Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_adaptive_layer_height

This commit is contained in:
Enrico Turri 2019-11-12 12:43:16 +01:00
commit 9d5da8b18c
32 changed files with 1180 additions and 198 deletions

View file

@ -256,7 +256,7 @@ if(NOT WIN32)
# boost::process was introduced first in version 1.64.0
set(MINIMUM_BOOST_VERSION "1.64.0")
endif()
set(_boost_components "system;filesystem;thread;log;locale;regex")
set(_boost_components "system;filesystem;thread;log;locale;regex;chrono;atomic;date_time")
find_package(Boost ${MINIMUM_BOOST_VERSION} REQUIRED COMPONENTS ${_boost_components})
add_library(boost_libs INTERFACE)

View file

@ -16,8 +16,8 @@ include("deps-unix-common.cmake")
ExternalProject_Add(dep_boost
EXCLUDE_FROM_ALL 1
URL "https://dl.bintray.com/boostorg/release/1.71.0/source/boost_1_71_0.tar.gz"
URL_HASH SHA256=96b34f7468f26a141f6020efb813f1a2f3dfb9797ecf76a7d7cbd843cc95f5bd
URL "https://dl.bintray.com/boostorg/release/1.70.0/source/boost_1_70_0.tar.gz"
URL_HASH SHA256=882b48708d211a5f48e60b0124cf5863c1534cd544ecd0664bb534a4b5d506e9
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND ./bootstrap.sh
--with-toolset=clang
@ -90,8 +90,6 @@ ExternalProject_Add(dep_wxwidgets
EXCLUDE_FROM_ALL 1
GIT_REPOSITORY "https://github.com/prusa3d/wxWidgets"
GIT_TAG v3.1.1-patched
# URL "https://github.com/wxWidgets/wxWidgets/releases/download/v3.1.2/wxWidgets-3.1.2.tar.bz2"
# URL_HASH SHA256=4cb8d23d70f9261debf7d6cfeca667fc0a7d2b6565adb8f1c484f9b674f1f27a
BUILD_IN_SOURCE 1
# PATCH_COMMAND "${CMAKE_COMMAND}" -E copy "${CMAKE_CURRENT_SOURCE_DIR}/wxwidgets-pngprefix.h" src/png/pngprefix.h
CONFIGURE_COMMAND env "CXXFLAGS=${DEP_WERRORS_SDK}" "CFLAGS=${DEP_WERRORS_SDK}" ./configure

View file

@ -62,7 +62,7 @@ ExternalProject_Add(dep_qhull
-DCMAKE_INSTALL_PREFIX=${DESTDIR}/usr/local
${DEP_CMAKE_OPTS}
UPDATE_COMMAND ""
PATCH_COMMAND ${GIT_EXECUTABLE} apply --whitespace=fix ${CMAKE_CURRENT_SOURCE_DIR}/qhull-mods.patch
PATCH_COMMAND patch -p1 < ${CMAKE_CURRENT_SOURCE_DIR}/qhull-mods.patch
)
ExternalProject_Add(dep_blosc

View file

@ -227,7 +227,6 @@ ExternalProject_Add(dep_qhull
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_DEBUG_POSTFIX=d
UPDATE_COMMAND ""
PATCH_COMMAND ${GIT_EXECUTABLE} apply --whitespace=fix ${CMAKE_CURRENT_SOURCE_DIR}/qhull-mods.patch
BUILD_COMMAND msbuild /m /P:Configuration=Release INSTALL.vcxproj
INSTALL_COMMAND ""
)

View file

@ -46,11 +46,29 @@ void EdgeGrid::Grid::create(const Polygons &polygons, coord_t resolution)
++ ncontours;
// Collect the contours.
m_contours.assign(ncontours, NULL);
m_contours.assign(ncontours, nullptr);
ncontours = 0;
for (size_t j = 0; j < polygons.size(); ++ j)
if (! polygons[j].points.empty())
m_contours[ncontours++] = &polygons[j].points;
m_contours[ncontours ++] = &polygons[j].points;
create_from_m_contours(resolution);
}
void EdgeGrid::Grid::create(const std::vector<Points> &polygons, coord_t resolution)
{
// Count the contours.
size_t ncontours = 0;
for (size_t j = 0; j < polygons.size(); ++ j)
if (! polygons[j].empty())
++ ncontours;
// Collect the contours.
m_contours.assign(ncontours, nullptr);
ncontours = 0;
for (size_t j = 0; j < polygons.size(); ++ j)
if (! polygons[j].empty())
m_contours[ncontours ++] = &polygons[j];
create_from_m_contours(resolution);
}
@ -66,7 +84,7 @@ void EdgeGrid::Grid::create(const ExPolygon &expoly, coord_t resolution)
++ ncontours;
// Collect the contours.
m_contours.assign(ncontours, NULL);
m_contours.assign(ncontours, nullptr);
ncontours = 0;
if (! expoly.contour.points.empty())
m_contours[ncontours++] = &expoly.contour.points;
@ -91,7 +109,7 @@ void EdgeGrid::Grid::create(const ExPolygons &expolygons, coord_t resolution)
}
// Collect the contours.
m_contours.assign(ncontours, NULL);
m_contours.assign(ncontours, nullptr);
ncontours = 0;
for (size_t i = 0; i < expolygons.size(); ++ i) {
const ExPolygon &expoly = expolygons[i];
@ -1122,7 +1140,7 @@ EdgeGrid::Grid::ClosestPointResult EdgeGrid::Grid::closest_point(const Point &pt
Vec2d vfoot = foot - pt.cast<double>();
double dist_foot = vfoot.norm();
double dist_foot_err = dist_foot - d_min;
assert(std::abs(dist_foot_err) < 1e-7 * d_min);
assert(std::abs(dist_foot_err) < 1e-7 || std::abs(dist_foot_err) < 1e-7 * d_min);
#endif /* NDEBUG */
}
}
@ -1145,7 +1163,7 @@ EdgeGrid::Grid::ClosestPointResult EdgeGrid::Grid::closest_point(const Point &pt
vfoot = p1.cast<double>() * (1. - result.t) + p2.cast<double>() * result.t - pt.cast<double>();
double dist_foot = vfoot.norm();
double dist_foot_err = dist_foot - std::abs(result.distance);
assert(std::abs(dist_foot_err) < 1e-7 * std::abs(result.distance));
assert(std::abs(dist_foot_err) < 1e-7 || std::abs(dist_foot_err) < 1e-7 * std::abs(result.distance));
}
#endif /* NDEBUG */
} else

View file

@ -21,6 +21,7 @@ public:
void set_bbox(const BoundingBox &bbox) { m_bbox = bbox; }
void create(const Polygons &polygons, coord_t resolution);
void create(const std::vector<Points> &polygons, coord_t resolution);
void create(const ExPolygon &expoly, coord_t resolution);
void create(const ExPolygons &expolygons, coord_t resolution);
void create(const ExPolygonCollection &expolygons, coord_t resolution);

View file

@ -77,6 +77,11 @@ public:
void triangulate_pp(Points *triangles) const;
void triangulate_p2t(Polygons* polygons) const;
Lines lines() const;
// Number of contours (outer contour with holes).
size_t num_contours() const { return this->holes.size() + 1; }
Polygon& contour_or_hole(size_t idx) { return (idx == 0) ? this->contour : this->holes[idx - 1]; }
const Polygon& contour_or_hole(size_t idx) const { return (idx == 0) ? this->contour : this->holes[idx - 1]; }
};
inline bool operator==(const ExPolygon &lhs, const ExPolygon &rhs) { return lhs.contour == rhs.contour && lhs.holes == rhs.holes; }

View file

@ -158,43 +158,18 @@ void Fill3DHoneycomb::_fill_surface_single(
((this->layer_id/thickness_layers) % 2) + 1);
// move pattern in place
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
it->translate(bb.min(0), bb.min(1));
for (Polyline &pl : polylines)
pl.translate(bb.min);
// clip pattern to boundaries
polylines = intersection_pl(polylines, (Polygons)expolygon);
// clip pattern to boundaries, chain the clipped polylines
Polylines polylines_chained = chain_polylines(intersection_pl(polylines, to_polygons(expolygon)));
// connect lines
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
ExPolygon expolygon_off;
{
ExPolygons expolygons_off = offset_ex(expolygon, SCALED_EPSILON);
if (! expolygons_off.empty()) {
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
assert(expolygons_off.size() == 1);
std::swap(expolygon_off, expolygons_off.front());
}
}
bool first = true;
for (Polyline &polyline : chain_polylines(std::move(polylines))) {
if (! first) {
// Try to connect the lines.
Points &pts_end = polylines_out.back().points;
const Point &first_point = polyline.points.front();
const Point &last_point = pts_end.back();
// TODO: we should also check that both points are on a fill_boundary to avoid
// connecting paths on the boundaries of internal regions
if ((last_point - first_point).cast<double>().norm() <= 1.5 * distance &&
expolygon_off.contains(Line(last_point, first_point))) {
// Append the polyline.
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
// The lines cannot be connected.
polylines_out.emplace_back(std::move(polyline));
first = false;
}
// connect lines if needed
if (! polylines_chained.empty()) {
if (params.dont_connect)
append(polylines_out, std::move(polylines_chained));
else
this->connect_infill(std::move(polylines_chained), expolygon, polylines_out, params);
}
}

