sorted.size());) {
|
||||
@ -302,10 +352,8 @@ void collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type,
|
||||
const SurfaceCollection &slices = region.slices;
|
||||
for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) {
|
||||
const Surface &surface = *it;
|
||||
if (surface.surface_type == surface_type) {
|
||||
out.push_back(surface.expolygon.contour);
|
||||
out.insert(out.end(), surface.expolygon.holes.begin(), surface.expolygon.holes.end());
|
||||
}
|
||||
if (surface.surface_type == surface_type)
|
||||
polygons_append(out, surface.expolygon);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -344,23 +392,44 @@ Polygons collect_region_slices_outer(const Layer &layer)
|
||||
return out;
|
||||
}
|
||||
|
||||
// Collect outer contours of all expolygons in all layer region slices.
|
||||
void collect_slices_outer(const Layer &layer, Polygons &out)
|
||||
{
|
||||
out.reserve(out.size() + layer.slices.expolygons.size());
|
||||
for (ExPolygons::const_iterator it = layer.slices.expolygons.begin(); it != layer.slices.expolygons.end(); ++ it)
|
||||
out.push_back(it->contour);
|
||||
}
|
||||
|
||||
// Collect outer contours of all expolygons in all layer region slices.
|
||||
Polygons collect_slices_outer(const Layer &layer)
|
||||
{
|
||||
Polygons out;
|
||||
collect_slices_outer(layer, out);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Find the top contact surfaces of the support or the raft.
|
||||
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers(const PrintObject &object, MyLayerStorage &layer_storage) const
|
||||
{
|
||||
#ifdef SLIC3R_DEBUG
|
||||
static int iRun = 0;
|
||||
++ iRun;
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// Output layers, sorte by top Z.
|
||||
MyLayersPtr contact_out;
|
||||
|
||||
// If user specified a custom angle threshold, convert it to radians.
|
||||
double threshold_rad = 0.;
|
||||
if (m_object_config->support_material_threshold > 0) {
|
||||
threshold_rad = M_PI * double(m_object_config->support_material_threshold + 1) / 180.; // +1 makes the threshold inclusive
|
||||
if (m_object_config->support_material_threshold.value > 0) {
|
||||
threshold_rad = M_PI * double(m_object_config->support_material_threshold.value + 1) / 180.; // +1 makes the threshold inclusive
|
||||
// Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
|
||||
}
|
||||
|
||||
// Build support on a build plate only? If so, then collect top surfaces into $buildplate_only_top_surfaces
|
||||
// and subtract $buildplate_only_top_surfaces from the contact surfaces, so
|
||||
// there is no contact surface supported by a top surface.
|
||||
bool buildplate_only = m_object_config->support_material && m_object_config->support_material_buildplate_only;
|
||||
bool buildplate_only = m_object_config->support_material.value && m_object_config->support_material_buildplate_only.value;
|
||||
Polygons buildplate_only_top_surfaces;
|
||||
|
||||
// Determine top contact areas.
|
||||
@ -401,7 +470,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
// This is the first object layer, so the object is being printed on a raft and
|
||||
// we're here just to get the object footprint for the raft.
|
||||
// We only consider contours and discard holes to get a more continuous raft.
|
||||
overhang_polygons = collect_region_slices_outer(layer);
|
||||
overhang_polygons = collect_slices_outer(layer);
|
||||
// Extend by SUPPORT_MATERIAL_MARGIN, which is 1.5mm
|
||||
contact_polygons = offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN));
|
||||
} else {
|
||||
@ -413,7 +482,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
// It is the maximum widh of the extrudate.
|
||||
coord_t fw = layerm.flow(frExternalPerimeter).scaled_width();
|
||||
coordf_t lower_layer_offset =
|
||||
(layer_id < m_object_config->support_material_enforce_layers) ?
|
||||
(layer_id < m_object_config->support_material_enforce_layers.value) ?
