Measuring: Separating frontend and backend

This commit is contained in:
Lukas Matena 2022-07-26 10:12:59 +02:00 committed by enricoturri1966
parent 4c5fa7a857
commit 9d5e9e8870
5 changed files with 499 additions and 415 deletions

View File

@ -180,6 +180,8 @@ set(SLIC3R_SOURCES
MultiMaterialSegmentation.hpp MultiMaterialSegmentation.hpp
MeshNormals.hpp MeshNormals.hpp
MeshNormals.cpp MeshNormals.cpp
Measure.hpp
Measure.cpp
CustomGCode.cpp CustomGCode.cpp
CustomGCode.hpp CustomGCode.hpp
Arrange.hpp Arrange.hpp

323
src/libslic3r/Measure.cpp Normal file
View File

@ -0,0 +1,323 @@
#include "Measure.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include "libslic3r/SurfaceMesh.hpp"
namespace Slic3r {
namespace Measure {
static std::pair<Vec3d, double> get_center_and_radius(const std::vector<Vec3d>& border, int start_idx, int end_idx, const Transform3d& trafo)
{
Vec2ds pts;
double z = 0.;
for (int i=start_idx; i<=end_idx; ++i) {
Vec3d pt_transformed = trafo * border[i];
z = pt_transformed.z();
pts.emplace_back(pt_transformed.x(), pt_transformed.y());
}
auto circle = Geometry::circle_ransac(pts, 20); // FIXME: iterations?
return std::make_pair(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius);
}
class MeasuringImpl {
public:
explicit MeasuringImpl(const indexed_triangle_set& its);
struct PlaneData {
std::vector<int> facets;
std::vector<std::vector<Vec3d>> borders; // FIXME: should be in fact local in update_planes()
std::vector<std::unique_ptr<SurfaceFeature>> surface_features;
Vec3d normal;
float area;
};
const std::vector<SurfaceFeature*>& get_features() const;
private:
void update_planes();
void extract_features(PlaneData& plane);
void save_features();
std::vector<PlaneData> m_planes;
std::vector<SurfaceFeature*> m_features;
const indexed_triangle_set& m_its;
};
MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its)
: m_its{its}
{
update_planes();
for (PlaneData& plane : m_planes) {
extract_features(plane);
plane.borders.clear();
plane.borders.shrink_to_fit();
}
save_features();
}
void MeasuringImpl::update_planes()
{
m_planes.clear();
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const size_t num_of_facets = m_its.indices.size();
std::vector<size_t> face_to_plane(num_of_facets, size_t(-1));
const std::vector<Vec3f> face_normals = its_face_normals(m_its);
const std::vector<Vec3i> face_neighbors = its_face_neighbors(m_its);
std::vector<int> facet_queue(num_of_facets, 0);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
size_t seed_facet_idx = 0;
auto is_same_normal = [](const stl_normal& a, const stl_normal& b) -> bool {
return (std::abs(a(0) - b(0)) < 0.001 && std::abs(a(1) - b(1)) < 0.001 && std::abs(a(2) - b(2)) < 0.001);
};
while (1) {
// Find next unvisited triangle:
for (; seed_facet_idx < num_of_facets; ++ seed_facet_idx)
if (face_to_plane[seed_facet_idx] == size_t(-1)) {
facet_queue[facet_queue_cnt ++] = seed_facet_idx;
normal_ptr = &face_normals[seed_facet_idx];
face_to_plane[seed_facet_idx] = m_planes.size();
m_planes.emplace_back();
break;
}
if (seed_facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = face_normals[facet_idx];
if (is_same_normal(this_normal, *normal_ptr)) {
const Vec3i& face = m_its.indices[facet_idx];
face_to_plane[facet_idx] = m_planes.size() - 1;
m_planes.back().facets.emplace_back(facet_idx);
for (int j = 0; j < 3; ++ j)
if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && face_to_plane[neighbor_idx] == size_t(-1))
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
m_planes.back().normal = normal_ptr->cast<double>();
std::sort(m_planes.back().facets.begin(), m_planes.back().facets.end());
}
assert(std::none_of(face_to_plane.begin(), face_to_plane.end(), [](size_t val) { return val == size_t(-1); }));