View file

@ -1,8 +1,10 @@
#include <stdio.h>
#include "../ClipperUtils.hpp"
#include "../EdgeGrid.hpp"
#include "../Surface.hpp"
#include "../PrintConfig.hpp"
#include "../libslic3r.h"
#include "FillBase.hpp"
#include "FillConcentric.hpp"
@ -148,4 +150,814 @@ std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
return std::pair<float, Point>(out_angle, out_shift);
}
#if 0
// From pull request "Gyroid improvements" #2730 by @supermerill
/// cut poly between poly.point[idx_1] & poly.point[idx_1+1]
/// add p1+-width to one part and p2+-width to the other one.
/// add the "new" polyline to polylines (to part cut from poly)
/// p1 & p2 have to be between poly.point[idx_1] & poly.point[idx_1+1]
/// if idx_1 is ==0 or == size-1, then we don't need to create a new polyline.
static void cut_polyline(Polyline &poly, Polylines &polylines, size_t idx_1, Point p1, Point p2) {
//reorder points
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
Point temp = p2;
p2 = p1;
p1 = temp;
}
if (idx_1 == poly.points.size() - 1) {
//shouldn't be possible.
poly.points.erase(poly.points.end() - 1);
} else {
// create new polyline
Polyline new_poly;
//put points in new_poly
new_poly.points.push_back(p2);
new_poly.points.insert(new_poly.points.end(), poly.points.begin() + idx_1 + 1, poly.points.end());
//erase&put points in poly
poly.points.erase(poly.points.begin() + idx_1 + 1, poly.points.end());
poly.points.push_back(p1);
//safe test
if (poly.length() == 0)
poly.points = new_poly.points;
else
polylines.emplace_back(new_poly);
}
}
/// the poly is like a polygon but with first_point != last_point (already removed)
static void cut_polygon(Polyline &poly, size_t idx_1, Point p1, Point p2) {
//reorder points
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
Point temp = p2;
p2 = p1;
p1 = temp;
}
//check if we need to rotate before cutting
if (idx_1 != poly.size() - 1) {
//put points in new_poly
poly.points.insert(poly.points.end(), poly.points.begin(), poly.points.begin() + idx_1 + 1);
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_1 + 1);
}
//put points in poly
poly.points.push_back(p1);
poly.points.insert(poly.points.begin(), p2);
}
/// check if the polyline from pts_to_check may be at 'width' distance of a point in polylines_blocker
/// it use equally_spaced_points with width/2 precision, so don't worry with pts_to_check number of points.
/// it use the given polylines_blocker points, be sure to put enough of them to be reliable.
/// complexity : N(pts_to_check.equally_spaced_points(width / 2)) x N(polylines_blocker.points)
static bool collision(const Points &pts_to_check, const Polylines &polylines_blocker, const coordf_t width) {
//check if it's not too close to a polyline
coordf_t min_dist_square = width * width * 0.9 - SCALED_EPSILON;
Polyline better_polylines(pts_to_check);
Points better_pts = better_polylines.equally_spaced_points(width / 2);
for (const Point &p : better_pts) {
for (const Polyline &poly2 : polylines_blocker) {
for (const Point &p2 : poly2.points) {
if (p.distance_to_square(p2) < min_dist_square) {
return true;
}
}
}
}
return false;
}
/// Try to find a path inside polylines that allow to go from p1 to p2.
/// width if the width of the extrusion
/// polylines_blockers are the array of polylines to check if the path isn't blocked by something.
/// complexity: N(polylines.points) + a collision check after that if we finded a path: N(2(p2-p1)/width) x N(polylines_blocker.points)
static Points get_frontier(Polylines &polylines, const Point& p1, const Point& p2, const coord_t width, const Polylines &polylines_blockers, coord_t max_size = -1) {
for (size_t idx_poly = 0; idx_poly < polylines.size(); ++idx_poly) {
Polyline &poly = polylines[idx_poly];
if (poly.size() <= 1) continue;
//loop?
if (poly.first_point() == poly.last_point()) {
//polygon : try to find a line for p1 & p2.
size_t idx_11, idx_12, idx_21, idx_22;
idx_11 = poly.closest_point_index(p1);
idx_12 = idx_11;
if (Line(poly.points[idx_11], poly.points[(idx_11 + 1) % (poly.points.size() - 1)]).distance_to(p1) < SCALED_EPSILON) {
idx_12 = (idx_11 + 1) % (poly.points.size() - 1);
} else if (Line(poly.points[(idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2)], poly.points[idx_11]).distance_to(p1) < SCALED_EPSILON) {
idx_11 = (idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2);
} else {
continue;
}
idx_21 = poly.closest_point_index(p2);
idx_22 = idx_21;
if (Line(poly.points[idx_21], poly.points[(idx_21 + 1) % (poly.points.size() - 1)]).distance_to(p2) < SCALED_EPSILON) {
idx_22 = (idx_21 + 1) % (poly.points.size() - 1);
} else if (Line(poly.points[(idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2)], poly.points[idx_21]).distance_to(p2) < SCALED_EPSILON) {
idx_21 = (idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2);
} else {
continue;
}
//edge case: on the same line
if (idx_11 == idx_21 && idx_12 == idx_22) {
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
cut_polygon(poly, idx_11, p1, p2);
return Points() = { Line(p1, p2).midpoint() };
}
//compute distance & array for the ++ path
Points ret_1_to_2;
double dist_1_to_2 = p1.distance_to(poly.points[idx_12]);
ret_1_to_2.push_back(poly.points[idx_12]);
size_t max = idx_12 <= idx_21 ? idx_21+1 : poly.points.size();
for (size_t i = idx_12 + 1; i < max; i++) {
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
ret_1_to_2.push_back(poly.points[i]);
}
if (idx_12 > idx_21) {
dist_1_to_2 += poly.points.back().distance_to(poly.points.front());
ret_1_to_2.push_back(poly.points[0]);
for (size_t i = 1; i <= idx_21; i++) {
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
ret_1_to_2.push_back(poly.points[i]);
}
}
dist_1_to_2 += p2.distance_to(poly.points[idx_21]);
//compute distance & array for the -- path
Points ret_2_to_1;
double dist_2_to_1 = p1.distance_to(poly.points[idx_11]);
ret_2_to_1.push_back(poly.points[idx_11]);
size_t min = idx_22 <= idx_11 ? idx_22 : 0;
for (size_t i = idx_11; i > min; i--) {
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
ret_2_to_1.push_back(poly.points[i - 1]);
}
if (idx_22 > idx_11) {
dist_2_to_1 += poly.points.back().distance_to(poly.points.front());
ret_2_to_1.push_back(poly.points[poly.points.size() - 1]);
for (size_t i = poly.points.size() - 1; i > idx_22; i--) {
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
ret_2_to_1.push_back(poly.points[i - 1]);
}
}
dist_2_to_1 += p2.distance_to(poly.points[idx_22]);
if (max_size < dist_2_to_1 && max_size < dist_1_to_2) {
return Points();
}
//choose between the two direction (keep the short one)
if (dist_1_to_2 < dist_2_to_1) {
if (collision(ret_1_to_2, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
//remove points
if (idx_12 <= idx_21) {
poly.points.erase(poly.points.begin() + idx_12, poly.points.begin() + idx_21 + 1);
if (idx_12 != 0) {
cut_polygon(poly, idx_11, p1, p2);
} //else : already cut at the good place
} else {
poly.points.erase(poly.points.begin() + idx_12, poly.points.end());
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_21);
cut_polygon(poly, poly.points.size() - 1, p1, p2);
}
return ret_1_to_2;
} else {
if (collision(ret_2_to_1, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
//remove points
if (idx_22 <= idx_11) {
poly.points.erase(poly.points.begin() + idx_22, poly.points.begin() + idx_11 + 1);
if (idx_22 != 0) {
cut_polygon(poly, idx_21, p1, p2);
} //else : already cut at the good place
} else {
poly.points.erase(poly.points.begin() + idx_22, poly.points.end());
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_11);
cut_polygon(poly, poly.points.size() - 1, p1, p2);
}
return ret_2_to_1;
}
} else {
//polyline : try to find a line for p1 & p2.
size_t idx_1, idx_2;
idx_1 = poly.closest_point_index(p1);
if (idx_1 < poly.points.size() - 1 && Line(poly.points[idx_1], poly.points[idx_1 + 1]).distance_to(p1) < SCALED_EPSILON) {
} else if (idx_1 > 0 && Line(poly.points[idx_1 - 1], poly.points[idx_1]).distance_to(p1) < SCALED_EPSILON) {
idx_1 = idx_1 - 1;
} else {
continue;
}
idx_2 = poly.closest_point_index(p2);
if (idx_2 < poly.points.size() - 1 && Line(poly.points[idx_2], poly.points[idx_2 + 1]).distance_to(p2) < SCALED_EPSILON) {
} else if (idx_2 > 0 && Line(poly.points[idx_2 - 1], poly.points[idx_2]).distance_to(p2) < SCALED_EPSILON) {
idx_2 = idx_2 - 1;
} else {
continue;
}
//edge case: on the same line
if (idx_1 == idx_2) {
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
cut_polyline(poly, polylines, idx_1, p1, p2);
return Points() = { Line(p1, p2).midpoint() };
}
//create ret array
size_t first_idx = idx_1;
size_t last_idx = idx_2 + 1;
if (idx_1 > idx_2) {
first_idx = idx_2;
last_idx = idx_1 + 1;
}
Points p_ret;
p_ret.insert(p_ret.end(), poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
coordf_t length = 0;
for (size_t i = 1; i < p_ret.size(); i++) length += p_ret[i - 1].distance_to(p_ret[i]);
if (max_size < length) {
return Points();
}
if (collision(p_ret, polylines_blockers, width)) return Points();
//cut polyline
poly.points.erase(poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
cut_polyline(poly, polylines, first_idx, p1, p2);
//order the returned array to be p1->p2
if (idx_1 > idx_2) {
std::reverse(p_ret.begin(), p_ret.end());
}
return p_ret;
}
}
return Points();
}
/// Connect the infill_ordered polylines, in this order, from the back point to the next front point.
/// It uses only the boundary polygons to do so, and can't pass two times at the same place.
/// It avoid passing over the infill_ordered's polylines (preventing local over-extrusion).