|
||||
// Enforce a full possible support, ignore the overhang angle.
|
||||
0 :
|
||||
(threshold_rad > 0. ?
|
||||
@ -424,6 +493,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
// Overhang polygons for this layer and region.
|
||||
Polygons diff_polygons;
|
||||
if (lower_layer_offset == 0.) {
|
||||
// Support everything.
|
||||
diff_polygons = diff(
|
||||
(Polygons)layerm.slices,
|
||||
(Polygons)lower_layer.slices);
|
||||
@ -437,11 +507,19 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
if (diff_polygons.empty())
|
||||
continue;
|
||||
// Offset the support regions back to a full overhang, restrict them to the full overhang.
|
||||
diff_polygons = intersection(offset(diff_polygons, lower_layer_offset), (Polygons)layerm.slices);
|
||||
diff_polygons = diff(intersection(offset(diff_polygons, lower_layer_offset), (Polygons)layerm.slices), (Polygons)lower_layer.slices);
|
||||
}
|
||||
if (diff_polygons.empty())
|
||||
continue;
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
{
|
||||
::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg", iRun, layer_id, it_layerm - layer.regions.begin()), get_extents(diff_polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(diff_polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
if (m_object_config->dont_support_bridges) {
|
||||
// compute the area of bridging perimeters
|
||||
// Note: this is duplicate code from GCode.pm, we need to refactor
|
||||
@ -452,16 +530,20 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
|
||||
coordf_t nozzle_diameter = m_print_config->nozzle_diameter.get_at(
|
||||
layerm.region()->config.perimeter_extruder-1);
|
||||
Polygons lower_grown_slices = offset((Polygons)lower_layer.slices, +scale_(0.5*nozzle_diameter));
|
||||
Polygons lower_grown_slices = offset((Polygons)lower_layer.slices, 0.5f*scale_(nozzle_diameter));
|
||||
|
||||
// TODO: split_at_first_point() could split a bridge mid-way
|
||||
Polylines overhang_perimeters;
|
||||
for (size_t i = 0; i < layerm.perimeters.entities.size(); ++ i) {
|
||||
ExtrusionEntity *entity = layerm.perimeters.entities[i];
|
||||
ExtrusionLoop *loop = dynamic_cast<Slic3r::ExtrusionLoop*>(entity);
|
||||
overhang_perimeters.push_back(loop ?
|
||||
loop->as_polyline() :
|
||||
dynamic_cast<const Slic3r::ExtrusionPath*>(entity)->polyline);
|
||||
for (ExtrusionEntitiesPtr::const_iterator it_island = layerm.perimeters.entities.begin(); it_island != layerm.perimeters.entities.end(); ++ it_island) {
|
||||
const ExtrusionEntityCollection *island = dynamic_cast<ExtrusionEntityCollection*>(*it_island);
|
||||
assert(island != NULL);
|
||||
for (size_t i = 0; i < island->entities.size(); ++ i) {
|
||||
ExtrusionEntity *entity = island->entities[i];
|
||||
ExtrusionLoop *loop = dynamic_cast<Slic3r::ExtrusionLoop*>(entity);
|
||||
overhang_perimeters.push_back(loop ?
|
||||
loop->as_polyline() :
|
||||
dynamic_cast<const Slic3r::ExtrusionPath*>(entity)->polyline);
|
||||
}
|
||||
}
|
||||
|
||||
// workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
|
||||
@ -484,7 +566,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
// Offset a polyline into a polygon.