SurfaceMesh sm(m_its);
for (int plane_id=0; plane_id < int(m_planes.size()); ++plane_id) {
//int plane_id = 5; {
const auto& facets = m_planes[plane_id].facets;
m_planes[plane_id].borders.clear();
std::vector<std::array<bool, 3>> visited(facets.size(), {false, false, false});
for (int face_id=0; face_id<int(facets.size()); ++face_id) {
assert(face_to_plane[facets[face_id]] == plane_id);
for (int edge_id=0; edge_id<3; ++edge_id) {
if (visited[face_id][edge_id] || face_to_plane[face_neighbors[facets[face_id]][edge_id]] == plane_id) {
visited[face_id][edge_id] = true;
continue;
}
Halfedge_index he = sm.halfedge(Face_index(facets[face_id]));
while (he.side() != edge_id)
he = sm.next(he);
// he is the first halfedge on the border. Now walk around and append the points.
//const Halfedge_index he_orig = he;
m_planes[plane_id].borders.emplace_back();
std::vector<Vec3d>& last_border = m_planes[plane_id].borders.back();
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
//Vertex_index target = sm.target(he);
const Halfedge_index he_start = he;
Face_index fi = he.face();
auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi));
assert(face_it != facets.end());
assert(*face_it == int(fi));
visited[face_it - facets.begin()][he.side()] = true;
do {
const Halfedge_index he_orig = he;
he = sm.next_around_target(he);
while ( face_to_plane[sm.face(he)] == plane_id && he != he_orig)
he = sm.next_around_target(he);
he = sm.opposite(he);
Face_index fi = he.face();
auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi));
assert(face_it != facets.end());
assert(*face_it == int(fi));
if (visited[face_it - facets.begin()][he.side()] && he != he_start) {
last_border.resize(1);
break;
}
visited[face_it - facets.begin()][he.side()] = true;
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
} while (he != he_start);
if (last_border.size() == 1)
m_planes[plane_id].borders.pop_back();
}
}
}
m_planes.erase(std::remove_if(m_planes.begin(), m_planes.end(),
[](const PlaneData& p) { return p.borders.empty(); }),
m_planes.end());
}
void MeasuringImpl::extract_features(PlaneData& plane)
{
plane.surface_features.clear();
const Vec3d& normal = plane.normal;
const double edge_threshold = 25. * (M_PI/180.);
std::vector<double> angles;
Eigen::Quaterniond q;
q.setFromTwoVectors(plane.normal, Vec3d::UnitZ());
Transform3d trafo = Transform3d::Identity();
trafo.rotate(q);
for (const std::vector<Vec3d>& border : plane.borders) {
assert(border.size() > 1);
int start_idx = -1;
// First calculate angles at all the vertices.
angles.clear();
for (int i=0; i<int(border.size()); ++i) {
const Vec3d& v2 = (i == 0 ? border[0] - border[border.size()-1]
: border[i] - border[i-1]);
const Vec3d& v1 = i == border.size()-1 ? border[0] - border.back()
: border[i+1] - border[i];
double angle = -atan2(normal.dot(v1.cross(v2)), v1.dot(v2));
if (angle < -M_PI/2.)
angle += M_PI;
angles.push_back(angle);
}
assert(border.size() == angles.size());
bool circle = false;
std::vector<std::pair<size_t, size_t>> circles;
for (int i=1; i<angles.size(); ++i) {
if (angles[i] < edge_threshold && Slic3r::is_approx(angles[i], angles[i-1]) && i != angles.size()-1 ) {
// circle
if (! circle) {
circle = true;
start_idx = std::max(0, i-2);
}
} else {
if (circle) {
circles.emplace_back(start_idx, i);
circle = false;
}
}
}
// We have the circles. Now go around again and pick edges.
int cidx = 0; // index of next circle in the way
for (int i=1; i<int(border.size()); ++i) {
if (cidx < circles.size() && i > circles[cidx].first)
i = circles[cidx++].second;
else plane.surface_features.emplace_back(std::unique_ptr<SurfaceFeature>(
new Edge(border[i-1], border[i])));
}
// FIXME Throw away / do not create edges which are parts of circles.