/// return the connected polylines in polylines_out. Can output polygons (stored as polylines with first_point = last_point).
/// complexity: worst: N(infill_ordered.points) x N(boundary.points)
/// typical: N(infill_ordered) x ( N(boundary.points) + N(infill_ordered.points) )
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary, Polylines &polylines_out, const FillParams &params) {
//TODO: fallback to the quick & dirty old algorithm when n(points) is too high.
Polylines polylines_frontier = to_polylines(((Polygons)boundary));
Polylines polylines_blocker;
coord_t clip_size = scale_(this->spacing) * 2;
for (const Polyline &polyline : infill_ordered) {
if (polyline.length() > 2.01 * clip_size) {
polylines_blocker.push_back(polyline);
polylines_blocker.back().clip_end(clip_size);
polylines_blocker.back().clip_start(clip_size);
}
}
//length between two lines
coordf_t ideal_length = (1 / params.density) * this->spacing;
Polylines polylines_connected_first;
bool first = true;
for (const Polyline &polyline : infill_ordered) {
if (!first) {
// Try to connect the lines.
Points &pts_end = polylines_connected_first.back().points;
const Point &last_point = pts_end.back();
const Point &first_point = polyline.points.front();
if (last_point.distance_to(first_point) < scale_(this->spacing) * 10) {
Points pts_frontier = get_frontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker, (coord_t)scale_(ideal_length) * 2);
if (!pts_frontier.empty()) {
// The lines can be connected.
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
}
// The lines cannot be connected.
polylines_connected_first.emplace_back(std::move(polyline));
first = false;
}
Polylines polylines_connected;
first = true;
for (const Polyline &polyline : polylines_connected_first) {
if (!first) {
// Try to connect the lines.
Points &pts_end = polylines_connected.back().points;
const Point &last_point = pts_end.back();
const Point &first_point = polyline.points.front();
Polylines before = polylines_frontier;
Points pts_frontier = get_frontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker);
if (!pts_frontier.empty()) {
// The lines can be connected.
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
// The lines cannot be connected.
polylines_connected.emplace_back(std::move(polyline));
first = false;
}
//try to link to nearest point if possible
for (size_t idx1 = 0; idx1 < polylines_connected.size(); idx1++) {
size_t min_idx = 0;
coordf_t min_length = 0;
bool switch_id1 = false;
bool switch_id2 = false;
for (size_t idx2 = idx1 + 1; idx2 < polylines_connected.size(); idx2++) {
double last_first = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].first_point());
double first_first = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].first_point());
double first_last = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].last_point());
double last_last = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].last_point());
double min = std::min(std::min(last_first, last_last), std::min(first_first, first_last));
if (min < min_length || min_length == 0) {
min_idx = idx2;
switch_id1 = (std::min(last_first, last_last) > std::min(first_first, first_last));
switch_id2 = (std::min(last_first, first_first) > std::min(last_last, first_last));
min_length = min;
}
}
if (min_idx > idx1 && min_idx < polylines_connected.size()){
Points pts_frontier = get_frontier(polylines_frontier,
switch_id1 ? polylines_connected[idx1].first_point() : polylines_connected[idx1].last_point(),
switch_id2 ? polylines_connected[min_idx].last_point() : polylines_connected[min_idx].first_point(),
scale_(this->spacing), polylines_blocker);
if (!pts_frontier.empty()) {
if (switch_id1) polylines_connected[idx1].reverse();
if (switch_id2) polylines_connected[min_idx].reverse();
Points &pts_end = polylines_connected[idx1].points;
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polylines_connected[min_idx].points.begin(), polylines_connected[min_idx].points.end());
polylines_connected.erase(polylines_connected.begin() + min_idx);
}
}
}
//try to create some loops if possible
for (Polyline &polyline : polylines_connected) {
Points pts_frontier = get_frontier(polylines_frontier, polyline.last_point(), polyline.first_point(), scale_(this->spacing), polylines_blocker);
if (!pts_frontier.empty()) {
polyline.points.insert(polyline.points.end(), pts_frontier.begin(), pts_frontier.end());
polyline.points.insert(polyline.points.begin(), polyline.points.back());
}
polylines_out.emplace_back(polyline);
}
}
#else
struct ContourPointData {
ContourPointData(float param) : param(param) {}
// Eucleidean position of the contour point along the contour.
float param = 0.f;
// Was the segment starting with this contour point extruded?
bool segment_consumed = false;
// Was this point extruded over?
bool point_consumed = false;
};
// Verify whether the contour from point idx_start to point idx_end could be taken (whether all segments along the contour were not yet extruded).
static bool could_take(const std::vector<ContourPointData> &contour_data, size_t idx_start, size_t idx_end)
{
for (size_t i = idx_start; i < idx_end; ) {
if (contour_data[i].segment_consumed || contour_data[i].point_consumed)
return false;
if (++ i == contour_data.size())
i = 0;
}
return ! contour_data[idx_end].point_consumed;
}
// Connect end of pl1 to the start of pl2 using the perimeter contour.
// The idx_start and idx_end are ordered so that the connecting polyline points will be taken with increasing indices.
static void take(Polyline &pl1, Polyline &&pl2, const Points &contour, std::vector<ContourPointData> &contour_data, size_t idx_start, size_t idx_end, bool reversed)
{
#ifndef NDEBUG
size_t num_points_initial = pl1.points.size();
assert(idx_start != idx_end);
#endif /* NDEBUG */
{
// Reserve memory at pl1 for the connecting contour and pl2.
int new_points = int(idx_end) - int(idx_start) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
}
contour_data[idx_start].point_consumed = true;
contour_data[idx_start].segment_consumed = true;
contour_data[idx_end ].point_consumed = true;
if (reversed) {
size_t i = (idx_end == 0) ? contour_data.size() - 1 : idx_end - 1;
while (i != idx_start) {
contour_data[i].point_consumed = true;
contour_data[i].segment_consumed = true;
pl1.points.emplace_back(contour[i]);
if (i == 0)
i = contour_data.size();
-- i;
}
} else {
size_t i = idx_start;
if (++ i == contour_data.size())
i = 0;
while (i != idx_end) {
contour_data[i].point_consumed = true;
contour_data[i].segment_consumed = true;
pl1.points.emplace_back(contour[i]);
if (++ i == contour_data.size())
i = 0;
}
}
append(pl1.points, std::move(pl2.points));
}
// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
// Segment index, defining a line <idx_segment, idx_segment + 1).
size_t idx_segment = std::numeric_limits<size_t>::max();
// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
double t;
Vec2d point;
bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};
static inline SegmentPoint clip_start_segment_and_point(const Points &polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
const double d2 = distance * distance;
Vec2d pt_prev = polyline.front().cast<double>();
for (int i = 1; i < polyline.size(); ++ i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_prev;
double l2 = v.squaredNorm();
if (l2 > d2) {
out.idx_segment = i;
out.t = distance / sqrt(l2);
out.point = pt + out.t * v;
break;
}
distance -= sqrt(l2);
pt_prev = pt;
}
}
return out;
}
static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
const double d2 = distance * distance;
Vec2d pt_next = polyline.back().cast<double>();
for (int i = int(polyline.size()) - 2; i >= 0; -- i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_next;
double l2 = v.squaredNorm();
if (l2 > d2) {
out.idx_segment = i;
out.t = distance / sqrt(l2);
out.point = pt + out.t * v;
break;
}
distance -= sqrt(l2);
pt_next = pt;
}
}
return out;
}
static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2)
{
const Vec2d v = p1b - p1a;
const Vec2d va = p2 - p1a;
const double l2 = v.squaredNorm();
if (l2 < EPSILON)
// p1a == p1b
return va.squaredNorm();
// Project p2 onto the (p1a, p1b) segment.
const double t = va.dot(v);
if (t < 0.)
return va.squaredNorm();
else if (t > l2)
return (p2 - p1b).squaredNorm();
return ((t / l2) * v - va).squaredNorm();
}
// Distance to the closest point of line.
static inline double min_distance_of_segments(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2a, const Vec2d &p2b)
{
Vec2d v1 = p1b - p1a;
double l1_2 = v1.squaredNorm();
if (l1_2 < EPSILON)
// p1a == p1b: Return distance of p1a from the (p2a, p2b) segment.
return segment_point_distance_squared(p2a, p2b, p1a);
Vec2d v2 = p2b - p2a;
double l2_2 = v2.squaredNorm();
if (l2_2 < EPSILON)
// p2a == p2b: Return distance of p2a from the (p1a, p1b) segment.
return segment_point_distance_squared(p1a, p1b, p2a);
// Project p2a, p2b onto the (p1a, p1b) segment.
auto project_p2a_p2b_onto_seg_p1a_p1b = [](const Vec2d& p1a, const Vec2d& p1b, const Vec2d& p2a, const Vec2d& p2b, const Vec2d& v1, const double l1_2) {
Vec2d v1a2a = p2a - p1a;
Vec2d v1a2b = p2b - p1a;
double t1 = v1a2a.dot(v1);
double t2 = v1a2b.dot(v1);
if (t1 <= 0.) {
if (t2 <= 0.)
// Both p2a and p2b are left of v1.
return (((t1 < t2) ? p2b : p2a) - p1a).squaredNorm();
else if (t2 < l1_2)
// Project p2b onto the (p1a, p1b) segment.
return ((t2 / l1_2) * v1 - v1a2b).squaredNorm();
}
else if (t1 >= l1_2) {
if (t2 >= l1_2)
// Both p2a and p2b are right of v1.
return (((t1 < t2) ? p2a : p2b) - p1b).squaredNorm();