|
||||
Polylines tmp; tmp.push_back(*it);
|
||||
Polygons out;
|
||||
offset(tmp, &out, 0.5 * w + 10.);
|
||||
offset(tmp, &out, 0.5f * w + 10.f);
|
||||
polygons_append(bridged_perimeters, out);
|
||||
}
|
||||
}
|
||||
@ -495,14 +577,10 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
if (1) {
|
||||
// remove the entire bridges and only support the unsupported edges
|
||||
Polygons bridges;
|
||||
for (Surfaces::const_iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it) {
|
||||
if (it->surface_type == stBottomBridge && it->bridge_angle != -1) {
|
||||
bridges.push_back(it->expolygon.contour);
|
||||
bridges.insert(bridges.end(), it->expolygon.holes.begin(), it->expolygon.holes.end());
|
||||
}
|
||||
}
|
||||
|
||||
bridged_perimeters.insert(bridged_perimeters.end(), bridges.begin(), bridges.end());
|
||||
for (Surfaces::const_iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
|
||||
if (it->surface_type == stBottomBridge && it->bridge_angle != -1)
|
||||
polygons_append(bridges, it->expolygon);
|
||||
polygons_append(bridged_perimeters, bridges);
|
||||
diff_polygons = diff(diff_polygons, bridged_perimeters, true);
|
||||
|
||||
Polygons unsupported_bridge_polygons;
|
||||
@ -514,8 +592,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
offset(tmp, &out, scale_(SUPPORT_MATERIAL_MARGIN));
|
||||
polygons_append(unsupported_bridge_polygons, out);
|
||||
}
|
||||
Polygons bridge_anchors = intersection(unsupported_bridge_polygons, bridges);
|
||||
polygons_append(diff_polygons, bridge_anchors);
|
||||
polygons_append(diff_polygons, intersection(unsupported_bridge_polygons, bridges));
|
||||
} else {
|
||||
// just remove bridged areas
|
||||
diff_polygons = diff(diff_polygons, layerm.bridged, true);
|
||||
@ -531,6 +608,14 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
if (diff_polygons.empty())
|
||||
continue;
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
{
|
||||
::Slic3r::SVG svg(debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d.svg", iRun, layer_id, it_layerm - layer.regions.begin()), get_extents(diff_polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(diff_polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
polygons_append(overhang_polygons, diff_polygons);
|
||||
|
||||
// Let's define the required contact area by using a max gap of half the upper
|
||||
@ -586,12 +671,12 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
size_t n_nozzle_dmrs = 0;
|
||||
for (LayerRegionPtrs::const_iterator it_region_ptr = layer.regions.begin(); it_region_ptr != layer.regions.end(); ++ it_region_ptr) {
|
||||
const PrintRegion ®ion = *(*it_region_ptr)->region();
|
||||
nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.perimeter_extruder-1);
|
||||
nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.infill_extruder-1);
|
||||
nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.solid_infill_extruder-1);
|
||||
nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.perimeter_extruder.value - 1);
|
||||
nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.infill_extruder.value - 1);
|
||||
nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.solid_infill_extruder.value - 1);
|
||||
n_nozzle_dmrs += 3;
|
||||
}
|
||||
nozzle_dmr /= n_nozzle_dmrs;
|
||||
nozzle_dmr /= coordf_t(n_nozzle_dmrs);
|
||||
new_layer.print_z = layer.print_z - nozzle_dmr - m_object_config->support_material_contact_distance;
|
||||
// Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and
|
||||
// its height will be set adaptively later on.
|
||||
@ -632,7 +717,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_conta
|
||||
// find object top surfaces
|
||||
// we'll use them to clip our support and detect where does it stick
|
||||
MyLayersPtr bottom_contacts;
|
||||
if (! m_object_config->support_material_buildplate_only && ! top_contacts.empty())
|
||||
if (! m_object_config->support_material_buildplate_only.value && ! top_contacts.empty())
|
||||
{
|
||||
// Sum of unsupported contact areas above the current layer.print_z.
|
||||
Polygons projection;
|
||||
@ -840,7 +925,7 @@ void PrintObjectSupportMaterial::generate_base_layers(
|
||||
-- idx_top_contact_overlapping;
|
||||
// Collect all the top_contact layer intersecting with this layer.