// FIXME Check and maybe merge first and last circle.
for (const auto& [start_idx, end_idx] : circles) {
std::pair<Vec3d, double> center_and_radius = get_center_and_radius(border, start_idx, end_idx, trafo);
plane.surface_features.emplace_back(std::unique_ptr<SurfaceFeature>(
new Circle(center_and_radius.first, center_and_radius.second)
));
}
}
}
void MeasuringImpl::save_features()
{
m_features.clear();
for (PlaneData& plane : m_planes)
//PlaneData& plane = m_planes[0];
{
for (std::unique_ptr<SurfaceFeature>& feature : plane.surface_features) {
m_features.emplace_back(feature.get());
}
}
}
const std::vector<SurfaceFeature*>& MeasuringImpl::get_features() const
{
return m_features;
}
Measuring::Measuring(const indexed_triangle_set& its)
: priv{std::make_unique<MeasuringImpl>(its)}
{}
Measuring::~Measuring() {}
const std::vector<SurfaceFeature*>& Measuring::get_features() const
{
return priv->get_features();
}
} // namespace Measure
} // namespace Slic3r

98
src/libslic3r/Measure.hpp Normal file
View File

@ -0,0 +1,98 @@
#ifndef Slic3r_Measure_hpp_
#define Slic3r_Measure_hpp_
#include <memory>
#include "Point.hpp"
struct indexed_triangle_set;
namespace Slic3r {
namespace Measure {
enum class SurfaceFeatureType {
Edge = 1 << 0,
Circle = 1 << 1,
Plane = 1 << 2
};
class SurfaceFeature {
public:
virtual SurfaceFeatureType get_type() const = 0;
};
class Edge : public SurfaceFeature {
public:
Edge(const Vec3d& start, const Vec3d& end) : m_start{start}, m_end{end} {}
SurfaceFeatureType get_type() const override { return SurfaceFeatureType::Edge; }
std::pair<Vec3d, Vec3d> get_edge() const { return std::make_pair(m_start, m_end); }
private:
Vec3d m_start;
Vec3d m_end;
};
class Circle : public SurfaceFeature {
public:
Circle(const Vec3d& center, double radius) : m_center{center}, m_radius{radius} {}
SurfaceFeatureType get_type() const override { return SurfaceFeatureType::Circle; }
Vec3d get_center() const { return m_center; }
double get_radius() const { return m_radius; }
private:
Vec3d m_center;
double m_radius;
};
class Plane : public SurfaceFeature {
public:
SurfaceFeatureType get_type() const override { return SurfaceFeatureType::Plane; }
};
class MeasuringImpl;
class Measuring {
public:
// Construct the measurement object on a given its. The its must remain
// valid and unchanged during the whole lifetime of the object.
explicit Measuring(const indexed_triangle_set& its);
~Measuring();
// Return a reference to a list of all features identified on the its.
const std::vector<SurfaceFeature*>& get_features() const;
// Given a face_idx where the mouse cursor points, return a feature that
// should be highlighted or nullptr.
const SurfaceFeature* get_feature(size_t face_idx, const Vec3d& point) const;
// Returns distance between two SurfaceFeatures.
static double get_distance(const SurfaceFeature* a, const SurfaceFeature* b);
// Returns true if an x/y/z distance between features makes sense.
// If so, result contains the distances.
static bool get_distances(const SurfaceFeature* a, const SurfaceFeature* b, std::array<double, 3>& result);
// Returns true if an x/y/z distance between feature and a point makes sense.