else if (t2 < l1_2)
// Project p2b onto the (p1a, p1b) segment.
return ((t2 / l1_2) * v1 - v1a2b).squaredNorm();
}
else {
// Project p1b onto the (p1a, p1b) segment.
double dist_min = ((t2 / l1_2) * v1 - v1a2a).squaredNorm();
if (t2 > 0. && t2 < l1_2)
dist_min = std::min(dist_min, ((t2 / l1_2) * v1 - v1a2b).squaredNorm());
return dist_min;
}
return std::numeric_limits<double>::max();
};
return std::min(
project_p2a_p2b_onto_seg_p1a_p1b(p1a, p1b, p2a, p2b, v1, l1_2),
project_p2a_p2b_onto_seg_p1a_p1b(p2a, p2b, p1a, p1b, v2, l2_2));
}
// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
const std::vector<Points> &boundary,
std::vector<std::vector<ContourPointData>> &boundary_data,
const BoundingBox &boundary_bbox,
const Polylines &infill,
const double clip_distance,
const double distance_colliding)
{
EdgeGrid::Grid grid;
grid.set_bbox(boundary_bbox);
// Inflate the bounding box by a thick line width.
grid.create(boundary, clip_distance + scale_(10.));
struct Visitor {
Visitor(const EdgeGrid::Grid &grid, const std::vector<Points> &boundary, std::vector<std::vector<ContourPointData>> &boundary_data, const double dist2_max) :
grid(grid), boundary(boundary), boundary_data(boundary_data), dist2_max(dist2_max) {}
void init(const Vec2d &pt1, const Vec2d &pt2) {
this->pt1 = &pt1;
this->pt2 = &pt2;
}
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = this->grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = this->grid.segment(*it_contour_and_segment);
const Vec2d seg_pt1 = segment.first.cast<double>();
const Vec2d seg_pt2 = segment.second.cast<double>();
if (min_distance_of_segments(seg_pt1, seg_pt2, *this->pt1, *this->pt2) < this->dist2_max) {
// Mark this boundary segment as touching the infill line.
ContourPointData&bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second];
bdp.segment_consumed = true;
// There is no need for checking seg_pt2 as it will be checked the next time.
if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max)
bdp.point_consumed = true;
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid &grid;
const std::vector<Points> &boundary;
std::vector<std::vector<ContourPointData>> &boundary_data;
// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
const double dist2_max;
const Vec2d *pt1;
const Vec2d *pt2;
} visitor(grid, boundary, boundary_data, distance_colliding * distance_colliding);
for (const Polyline &polyline : infill) {
// Clip the infill polyline by the Eucledian distance along the polyline.
SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance);
if (start_point.valid() && end_point.valid() &&
(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
// The clipped polyline is non-empty.
for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++ point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
Point pt1, pt2;
Vec2d pt1d, pt2d;
if (point_idx == start_point.idx_segment) {
pt1d = start_point.point;
pt1 = pt1d.cast<coord_t>();
} else {
pt1 = polyline.points[point_idx];
pt1d = pt1.cast<double>();
}
if (point_idx == start_point.idx_segment) {
pt2d = end_point.point;
pt2 = pt1d.cast<coord_t>();
} else {
pt2 = polyline.points[point_idx];
pt2d = pt2.cast<double>();
}
visitor.init(pt1d, pt2d);
grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx].cast<double>();
Vec2d pt2 = (point_idx == end_point .idx_segment) ? end_point .point : polyline.points[point_idx].cast<double>();
visitor.init(pt1, pt2);
// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
Vec2d vperp(-v.y(), v.x());
Vec2d a = pt1 - v - vperp;
Vec2d b = pt1 + v - vperp;
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
a = pt1 - v + vperp;
b = pt1 + v + vperp;
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
}
}
}
}
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const FillParams &params)
{
assert(! infill_ordered.empty());
assert(! boundary_src.contour.points.empty());
BoundingBox bbox = get_extents(boundary_src.contour);
bbox.offset(SCALED_EPSILON);
// 1) Add the end points of infill_ordered to boundary_src.
std::vector<Points> boundary;
std::vector<std::vector<ContourPointData>> boundary_data;
boundary.assign(boundary_src.holes.size() + 1, Points());
boundary_data.assign(boundary_src.holes.size() + 1, std::vector<ContourPointData>());
// Mapping the infill_ordered end point to a (contour, point) of boundary.
std::vector<std::pair<size_t, size_t>> map_infill_end_point_to_boundary;
map_infill_end_point_to_boundary.assign(infill_ordered.size() * 2, std::pair<size_t, size_t>(std::numeric_limits<size_t>::max(), std::numeric_limits<size_t>::max()));
{
// Project the infill_ordered end points onto boundary_src.
std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
{
EdgeGrid::Grid grid;
grid.set_bbox(bbox);
grid.create(boundary_src, scale_(10.));
intersection_points.reserve(infill_ordered.size() * 2);
for (const Polyline &pl : infill_ordered)
for (const Point *pt : { &pl.points.front(), &pl.points.back() }) {
EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON);
if (cp.valid()) {
// The infill end point shall lie on the contour.
assert(cp.distance < 2.);
intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
}
}
std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp2) {
return cp1.first.contour_idx < cp2.first.contour_idx ||
(cp1.first.contour_idx == cp2.first.contour_idx &&
(cp1.first.start_point_idx < cp2.first.start_point_idx ||
(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
});
}
auto it = intersection_points.begin();
auto it_end = intersection_points.end();
for (size_t idx_contour = 0; idx_contour <= boundary_src.holes.size(); ++ idx_contour) {
const Polygon &contour_src = (idx_contour == 0) ? boundary_src.contour : boundary_src.holes[idx_contour - 1];
Points &contour_dst = boundary[idx_contour];
for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) {
contour_dst.emplace_back(contour_src.points[idx_point]);
for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) {
// Add these points to the destination contour.
const Vec2d pt1 = contour_src[idx_point].cast<double>();
const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
const Vec2d pt = lerp(pt1, pt2, it->first.t);
map_infill_end_point_to_boundary[it->second] = std::make_pair(idx_contour, contour_dst.size());
contour_dst.emplace_back(pt.cast<coord_t>());
}
}
// Parametrize the curve.
std::vector<ContourPointData> &contour_data = boundary_data[idx_contour];
contour_data.reserve(contour_dst.size());
contour_data.emplace_back(ContourPointData(0.f));
for (size_t i = 1; i < contour_dst.size(); ++ i)
contour_data.emplace_back(contour_data.back().param + (contour_dst[i].cast<float>() - contour_dst[i - 1].cast<float>()).norm());
contour_data.front().param = contour_data.back().param + (contour_dst.back().cast<float>() - contour_dst.front().cast<float>()).norm();
}
#ifndef NDEBUG
assert(boundary.size() == boundary_src.num_contours());
assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
[&boundary](const std::pair<size_t, size_t> &contour_point) {
return contour_point.first < boundary.size() && contour_point.second < boundary[contour_point.first].size();
}));
#endif /* NDEBUG */
}
// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
{
const double clip_distance = scale_(this->spacing);
const double distance_colliding = scale_(this->spacing);
mark_boundary_segments_touching_infill(boundary, boundary_data, bbox, infill_ordered, clip_distance, distance_colliding);
}
// Chain infill_ordered.
//FIXME run the following loop through a heap sorted by the shortest perimeter edge that could be taken.
//length between two lines
//const float length_max = scale_(this->spacing);
const float length_max = scale_((2. / params.density) * this->spacing);
size_t idx_chain_last = 0;
for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++ idx_chain) {
Polyline &pl1 = infill_ordered[idx_chain_last];
Polyline &pl2 = infill_ordered[idx_chain];
const std::pair<size_t, size_t> *cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
const std::pair<size_t, size_t> *cp2 = &map_infill_end_point_to_boundary[idx_chain * 2];
const Points &contour = boundary[cp1->first];
std::vector<ContourPointData> &contour_data = boundary_data[cp1->first];
bool valid = false;
bool reversed = false;
if (cp1->first == cp2->first) {
// End points on the same contour. Try to connect them.
float param_lo = (cp1->second == 0) ? 0.f : contour_data[cp1->second].param;
float param_hi = (cp2->second == 0) ? 0.f : contour_data[cp2->second].param;
float param_end = contour_data.front().param;
if (param_lo > param_hi) {
std::swap(param_lo, param_hi);
std::swap(cp1, cp2);
reversed = true;
}
assert(param_lo >= 0.f && param_lo <= param_end);
assert(param_hi >= 0.f && param_hi <= param_end);
float dist1 = param_hi - param_lo;
float dist2 = param_lo + param_end - param_hi;
if (dist1 > dist2) {
std::swap(dist1, dist2);
std::swap(cp1, cp2);
reversed = ! reversed;
}
if (dist1 < length_max) {
// Try to connect the shorter path.
valid = could_take(contour_data, cp1->second, cp2->second);
// Try to connect the longer path.
if (! valid && dist2 < length_max) {
std::swap(cp1, cp2);
reversed = ! reversed;
valid = could_take(contour_data, cp1->second, cp2->second);
}
}
}
if (valid)
take(pl1, std::move(pl2), contour, contour_data, cp1->second, cp2->second, reversed);
else if (++ idx_chain_last < idx_chain)
infill_ordered[idx_chain_last] = std::move(pl2);
}
infill_ordered.erase(infill_ordered.begin() + idx_chain_last + 1, infill_ordered.end());
append(polylines_out, std::move(infill_ordered));
}
#endif
} // namespace Slic3r