|
||||
for (int i = idx_top_contact_overlapping; i >= 0; -- i) {
|
||||
MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping];
|
||||
MyLayer &layer_top_overlapping = *top_contacts[i];
|
||||
if (layer_top_overlapping.print_z < layer_intermediate.bottom_z - overlap_extra_below)
|
||||
break;
|
||||
polygons_append(polygons_trimming, layer_top_overlapping.polygons);
|
||||
@ -885,6 +970,17 @@ void PrintObjectSupportMaterial::generate_base_layers(
|
||||
*/
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
static int iRun = 0;
|
||||
iRun ++;
|
||||
for (MyLayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it) {
|
||||
const MyLayer &layer = *(*it);
|
||||
::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, layer.print_z), get_extents(layer.polygons));
|
||||
Slic3r::ExPolygons expolys = union_ex(layer.polygons, false);
|
||||
svg.draw(expolys);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
//FIXME This could be parallelized.
|
||||
const coordf_t gap_extra_above = 0.1f;
|
||||
const coordf_t gap_extra_below = 0.1f;
|
||||
@ -924,13 +1020,13 @@ Polygons PrintObjectSupportMaterial::generate_raft_base(
|
||||
MyLayersPtr &intermediate_layers) const
|
||||
{
|
||||
assert(! bottom_contacts.empty());
|
||||
MyLayer &contacts = *bottom_contacts.front();
|
||||
MyLayer &columns_base = *intermediate_layers.front();
|
||||
|
||||
Polygons raft_polygons;
|
||||
#if 0
|
||||
const float inflate_factor = scale_(3.);
|
||||
if (this->has_raft()) {
|
||||
MyLayer &contacts = *bottom_contacts.front();
|
||||
MyLayer &columns_base = *intermediate_layers.front();
|
||||
if (m_num_base_raft_layers == 0 && m_num_interface_raft_layers == 0 && m_num_contact_raft_layers == 1) {
|
||||
// Having only the contact layer, which has the height of the 1st layer.
|
||||
// We are free to merge the contacts with the columns_base, they will be printed the same way.
|
||||
@ -948,6 +1044,7 @@ Polygons PrintObjectSupportMaterial::generate_raft_base(
|
||||
} else {
|
||||
// No raft. The 1st intermediate layer contains the bases of the support columns.
|
||||
// Expand the polygons, but trim with the object.
|
||||
MyLayer &columns_base = *intermediate_layers.front();
|
||||
columns_base.polygons = diff(
|
||||
offset(columns_base.polygons, inflate_factor),
|
||||
offset(m_object->get_layer(0), safety_factor);
|
||||
|
@ -43,7 +43,8 @@ public:
|
||||
height(0.),
|
||||
idx_object_layer_above(size_t(-1)),
|
||||
idx_object_layer_below(size_t(-1)),
|
||||
bridging(false)
|
||||
bridging(false),
|
||||
aux_polygons(NULL)
|
||||
{}
|
||||
|
||||
~MyLayer()
|
||||
|
@ -40,6 +40,20 @@ public:
|
||||
: surface_type(_surface_type), expolygon(_expolygon),
|
||||
thickness(-1), thickness_layers(1), bridge_angle(-1), extra_perimeters(0)
|
||||
{};
|
||||
Surface(const Surface &other, const ExPolygon &_expolygon)
|
||||
: surface_type(other.surface_type), expolygon(_expolygon),
|
||||
thickness(other.thickness), thickness_layers(other.thickness_layers), bridge_angle(other.bridge_angle), extra_perimeters(other.extra_perimeters)
|
||||
{};
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
Surface(SurfaceType _surface_type, const ExPolygon &&_expolygon)
|
||||
: surface_type(_surface_type), expolygon(std::move(_expolygon)),
|
||||
thickness(-1), thickness_layers(1), bridge_angle(-1), extra_perimeters(0)
|
||||
{};
|
||||
Surface(const Surface &other, const ExPolygon &&_expolygon)