// If so, result contains the distances.
static bool get_axis_aligned_distances(const SurfaceFeature* feature, const Vec3d* pt, std::array<double, 3>& result);
// Returns true if measuring angles between features makes sense.
// If so, result contains the angle in radians.
static bool get_angle(const SurfaceFeature* a, const SurfaceFeature* b, double& result);
private:
std::unique_ptr<MeasuringImpl> priv;
};
} // namespace Measure
} // namespace Slic3r
#endif // Slic3r_Measure_hpp_

View File

@ -6,10 +6,8 @@
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp" #include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/Model.hpp" #include "libslic3r/Model.hpp"
#include "libslic3r/SurfaceMesh.hpp" #include "libslic3r/Measure.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include <numeric> #include <numeric>
@ -30,6 +28,10 @@ GLGizmoMeasure::GLGizmoMeasure(GLCanvas3D& parent, const std::string& icon_filen
bool GLGizmoMeasure::on_mouse(const wxMouseEvent &mouse_event) bool GLGizmoMeasure::on_mouse(const wxMouseEvent &mouse_event)
{ {
m_mouse_pos_x = mouse_event.GetX();
m_mouse_pos_y = mouse_event.GetY();
if (mouse_event.Moving()) { if (mouse_event.Moving()) {
// only for sure // only for sure
m_mouse_left_down = false; m_mouse_left_down = false;
@ -38,12 +40,7 @@ bool GLGizmoMeasure::on_mouse(const wxMouseEvent &mouse_event)
if (mouse_event.LeftDown()) { if (mouse_event.LeftDown()) {
if (m_hover_id != -1) { if (m_hover_id != -1) {
m_mouse_left_down = true; m_mouse_left_down = true;
Selection &selection = m_parent.get_selection();
if (selection.is_single_full_instance()) {
// Rotate the object so the normal points downward:
selection.flattening_rotate(m_planes[m_hover_id].normal);
m_parent.do_rotate(L("Gizmo-Place on Face"));
}
return true; return true;
} }
@ -94,7 +91,7 @@ void GLGizmoMeasure::on_set_state()
CommonGizmosDataID GLGizmoMeasure::on_get_requirements() const CommonGizmosDataID GLGizmoMeasure::on_get_requirements() const
{ {
return CommonGizmosDataID::SelectionInfo; return CommonGizmosDataID(int(CommonGizmosDataID::SelectionInfo) | int(CommonGizmosDataID::Raycaster));
} }
@ -139,70 +136,59 @@ void GLGizmoMeasure::on_render()
shader->set_uniform("view_model_matrix", view_model_matrix); shader->set_uniform("view_model_matrix", view_model_matrix);
shader->set_uniform("projection_matrix", camera.get_projection_matrix()); shader->set_uniform("projection_matrix", camera.get_projection_matrix());
if (this->is_plane_update_necessary())
update_planes();
update_if_needed();
m_imgui->begin(std::string("DEBUG")); m_imgui->begin(std::string("DEBUG"));
if (m_imgui->button("<-"))
--m_currently_shown_plane; m_imgui->checkbox(wxString("Show all features"), m_show_all);
ImGui::SameLine();
if (m_imgui->button("->")) Vec3f pos;
++m_currently_shown_plane; Vec3f normal;
m_currently_shown_plane = std::clamp(m_currently_shown_plane, 0, std::max(0, int(m_planes.size())-1)); size_t facet_idx;
m_imgui->text(std::to_string(m_currently_shown_plane)); m_c->raycaster()->raycasters().front()->unproject_on_mesh(Vec2d(m_mouse_pos_x, m_mouse_pos_y), m, camera, pos, normal, nullptr, &facet_idx);
m_imgui->checkbox(wxString("Show all"), m_show_all_planes); ImGui::Separator();