View file

@ -111,6 +111,8 @@ protected:
virtual std::pair<float, Point> _infill_direction(const Surface *surface) const;
void connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary, Polylines &polylines_out, const FillParams &params);
public:
static coord_t _adjust_solid_spacing(const coord_t width, const coord_t distance);

View file

@ -31,19 +31,26 @@ static inline double f(double x, double z_sin, double z_cos, bool vertical, bool
static inline Polyline make_wave(
const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
double z_cos, double z_sin, bool vertical)
double z_cos, double z_sin, bool vertical, bool flip)
{
std::vector<Vec2d> points = one_period;
double period = points.back()(0);
points.pop_back();
int n = points.size();
do {
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
} while (points.back()(0) < width);
points.back()(0) = width;
if (width != period) // do not extend if already truncated
{
points.reserve(one_period.size() * floor(width / period));
points.pop_back();
int n = points.size();
do {
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
} while (points.back()(0) < width - EPSILON);
points.emplace_back(Vec2d(width, f(width, z_sin, z_cos, vertical, flip)));
}
// and construct the final polyline to return:
Polyline polyline;
polyline.points.reserve(points.size());
for (auto& point : points) {
point(1) += offset;
point(1) = clamp(0., height, double(point(1)));
@ -55,45 +62,56 @@ static inline Polyline make_wave(
return polyline;
}
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip, double tolerance)
{
std::vector<Vec2d> points;
double dx = M_PI_4; // very coarse spacing to begin with
double dx = M_PI_2; // exact coordinates on main inflexion lobes
double limit = std::min(2*M_PI, width);
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
x = std::min(x, limit);
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
}
points.reserve(ceil(limit / tolerance / 3));
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
// we will add one more point on each side:
const double tolerance = .1;
for (unsigned int i=1;i<points.size()-1;++i) {
auto& lp = points[i-1]; // left point
auto& tp = points[i]; // this point
Vec2d lrv = tp - lp;
auto& rp = points[i+1]; // right point
// calculate distance of the point to the line:
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
if (dist_mm > tolerance) { // if the difference from straight line is more than this
double x = 0.5f * (points[i-1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
x = 0.5f * (points[i+1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
// we added the points to the end, but need them all in order
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
// decrement i so we also check the first newly added point
--i;
for (double x = 0.; x < limit - EPSILON; x += dx) {
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
}
points.emplace_back(Vec2d(limit, f(limit, z_sin, z_cos, vertical, flip)));
// piecewise increase in resolution up to requested tolerance
for(;;)
{
size_t size = points.size();
for (unsigned int i = 1;i < size; ++i) {
auto& lp = points[i-1]; // left point
auto& rp = points[i]; // right point
double x = lp(0) + (rp(0) - lp(0)) / 2;
double y = f(x, z_sin, z_cos, vertical, flip);
Vec2d ip = {x, y};
if (std::abs(cross2(Vec2d(ip - lp), Vec2d(ip - rp))) > sqr(tolerance)) {
points.emplace_back(std::move(ip));
}
}
if (size == points.size())
break;
else
{
// insert new points in order
std::sort(points.begin(), points.end(),
[](const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0); });
}
}
return points;
}
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
{
const double scaleFactor = scale_(line_spacing) / density_adjusted;
//scale factor for 5% : 8 712 388
// 1z = 10^-6 mm ?
// tolerance in scaled units. clamp the maximum tolerance as there's
// no processing-speed benefit to do so beyond a certain point
const double tolerance = std::min(line_spacing / 2, FillGyroid::PatternTolerance) / unscale<double>(scaleFactor);
//scale factor for 5% : 8 712 388
// 1z = 10^-6 mm ?
const double z = gridZ / scaleFactor;
const double z_sin = sin(z);
const double z_cos = cos(z);
@ -109,16 +127,20 @@ static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double
std::swap(width,height);
}
std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
std::vector<Vec2d> one_period_odd = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip, tolerance); // creates one period of the waves, so it doesn't have to be recalculated all the time
flip = !flip; // even polylines are a bit shifted
std::vector<Vec2d> one_period_even = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip, tolerance);
Polylines result;
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
flip = !flip; // even polylines are a bit shifted
one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // updates the one period sample
for (double y0 = lower_bound + M_PI; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates even polylines
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
for (double y0 = lower_bound; y0 < upper_bound + EPSILON; y0 += M_PI) {
// creates odd polylines
result.emplace_back(make_wave(one_period_odd, width, height, y0, scaleFactor, z_cos, z_sin, vertical, flip));
// creates even polylines
y0 += M_PI;
if (y0 < upper_bound + EPSILON) {
result.emplace_back(make_wave(one_period_even, width, height, y0, scaleFactor, z_cos, z_sin, vertical, flip));
}
}
return result;
}
@ -130,63 +152,49 @@ void FillGyroid::_fill_surface_single(
ExPolygon &expolygon,
Polylines &polylines_out)
{
// no rotation is supported for this infill pattern (yet)
float infill_angle = this->angle + (CorrectionAngle * 2*M_PI) / 360.;
if(abs(infill_angle) >= EPSILON)
expolygon.rotate(-infill_angle);
BoundingBox bb = expolygon.contour.bounding_box();
// Density adjusted to have a good %of weight.
double density_adjusted = std::max(0., params.density * 2.44);
double density_adjusted = std::max(0., params.density * DensityAdjust);
// Distance between the gyroid waves in scaled coordinates.
coord_t distance = coord_t(scale_(this->spacing) / density_adjusted);
// align bounding box to a multiple of our grid module
bb.merge(_align_to_grid(bb.min, Point(2.*M_PI*distance, 2.*M_PI*distance)));
bb.merge(_align_to_grid(bb.min, Point(2*M_PI*distance, 2*M_PI*distance)));
// generate pattern
Polylines polylines = make_gyroid_waves(
Polylines polylines_square = make_gyroid_waves(
scale_(this->z),
density_adjusted,
this->spacing,
ceil(bb.size()(0) / distance) + 1.,
ceil(bb.size()(1) / distance) + 1.);
// move pattern in place
for (Polyline &polyline : polylines)
polyline.translate(bb.min(0), bb.min(1));
// clip pattern to boundaries
polylines = intersection_pl(polylines, (Polygons)expolygon);
// shift the polyline to the grid origin
for (Polyline &pl : polylines_square)
pl.translate(bb.min);
// connect lines
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
ExPolygon expolygon_off;
{
ExPolygons expolygons_off = offset_ex(expolygon, (float)SCALED_EPSILON);
if (! expolygons_off.empty()) {
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
assert(expolygons_off.size() == 1);
std::swap(expolygon_off, expolygons_off.front());
}
}
bool first = true;
for (Polyline &polyline : chain_polylines(std::move(polylines))) {
if (! first) {
// Try to connect the lines.
Points &pts_end = polylines_out.back().points;
const Point &first_point = polyline.points.front();
const Point &last_point = pts_end.back();
// TODO: we should also check that both points are on a fill_boundary to avoid
// connecting paths on the boundaries of internal regions
// TODO: avoid crossing current infill path
if ((last_point - first_point).cast<double>().norm() <= 5 * distance &&
expolygon_off.contains(Line(last_point, first_point))) {
// Append the polyline.
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
// The lines cannot be connected.
polylines_out.emplace_back(std::move(polyline));
first = false;
}
Polylines polylines_chained = chain_polylines(intersection_pl(polylines_square, to_polygons(expolygon)));
size_t polylines_out_first_idx = polylines_out.size();
if (! polylines_chained.empty()) {
// connect lines
if (params.dont_connect)
append(polylines_out, std::move(polylines_chained));
else
this->connect_infill(std::move(polylines_chained), expolygon, polylines_out, params);
// remove too small bits (larger than longer)
polylines_out.erase(
std::remove_if(polylines_out.begin() + polylines_out_first_idx, polylines_out.end(), [this](const Polyline &pl){ return pl.length() < scale_(this->spacing * 3); }),
polylines_out.end());
// new paths must be rotated back
if (abs(infill_angle) >= EPSILON) {
for (auto it = polylines_out.begin() + polylines_out_first_idx; it != polylines_out.end(); ++ it)
it->rotate(infill_angle);
}
}
}