|
||||
: surface_type(other.surface_type), expolygon(std::move(_expolygon)),
|
||||
thickness(other.thickness), thickness_layers(other.thickness_layers), bridge_angle(other.bridge_angle), extra_perimeters(other.extra_perimeters)
|
||||
{};
|
||||
#endif
|
||||
operator Polygons() const;
|
||||
double area() const;
|
||||
bool is_solid() const;
|
||||
@ -52,22 +66,43 @@ public:
|
||||
typedef std::vector<Surface> Surfaces;
|
||||
typedef std::vector<Surface*> SurfacesPtr;
|
||||
|
||||
inline Polygons to_polygons(const SurfacesPtr &src)
|
||||
inline Polygons to_polygons(const Surfaces &src)
|
||||
{
|
||||
size_t num = 0;
|
||||
for (Surfaces::const_iterator it = src.begin(); it != src.end(); ++it)
|
||||
num += it->expolygon.holes.size() + 1;
|
||||
Polygons polygons;
|
||||
for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
polygons.push_back((*it)->expolygon.contour);
|
||||
for (Polygons::const_iterator ith = (*it)->expolygon.holes.begin(); ith != (*it)->expolygon.holes.end(); ++ith) {
|
||||
polygons.reserve(num);
|
||||
for (Surfaces::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
polygons.push_back(it->expolygon.contour);
|
||||
for (Polygons::const_iterator ith = it->expolygon.holes.begin(); ith != it->expolygon.holes.end(); ++ith)
|
||||
polygons.push_back(*ith);
|
||||
}
|
||||
}
|
||||
return polygons;
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER > 11
|
||||
inline Polygons to_polygons(const SurfacesPtr &src)
|
||||
{
|
||||
size_t num = 0;
|
||||
for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++it)
|
||||
num += (*it)->expolygon.holes.size() + 1;
|
||||
Polygons polygons;
|
||||
polygons.reserve(num);
|
||||
for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
polygons.push_back((*it)->expolygon.contour);
|
||||
for (Polygons::const_iterator ith = (*it)->expolygon.holes.begin(); ith != (*it)->expolygon.holes.end(); ++ith)
|
||||
polygons.push_back(*ith);
|
||||
}
|
||||
return polygons;
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline Polygons to_polygons(SurfacesPtr &&src)
|
||||
{
|
||||
for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++it)
|
||||
num += (*it)->expolygon.holes.size() + 1;
|
||||
Polygons polygons;
|
||||
polygons.reserve(num);
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
polygons.push_back(std::move((*it)->expolygon.contour));
|
||||
for (Polygons::const_iterator ith = (*it)->expolygon.holes.begin(); ith != (*it)->expolygon.holes.end(); ++ith) {
|
||||
@ -78,6 +113,94 @@ inline Polygons to_polygons(SurfacesPtr &&src)
|
||||
}
|
||||
#endif
|
||||
|
||||
// Count a nuber of polygons stored inside the vector of expolygons.
|
||||
// Useful for allocating space for polygons when converting expolygons to polygons.
|
||||
inline size_t number_polygons(const Surfaces &surfaces)
|
||||
{
|
||||
size_t n_polygons = 0;
|
||||
for (Surfaces::const_iterator it = surfaces.begin(); it != surfaces.end(); ++ it)
|
||||
n_polygons += it->expolygon.holes.size() + 1;
|
||||
return n_polygons;
|
||||
}
|
||||
inline size_t number_polygons(const SurfacesPtr &surfaces)
|
||||
{
|
||||
size_t n_polygons = 0;
|
||||
for (SurfacesPtr::const_iterator it = surfaces.begin(); it != surfaces.end(); ++ it)
|
||||
n_polygons += (*it)->expolygon.holes.size() + 1;
|
||||
return n_polygons;
|
||||
}
|
||||
|
||||
// Append a vector of Surfaces at the end of another vector of polygons.