m_imgui->checkbox(wxString("Show points"), m_show_points); m_imgui->text(std::string("face_idx: ") + std::to_string(facet_idx));
m_imgui->checkbox(wxString("Show edges"), m_show_edges); m_imgui->text(std::string("pos_x: ") + std::to_string(pos.x()));
m_imgui->checkbox(wxString("Show circles"), m_show_circles); m_imgui->text(std::string("pos_y: ") + std::to_string(pos.y()));
m_imgui->end(); m_imgui->text(std::string("pos_z: ") + std::to_string(pos.z()));
int i = m_show_all_planes ? 0 : m_currently_shown_plane;
for (; i < (int)m_planes.size(); ++i) { if (m_show_all) {
// Render all the borders. const std::vector<Measure::SurfaceFeature*> features = m_measuring->get_features();
for (int j=0; j<(int)m_planes[i].vbos.size(); ++j) { for (const Measure::SurfaceFeature* feature : features) {
m_planes[i].vbos[j].set_color(j == m_hover_id ? DEFAULT_HOVER_PLANE_COLOR : DEFAULT_PLANE_COLOR);
m_planes[i].vbos[j].render(); if (feature->get_type() == Measure::SurfaceFeatureType::Circle) {
const auto* circle = static_cast<const Measure::Circle*>(feature);
Transform3d view_feature_matrix = view_model_matrix * Transform3d(Eigen::Translation3d(circle->get_center()));
view_feature_matrix = view_model_matrix * Transform3d(Eigen::Translation3d(circle->get_center()));
view_feature_matrix.scale(0.5);
shader->set_uniform("view_model_matrix", view_feature_matrix);
m_vbo_sphere.set_color(ColorRGBA(0.f, 1.f, 0.f, 1.f));
m_vbo_sphere.render();
} }
// Render features: else if (feature->get_type() == Measure::SurfaceFeatureType::Edge) {
for (const SurfaceFeature& feature : m_planes[i].surface_features) { const auto* edge = static_cast<const Measure::Edge*>(feature);
Transform3d view_feature_matrix = view_model_matrix * Transform3d(Eigen::Translation3d(feature.pos)); auto& [start, end] = edge->get_edge();
if (m_show_edges && feature.type == SurfaceFeature::Line) { Transform3d view_feature_matrix = view_model_matrix * Transform3d(Eigen::Translation3d(start));
auto q = Eigen::Quaternion<double>::FromTwoVectors(Vec3d::UnitZ(), feature.endpoint - feature.pos); auto q = Eigen::Quaternion<double>::FromTwoVectors(Vec3d::UnitZ(), end - start);
view_feature_matrix *= q; view_feature_matrix *= q;
view_feature_matrix.scale(Vec3d(0.3, 0.3, (feature.endpoint - feature.pos).norm())); view_feature_matrix.scale(Vec3d(0.075, 0.075, (end - start).norm()));
shader->set_uniform("view_model_matrix", view_feature_matrix); shader->set_uniform("view_model_matrix", view_feature_matrix);
m_vbo_cylinder.set_color(ColorRGBA(0.7f, 0.7f, 0.f, 1.f)); m_vbo_cylinder.set_color(ColorRGBA(0.7f, 0.7f, 0.f, 1.f));
m_vbo_cylinder.render(); m_vbo_cylinder.render();
} }
if ((m_show_points && feature.type == SurfaceFeature::Line) || m_show_circles && feature.type == SurfaceFeature::Circle) {
view_feature_matrix = view_model_matrix * Transform3d(Eigen::Translation3d(feature.pos));
view_feature_matrix.scale(0.5);
shader->set_uniform("view_model_matrix", view_feature_matrix);
m_vbo_sphere.set_color(feature.type == SurfaceFeature::Line
? ColorRGBA(1.f, 0.f, 0.f, 1.f)
: ColorRGBA(0.f, 1.f, 0.f, 1.f));
m_vbo_sphere.render();
/*view_feature_matrix = view_model_matrix * Transform3d(Eigen::Translation3d(feature.endpoint));
view_feature_matrix.scale(0.5);
shader->set_uniform("view_model_matrix", view_feature_matrix);