View file

@ -16,6 +16,17 @@ public:
// require bridge flow since most of this pattern hangs in air
virtual bool use_bridge_flow() const { return false; }
// Correction applied to regular infill angle to maximize printing
// speed in default configuration (degrees)
static constexpr float CorrectionAngle = -45.;
// Density adjustment to have a good %of weight.
static constexpr double DensityAdjust = 2.44;
// Gyroid upper resolution tolerance (mm^-2)
static constexpr double PatternTolerance = 0.2;
protected:
virtual void _fill_surface_single(
const FillParams &params,

View file

@ -961,7 +961,7 @@ void GCode::_do_export(Print &print, FILE *file)
// Write thumbnails using base64 encoding
if (thumbnail_data != nullptr)
{
const unsigned int max_row_length = 78;
const size_t max_row_length = 78;
for (const ThumbnailData& data : *thumbnail_data)
{
@ -972,19 +972,21 @@ void GCode::_do_export(Print &print, FILE *file)
void* png_data = tdefl_write_image_to_png_file_in_memory_ex((const void*)data.pixels.data(), data.width, data.height, 4, &png_size, MZ_DEFAULT_LEVEL, 1);
if (png_data != nullptr)
{
_write_format(file, "\n;\n; thumbnail begin %dx%d\n", data.width, data.height);
std::string encoded;
encoded.resize(boost::beast::detail::base64::encoded_size(png_size));
encoded.resize(boost::beast::detail::base64::encode((void*)&encoded[0], (const void*)png_data, png_size));
std::string encoded = boost::beast::detail::base64_encode((const std::uint8_t*)png_data, png_size);
_write_format(file, "\n;\n; thumbnail begin %dx%d %d\n", data.width, data.height, encoded.size());
unsigned int row_count = 0;
while (encoded.length() > max_row_length)
while (encoded.size() > max_row_length)
{
_write_format(file, "; %s\n", encoded.substr(0, max_row_length).c_str());
encoded = encoded.substr(max_row_length);
++row_count;
}
if (encoded.length() > 0)
if (encoded.size() > 0)
_write_format(file, "; %s\n", encoded.c_str());
_write(file, "; thumbnail end\n;\n");
@ -997,9 +999,12 @@ void GCode::_do_export(Print &print, FILE *file)
size_t row_size = 4 * data.width;
for (int r = (int)data.height - 1; r >= 0; --r)
{
std::string encoded = boost::beast::detail::base64_encode((const std::uint8_t*)(data.pixels.data() + r * row_size), row_size);
std::string encoded;
encoded.resize(boost::beast::detail::base64::encoded_size(row_size));
encoded.resize(boost::beast::detail::base64::encode((void*)&encoded[0], (const void*)(data.pixels.data() + r * row_size), row_size));
unsigned int row_count = 0;
while (encoded.length() > max_row_length)
while (encoded.size() > max_row_length)
{
if (row_count == 0)
_write_format(file, "; %s\n", encoded.substr(0, max_row_length).c_str());
@ -1010,7 +1015,7 @@ void GCode::_do_export(Print &print, FILE *file)
++row_count;
}
if (encoded.length() > 0)
if (encoded.size() > 0)
{
if (row_count == 0)
_write_format(file, "; %s\n", encoded.c_str());

View file

@ -2440,6 +2440,34 @@ void PrintConfigDef::init_sla_params()
def->min = 0;
def->set_default_value(new ConfigOptionFloat(0.3));
def = this->add("bottle_volume", coFloat);
def->label = L("Bottle volume");
def->tooltip = L("Bottle volume");
def->sidetext = L("ml");
def->min = 50;
def->set_default_value(new ConfigOptionFloat(1000.0));
def = this->add("bottle_weight", coFloat);
def->label = L("Bottle weight");
def->tooltip = L("Bottle weight");
def->sidetext = L("kg");
def->min = 0;
def->set_default_value(new ConfigOptionFloat(1.0));
def = this->add("material_density", coFloat);
def->label = L("Density");
def->tooltip = L("Density");
def->sidetext = L("g/ml");
def->min = 0;
def->set_default_value(new ConfigOptionFloat(1.0));
def = this->add("bottle_cost", coFloat);
def->label = L("Cost");
def->tooltip = L("Cost");
def->sidetext = L("money/bottle");
def->min = 0;
def->set_default_value(new ConfigOptionFloat(0.0));
def = this->add("faded_layers", coInt);
def->label = L("Faded layers");
def->tooltip = L("Number of the layers needed for the exposure time fade from initial exposure time to the exposure time");

View file

@ -1126,6 +1126,10 @@ class SLAMaterialConfig : public StaticPrintConfig
STATIC_PRINT_CONFIG_CACHE(SLAMaterialConfig)
public:
ConfigOptionFloat initial_layer_height;
ConfigOptionFloat bottle_cost;
ConfigOptionFloat bottle_volume;
ConfigOptionFloat bottle_weight;
ConfigOptionFloat material_density;
ConfigOptionFloat exposure_time;
ConfigOptionFloat initial_exposure_time;
ConfigOptionFloats material_correction;
@ -1133,6 +1137,10 @@ protected:
void initialize(StaticCacheBase &cache, const char *base_ptr)
{
OPT_PTR(initial_layer_height);
OPT_PTR(bottle_cost);
OPT_PTR(bottle_volume);
OPT_PTR(bottle_weight);
OPT_PTR(material_density);
OPT_PTR(exposure_time);
OPT_PTR(initial_exposure_time);
OPT_PTR(material_correction);

View file

@ -1607,7 +1607,11 @@ bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_opt
"output_filename_format",
"fast_tilt_time",
"slow_tilt_time",
"area_fill"
"area_fill",
"bottle_cost",
"bottle_volume",
"bottle_weight",
"material_density"
};
std::vector<SLAPrintStep> steps;

View file

@ -116,5 +116,7 @@
<string>NSApplication</string>
<key>NSHighResolutionCapable</key>
<true/>
<key>NSRequiresAquaSystemAppearance</key>
<true/>
</dict>
</plist>

View file

@ -156,6 +156,7 @@ set(SLIC3R_GUI_SOURCES
Utils/UndoRedo.hpp
Utils/HexFile.cpp
Utils/HexFile.hpp
Utils/Thread.hpp
)
if (APPLE)

View file

@ -204,6 +204,7 @@ bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, c
std::string cst_texture(custom_texture);
if (!cst_texture.empty())
{
std::replace(cst_texture.begin(), cst_texture.end(), '\\', '/');
if ((!boost::algorithm::iends_with(custom_texture, ".png") && !boost::algorithm::iends_with(custom_texture, ".svg")) || !boost::filesystem::exists(custom_texture))
cst_texture = "";
}
@ -212,6 +213,7 @@ bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, c
std::string cst_model(custom_model);
if (!cst_model.empty())
{
std::replace(cst_model.begin(), cst_model.end(), '\\', '/');
if (!boost::algorithm::iends_with(custom_model, ".stl") || !boost::filesystem::exists(custom_model))
cst_model = "";
}