|
||||
inline void polygons_append(Polygons &dst, const Surfaces &src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (Surfaces::const_iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back(it->expolygon.contour);
|
||||
dst.insert(dst.end(), it->expolygon.holes.begin(), it->expolygon.holes.end());
|
||||
}
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline void polygons_append(Polygons &dst, Surfaces &&src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (Surfaces::const_iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back(std::move(it->expolygon.contour));
|
||||
std::move(std::begin(it->expolygon.contour), std::end(it->expolygon.contour), std::back_inserter(dst));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Append a vector of Surfaces at the end of another vector of polygons.
|
||||
inline void polygons_append(Polygons &dst, const SurfacesPtr &src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back((*it)->expolygon.contour);
|
||||
dst.insert(dst.end(), (*it)->expolygon.holes.begin(), (*it)->expolygon.holes.end());
|
||||
}
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline void polygons_append(Polygons &dst, SurfacesPtr &&src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (SurfacesPtr::const_iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back(std::move((*it)->expolygon.contour));
|
||||
std::move(std::begin((*it)->expolygon.contour), std::end((*it)->expolygon.contour), std::back_inserter(dst));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Append a vector of Surfaces at the end of another vector of polygons.
|
||||
inline void surfaces_append(Surfaces &dst, const ExPolygons &src, SurfaceType surfaceType)
|
||||
{
|
||||
dst.reserve(dst.size() + src.size());
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it)
|
||||
dst.push_back(Surface(surfaceType, *it));
|
||||
}
|
||||
inline void surfaces_append(Surfaces &dst, const ExPolygons &src, const Surface &surfaceTempl)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it)
|
||||
dst.push_back(Surface(surfaceTempl, *it));
|
||||
}
|
||||
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
inline void surfaces_append(Surfaces &dst, ExPolygons &&src, SurfaceType surfaceType)
|
||||
{
|
||||
dst.reserve(dst.size() + src.size());
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it)
|
||||
dst.push_back(Surface(surfaceType, std::move(*it)));
|
||||
}
|
||||
inline void surfaces_append(Surfaces &dst, ExPolygons &&src, const Surface &surfaceTempl)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it)
|
||||
dst.push_back(Surface(surfaceTempl, std::move(*it)));
|
||||
}
|
||||
#endif
|
||||
|
||||
extern BoundingBox get_extents(const Surface &surface);
|
||||
extern BoundingBox get_extents(const Surfaces &surfaces);
|
||||
extern BoundingBox get_extents(const SurfacesPtr &surfaces);
|
||||
|
@ -29,7 +29,7 @@ class SurfaceCollection
|
||||
void remove_types(const SurfaceType *types, int ntypes);
|
||||
void filter_by_type(SurfaceType type, Polygons* polygons);
|
||||
void append(const SurfaceCollection &coll);
|
||||
void append(const SurfaceType surfaceType, const Slic3r::ExPolygons &expoly);
|
||||
void append(const SurfaceType surfaceType, const ExPolygons &expoly);
|
||||
|
||||
// For debugging purposes:
|
||||
void export_to_svg(const char *path, bool show_labels);
|
||||
|
@ -475,7 +475,7 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* la
|
||||
for (std::vector<IntersectionLines>::iterator it = lines.begin(); it != lines.end(); ++it) {
|
||||
size_t layer_idx = it - lines.begin();
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf("Layer %zu:\n", layer_idx);
|
||||
printf("Layer " PRINTF_ZU ":\n", layer_idx);
|
||||
#endif
|
||||
this->make_loops(*it, &(*layers)[layer_idx]);
|
||||
}
|
||||
@ -491,7 +491,7 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>*
|
||||
for (std::vector<Polygons>::const_iterator loops = layers_p.begin(); loops != layers_p.end(); ++loops) {
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
size_t layer_id = loops - layers_p.begin();
|
||||
printf("Layer %zu (slice_z = %.2f):\n", layer_id, z[layer_id]);
|
||||
printf("Layer " PRINTF_ZU " (slice_z = %.2f):\n", layer_id, z[layer_id]);
|
||||
#endif
|
||||
|
||||
this->make_expolygons(*loops, &(*layers)[ loops - layers_p.begin() ]);
|
||||
@ -839,7 +839,7 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices)
|
||||
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++e) {
|
||||
holes_count += e->holes.size();
|
||||
}
|
||||
printf("%zu surface(s) having %zu holes detected from %zu polylines\n",
|
||||
printf(PRINTF_ZU " surface(s) having " PRINTF_ZU " holes detected from " PRINTF_ZU " polylines\n",
|
||||
ex_slices.size(), holes_count, loops.size());
|
||||
#endif
|
||||
|
||||
|
@ -78,6 +78,13 @@ inline std::string debug_out_path(const char *name, ...)