View file

@ -707,24 +707,24 @@ bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, M
print_volume.min(2) = -1e10;
ModelInstance::EPrintVolumeState state = ModelInstance::PVS_Inside;
bool all_contained = true;
bool contained_min_one = false;
for (GLVolume* volume : this->volumes)
{
if ((volume == nullptr) || !volume->printable || volume->is_modifier || (volume->is_wipe_tower && !volume->shader_outside_printer_detection_enabled) || ((volume->composite_id.volume_id < 0) && !volume->shader_outside_printer_detection_enabled))
if ((volume == nullptr) || volume->is_modifier || (volume->is_wipe_tower && !volume->shader_outside_printer_detection_enabled) || ((volume->composite_id.volume_id < 0) && !volume->shader_outside_printer_detection_enabled))
continue;
const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box();
bool contained = print_volume.contains(bb);
all_contained &= contained;
volume->is_outside = !contained;
if (!volume->printable)
continue;
if (contained)
contained_min_one = true;
volume->is_outside = !contained;
if ((state == ModelInstance::PVS_Inside) && volume->is_outside)
state = ModelInstance::PVS_Fully_Outside;
@ -735,7 +735,7 @@ bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, M
if (out_state != nullptr)
*out_state = state;
return /*all_contained*/ contained_min_one; // #ys_FIXME_delete_after_testing
return contained_min_one;
}
void GLVolumeCollection::reset_outside_state()

View file

@ -261,11 +261,7 @@ bool BackgroundSlicingProcess::start()
if (m_state == STATE_INITIAL) {
// The worker thread is not running yet. Start it.
assert(! m_thread.joinable());
boost::thread::attributes attrs;
// Duplicating the stack allocation size of Thread Building Block worker threads of the thread pool:
// allocate 4MB on a 64bit system, allocate 2MB on a 32bit system by default.
attrs.set_stack_size((sizeof(void*) == 4) ? (2048 * 1024) : (4096 * 1024));
m_thread = boost::thread(attrs, [this]{this->thread_proc_safe();});
m_thread = create_thread([this]{this->thread_proc_safe();});
// Wait until the worker thread is ready to execute the background processing task.
m_condition.wait(lck, [this](){ return m_state == STATE_IDLE; });
}

View file

@ -6,12 +6,12 @@
#include <mutex>
#include <boost/filesystem.hpp>
#include <boost/thread.hpp>
#include <wx/event.h>
#include "libslic3r/Print.hpp"
#include "slic3r/Utils/PrintHost.hpp"
#include "slic3r/Utils/Thread.hpp"
namespace Slic3r {

View file

@ -12,6 +12,7 @@
#include "boost/nowide/iostream.hpp"
#include <boost/algorithm/string/predicate.hpp>
#include <boost/filesystem.hpp>
#include <algorithm>
@ -60,7 +61,9 @@ void BedShapePanel::build_panel(const ConfigOptionPoints& default_pt, const Conf
{
m_shape = default_pt.values;
m_custom_texture = custom_texture.value.empty() ? NONE : custom_texture.value;
std::replace(m_custom_texture.begin(), m_custom_texture.end(), '\\', '/');
m_custom_model = custom_model.value.empty() ? NONE : custom_model.value;
std::replace(m_custom_model.begin(), m_custom_model.end(), '\\', '/');
auto sbsizer = new wxStaticBoxSizer(wxVERTICAL, this, _(L("Shape")));
sbsizer->GetStaticBox()->SetFont(wxGetApp().bold_font());
@ -212,7 +215,18 @@ wxPanel* BedShapePanel::init_texture_panel()
wxStaticText* lbl = dynamic_cast<wxStaticText*>(e.GetEventObject());
if (lbl != nullptr)
{
wxString tooltip_text = (m_custom_texture == NONE) ? "" : _(m_custom_texture);
bool exists = (m_custom_texture == NONE) || boost::filesystem::exists(m_custom_texture);
lbl->SetForegroundColour(exists ? wxSystemSettings::GetColour(wxSYS_COLOUR_WINDOWTEXT) : wxColor(*wxRED));
wxString tooltip_text = "";
if (m_custom_texture != NONE)
{
if (!exists)
tooltip_text += _(L("Not found: "));
tooltip_text += _(m_custom_texture);
}
wxToolTip* tooltip = lbl->GetToolTip();
if ((tooltip == nullptr) || (tooltip->GetTip() != tooltip_text))
lbl->SetToolTip(tooltip_text);
@ -280,7 +294,18 @@ wxPanel* BedShapePanel::init_model_panel()
wxStaticText* lbl = dynamic_cast<wxStaticText*>(e.GetEventObject());
if (lbl != nullptr)
{
wxString tooltip_text = (m_custom_model == NONE) ? "" : _(m_custom_model);
bool exists = (m_custom_model == NONE) || boost::filesystem::exists(m_custom_model);
lbl->SetForegroundColour(exists ? wxSystemSettings::GetColour(wxSYS_COLOUR_WINDOWTEXT) : wxColor(*wxRED));
wxString tooltip_text = "";
if (m_custom_model != NONE)
{
if (!exists)
tooltip_text += _(L("Not found: "));
tooltip_text += _(m_custom_model);
}
wxToolTip* tooltip = lbl->GetToolTip();
if ((tooltip == nullptr) || (tooltip->GetTip() != tooltip_text))
lbl->SetToolTip(tooltip_text);
@ -521,6 +546,8 @@ void BedShapePanel::load_texture()
return;
}
std::replace(file_name.begin(), file_name.end(), '\\', '/');
wxBusyCursor wait;
m_custom_texture = file_name;
@ -544,6 +571,8 @@ void BedShapePanel::load_model()
return;
}
std::replace(file_name.begin(), file_name.end(), '\\', '/');
wxBusyCursor wait;
m_custom_model = file_name;

View file

@ -2178,20 +2178,6 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS,
contained_min_one && !m_model->objects.empty() && state != ModelInstance::PVS_Partly_Outside));
// #ys_FIXME_delete_after_testing
// bool contained = m_volumes.check_outside_state(m_config, &state);
// if (!contained)
// {
// _set_warning_texture(WarningTexture::ObjectOutside, true);
// post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, state == ModelInstance::PVS_Fully_Outside));
// }
// else
// {
// m_volumes.reset_outside_state();
// _set_warning_texture(WarningTexture::ObjectOutside, false);
// post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, !m_model->objects.empty()));
// }
}
else
{
@ -2977,6 +2963,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
volume_bbox.offset(1.0);
if (volume_bbox.contains(m_mouse.scene_position))
{
m_volumes.volumes[volume_idx]->hover = GLVolume::HS_None;
// The dragging operation is initiated.
m_mouse.drag.move_volume_idx = volume_idx;
m_selection.start_dragging();

View file

@ -105,7 +105,7 @@ static void register_dpi_event()
const auto rect = reinterpret_cast<PRECT>(lParam);
const wxRect wxrect(wxPoint(rect->top, rect->left), wxPoint(rect->bottom, rect->right));
DpiChangedEvent evt(EVT_DPI_CHANGED, dpi, wxrect);
DpiChangedEvent evt(EVT_DPI_CHANGED_SLICER, dpi, wxrect);
win->GetEventHandler()->AddPendingEvent(evt);
return true;
@ -1131,8 +1131,11 @@ void GUI_App::gcode_thumbnails_debug()
boost::nowide::ofstream out_file(out_filename.c_str(), std::ios::binary);
if (out_file.good())
{
std::string decoded = boost::beast::detail::base64_decode(row);
out_file.write(decoded.c_str(), decoded.length());
std::string decoded;
decoded.resize(boost::beast::detail::base64::decoded_size(row.size()));
decoded.resize(boost::beast::detail::base64::decode((void*)&decoded[0], row.data(), row.size()).first);
out_file.write(decoded.c_str(), decoded.size());
out_file.close();
}
#else
@ -1147,8 +1150,11 @@ void GUI_App::gcode_thumbnails_debug()
std::vector<unsigned char> thumbnail(4 * width * height, 0);
for (unsigned int r = 0; r < (unsigned int)rows.size(); ++r)
{
std::string decoded_row = boost::beast::detail::base64_decode(rows[r]);
if ((unsigned int)decoded_row.length() == width * 4)
std::string decoded_row;
decoded_row.resize(boost::beast::detail::base64::decoded_size(rows[r].size()));
decoded_row.resize(boost::beast::detail::base64::decode((void*)&decoded_row[0], rows[r].data(), rows[r].size()).first);
if ((unsigned int)decoded_row.size() == width * 4)
{
void* image_ptr = (void*)(thumbnail.data() + r * width * 4);
::memcpy(image_ptr, (const void*)decoded_row.c_str(), width * 4);

View file

@ -55,7 +55,7 @@ void on_window_geometry(wxTopLevelWindow *tlw, std::function<void()> callback)
#endif
}
wxDEFINE_EVENT(EVT_DPI_CHANGED, DpiChangedEvent);
wxDEFINE_EVENT(EVT_DPI_CHANGED_SLICER, DpiChangedEvent);
#ifdef _WIN32
template<class F> typename F::FN winapi_get_function(const wchar_t *dll, const char *fn_name) {

View file

@ -50,7 +50,7 @@ struct DpiChangedEvent : public wxEvent {
}
};
wxDECLARE_EVENT(EVT_DPI_CHANGED, DpiChangedEvent);
wxDECLARE_EVENT(EVT_DPI_CHANGED_SLICER, DpiChangedEvent);
template<class P> class DPIAware : public P
{
@ -75,7 +75,7 @@ public:
// recalc_font();
this->Bind(EVT_DPI_CHANGED, [this](const DpiChangedEvent &evt) {
this->Bind(EVT_DPI_CHANGED_SLICER, [this](const DpiChangedEvent &evt) {
m_scale_factor = (float)evt.dpi / (float)DPI_DEFAULT;
m_new_font_point_size = get_default_font_for_dpi(evt.dpi).GetPointSize();

View file

@ -75,6 +75,7 @@
#include "../Utils/PrintHost.hpp"
#include "../Utils/FixModelByWin10.hpp"
#include "../Utils/UndoRedo.hpp"
#include "../Utils/Thread.hpp"
#include <wx/glcanvas.h> // Needs to be last because reasons :-/
#include "WipeTowerDialog.hpp"
@ -230,7 +231,7 @@ SlicedInfo::SlicedInfo(wxWindow *parent) :
init_info_label(_(L("Used Filament (mm³)")));
init_info_label(_(L("Used Filament (g)")));
init_info_label(_(L("Used Material (unit)")));
init_info_label(_(L("Cost")));
init_info_label(_(L("Cost (money)")));
init_info_label(_(L("Estimated printing time")));
init_info_label(_(L("Number of tool changes")));
@ -1128,12 +1129,10 @@ void Sidebar::show_info_sizer()
}
}
void Sidebar::show_sliced_info_sizer(const bool show)
void Sidebar::update_sliced_info_sizer()
{
wxWindowUpdateLocker freeze_guard(this);
p->sliced_info->Show(show);
if (show) {
if (p->sliced_info->IsShown(size_t(0)))
{
if (p->plater->printer_technology() == ptSLA)
{
const SLAPrintStatistics& ps = p->plater->sla_print().print_statistics();
@ -1149,7 +1148,18 @@ void Sidebar::show_sliced_info_sizer(const bool show)
wxString::Format("%.2f", (ps.objects_used_material + ps.support_used_material) / 1000);
p->sliced_info->SetTextAndShow(siMateril_unit, info_text, new_label);
p->sliced_info->SetTextAndShow(siCost, "N/A"/*wxString::Format("%.2f", ps.total_cost)*/);
wxString str_total_cost = "N/A";
DynamicPrintConfig* cfg = wxGetApp().get_tab(Preset::TYPE_SLA_MATERIAL)->get_config();
if (cfg->option("bottle_cost")->getFloat() > 0.0 &&
cfg->option("bottle_volume")->getFloat() > 0.0)
{
double material_cost = cfg->option("bottle_cost")->getFloat() /
cfg->option("bottle_volume")->getFloat();
str_total_cost = wxString::Format("%.2f", material_cost*(ps.objects_used_material + ps.support_used_material) / 1000);
}
p->sliced_info->SetTextAndShow(siCost, str_total_cost);
wxString t_est = std::isnan(ps.estimated_print_time) ? "N/A" : get_time_dhms(float(ps.estimated_print_time));
p->sliced_info->SetTextAndShow(siEstimatedTime, t_est, _(L("Estimated printing time")) + " :");
@ -1223,6 +1233,15 @@ void Sidebar::show_sliced_info_sizer(const bool show)
p->sliced_info->SetTextAndShow(siMateril_unit, "N/A");
}
}
}
void Sidebar::show_sliced_info_sizer(const bool show)
{
wxWindowUpdateLocker freeze_guard(this);
p->sliced_info->Show(show);
if (show)
update_sliced_info_sizer();
Layout();
p->scrolled->Refresh();
@ -1439,7 +1458,7 @@ struct Plater::priv
class Job : public wxEvtHandler
{
int m_range = 100;
std::future<void> m_ftr;
boost::thread m_thread;
priv * m_plater = nullptr;
std::atomic<bool> m_running{false}, m_canceled{false};
bool m_finalized = false;
@ -1480,7 +1499,8 @@ struct Plater::priv
// Do a full refresh of scene tree, including regenerating
// all the GLVolumes. FIXME The update function shall just
// reload the modified matrices.
if (!was_canceled()) plater().update((unsigned int)UpdateParams::FORCE_FULL_SCREEN_REFRESH);
if (!was_canceled())
plater().update(unsigned(UpdateParams::FORCE_FULL_SCREEN_REFRESH));
}
public:
@ -1509,9 +1529,9 @@ struct Plater::priv
}
Job(const Job &) = delete;
Job(Job &&) = default;
Job(Job &&) = delete;
Job &operator=(const Job &) = delete;
Job &operator=(Job &&) = default;
Job &operator=(Job &&) = delete;
virtual void process() = 0;
@ -1535,7 +1555,7 @@ struct Plater::priv
wxBeginBusyCursor();
try { // Execute the job
m_ftr = std::async(std::launch::async, &Job::run, this);
m_thread = create_thread([this] { this->run(); });
} catch (std::exception &) {
update_status(status_range(),
_(L("ERROR: not enough resources to "
@ -1551,16 +1571,15 @@ struct Plater::priv
// returned if the timeout has been reached and the job is still
// running. Call cancel() before this fn if you want to explicitly
// end the job.
bool join(int timeout_ms = 0) const
bool join(int timeout_ms = 0)
{
if (!m_ftr.valid()) return true;
if (!m_thread.joinable()) return true;
if (timeout_ms <= 0)
m_ftr.wait();
else if (m_ftr.wait_for(std::chrono::milliseconds(
timeout_ms)) == std::future_status::timeout)
m_thread.join();
else if (!m_thread.try_join_for(boost::chrono::milliseconds(timeout_ms)))
return false;
return true;
}

View file

@ -112,6 +112,7 @@ public:
void update_objects_list_extruder_column(size_t extruders_count);
void show_info_sizer();
void show_sliced_info_sizer(const bool show);
void update_sliced_info_sizer();
void enable_buttons(bool enable);
void set_btn_label(const ActionButtonType btn_type, const wxString& label) const;
bool show_reslice(bool show) const;

View file

@ -513,6 +513,10 @@ const std::vector<std::string>& Preset::sla_material_options()
s_opts = {
"material_type",
"initial_layer_height",
"bottle_cost",
"bottle_volume",
"bottle_weight",
"material_density",
"exposure_time",
"initial_exposure_time",
"material_correction",

View file

@ -3419,8 +3419,41 @@ void TabSLAMaterial::build()
auto page = add_options_page(_(L("Material")), "resin");
auto optgroup = page->new_optgroup(_(L("Layers")));
// optgroup->append_single_option_line("layer_height");
auto optgroup = page->new_optgroup(_(L("Material")));
optgroup->append_single_option_line("bottle_cost");
optgroup->append_single_option_line("bottle_volume");
optgroup->append_single_option_line("bottle_weight");
optgroup->append_single_option_line("material_density");
optgroup->m_on_change = [this, optgroup](t_config_option_key opt_key, boost::any value)
{
DynamicPrintConfig new_conf = *m_config;
if (opt_key == "bottle_volume") {
double new_bottle_weight = boost::any_cast<double>(value)/(new_conf.option("material_density")->getFloat() * 1000);
new_conf.set_key_value("bottle_weight", new ConfigOptionFloat(new_bottle_weight));
}
if (opt_key == "bottle_weight") {
double new_bottle_volume = boost::any_cast<double>(value)*(new_conf.option("material_density")->getFloat() * 1000);
new_conf.set_key_value("bottle_volume", new ConfigOptionFloat(new_bottle_volume));
}
if (opt_key == "material_density") {
double new_bottle_volume = new_conf.option("bottle_weight")->getFloat() * boost::any_cast<double>(value) * 1000;
new_conf.set_key_value("bottle_volume", new ConfigOptionFloat(new_bottle_volume));
}
load_config(new_conf);
update_dirty();
on_value_change(opt_key, value);
if (opt_key == "bottle_volume" || opt_key == "bottle_cost") {
wxGetApp().sidebar().update_sliced_info_sizer();
wxGetApp().sidebar().Layout();
}
};
optgroup = page->new_optgroup(_(L("Layers")));
optgroup->append_single_option_line("initial_layer_height");
optgroup = page->new_optgroup(_(L("Exposure")));

View file

@ -0,0 +1,28 @@
#ifndef THREAD_HPP
#define THREAD_HPP
#include <utility>
#include <boost/thread.hpp>
namespace Slic3r {
template<class Fn>
inline boost::thread create_thread(boost::thread::attributes &attrs, Fn &&fn)
{
// Duplicating the stack allocation size of Thread Building Block worker
// threads of the thread pool: allocate 4MB on a 64bit system, allocate 2MB
// on a 32bit system by default.
attrs.set_stack_size((sizeof(void*) == 4) ? (2048 * 1024) : (4096 * 1024));
return boost::thread{attrs, std::forward<Fn>(fn)};
}
template<class Fn> inline boost::thread create_thread(Fn &&fn)
{
boost::thread::attributes attrs;
return create_thread(attrs, std::forward<Fn>(fn));
}
}
#endif // THREAD_HPP