|
||||
return std::string(SLIC3R_DEBUG_OUT_PATH_PREFIX) + std::string(buffer);
|
||||
}
|
||||
|
||||
#ifdef _MSC_VER
|
||||
// Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead.
|
||||
#define PRINTF_ZU "%Iu"
|
||||
#else
|
||||
#define PRINTF_ZU "%zu"
|
||||
#endif
|
||||
|
||||
// Write slices as SVG images into out directory during the 2D processing of the slices.
|
||||
// #define SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
|
||||
|
@ -5,7 +5,6 @@ use warnings;
|
||||
|
||||
use Slic3r::XS;
|
||||
use Test::More tests => 146;
|
||||
use Data::Dumper;
|
||||
|
||||
foreach my $config (Slic3r::Config->new, Slic3r::Config::Static::new_FullPrintConfig) {
|
||||
$config->set('layer_height', 0.3);
|
||||
|
@ -11,8 +11,7 @@
|
||||
Clone<ExtrusionEntityCollection> clone()
|
||||
%code{% RETVAL = THIS->clone(); %};
|
||||
void reverse();
|
||||
void clear()
|
||||
%code{% THIS->entities.clear(); %};
|
||||
void clear();
|
||||
ExtrusionEntityCollection* chained_path(bool no_reverse)
|
||||
%code{%
|
||||
RETVAL = new ExtrusionEntityCollection();
|
||||
|
@ -4,6 +4,8 @@
|
||||
#include <xsinit.h>
|
||||
#include "libslic3r/Fill/Fill.hpp"
|
||||
#include "libslic3r/PolylineCollection.hpp"
|
||||
#include "libslic3r/ExtrusionEntity.hpp"
|
||||
#include "libslic3r/ExtrusionEntityCollection.hpp"
|
||||
%}
|
||||
|
||||
%name{Slic3r::Filler} class Filler {
|
||||
@ -63,5 +65,13 @@ new_from_type(CLASS, type)
|
||||
OUTPUT:
|
||||
RETVAL
|
||||
|
||||
void
|
||||
make_fill(CLASS, layer_region, out_append)
|
||||
char* CLASS;
|
||||
LayerRegion* layer_region;
|
||||
ExtrusionEntityCollection* out_append;
|
||||
CODE:
|
||||
make_fill(*layer_region, *out_append);
|
||||
%}
|
||||
|
||||
};
|
||||
|
@ -96,6 +96,7 @@
|
||||
bool any_bottom_region_slice_contains_polyline(Polyline* polyline)
|
||||
%code%{ RETVAL = THIS->any_bottom_region_slice_contains(*polyline); %};
|
||||
void make_perimeters();
|
||||
void make_fills();
|
||||
|
||||
void export_region_slices_to_svg(const char *path);
|
||||
void export_region_fill_surfaces_to_svg(const char *path);
|
||||
|
Loading…
Reference in New Issue
Block a user