m_vbo_sphere.set_color(feature.type == SurfaceFeature::Line
? ColorRGBA(1.f, 0.f, 0.f, 1.f)
: ColorRGBA(1.f, 1.f, 0.f, 1.f));
m_vbo_sphere.render();*/
} }
shader->set_uniform("view_model_matrix", view_model_matrix); shader->set_uniform("view_model_matrix", view_model_matrix);
} }
m_imgui->end();
if (! m_show_all_planes)
break;
}
} }
glsafe(::glEnable(GL_CULL_FACE)); glsafe(::glEnable(GL_CULL_FACE));
@ -222,290 +208,45 @@ void GLGizmoMeasure::on_render()
#error NOT IMPLEMENTED #error NOT IMPLEMENTED
#endif #endif
void GLGizmoMeasure::on_render_for_picking() void GLGizmoMeasure::on_render_for_picking()
{ {
const Selection& selection = m_parent.get_selection();
GLShaderProgram* shader = wxGetApp().get_shader("flat");
if (shader == nullptr)
return;
shader->start_using();
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glDisable(GL_BLEND));
glsafe(::glLineWidth(2.f));
if (selection.is_single_full_instance() && !wxGetKeyState(WXK_CONTROL)) {
const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix();
const Camera& camera = wxGetApp().plater()->get_camera();
const Transform3d view_model_matrix = camera.get_view_matrix() *
Geometry::assemble_transform(selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z() * Vec3d::UnitZ()) * m;
shader->set_uniform("view_model_matrix", view_model_matrix);
shader->set_uniform("projection_matrix", camera.get_projection_matrix());
if (this->is_plane_update_necessary())
update_planes();
//for (int i = 0; i < (int)m_planes.size(); ++i) {
int i = m_currently_shown_plane;
if (i < int(m_planes.size())) {
for (int j=0; j<(int)m_planes[i].vbos.size(); ++j) {
m_planes[i].vbos[j].set_color(picking_color_component(j));
m_planes[i].vbos[j].render();
}
}
}
glsafe(::glEnable(GL_CULL_FACE));
shader->stop_using();
} }
void GLGizmoMeasure::set_flattening_data(const ModelObject* model_object) void GLGizmoMeasure::set_flattening_data(const ModelObject* model_object)
{ {
if (model_object != m_old_model_object) { if (model_object != m_old_model_object)
m_planes.clear(); update_if_needed();
m_planes_valid = false;
}
} }
void GLGizmoMeasure::update_if_needed()
static std::pair<Vec3d, double> get_center_and_radius(const std::vector<Vec3d>& border, int start_idx, int end_idx, const Transform3d& trafo)
{
Vec2ds pts;
double z = 0.;
for (int i=start_idx; i<=end_idx; ++i) {
Vec3d pt_transformed = trafo * border[i];
z = pt_transformed.z();
pts.emplace_back(pt_transformed.x(), pt_transformed.y());
}
auto circle = Geometry::circle_ransac(pts, 20); // FIXME: iterations?
return std::make_pair(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius);
}
void GLGizmoMeasure::extract_features(GLGizmoMeasure::PlaneData& plane)
{
plane.surface_features.clear();
const Vec3d& normal = plane.normal;
const double edge_threshold = 25. * (M_PI/180.);
std::vector<double> angles;
Eigen::Quaterniond q;
q.setFromTwoVectors(plane.normal, Vec3d::UnitZ());
Transform3d trafo = Transform3d::Identity();
trafo.rotate(q);
for (const std::vector<Vec3d>& border : plane.borders) {
assert(border.size() > 1);
assert(! border.front().isApprox(border.back()));
int start_idx = -1;
// First calculate angles at all the vertices.
angles.clear();
for (int i=0; i<int(border.size()); ++i) {
const Vec3d& v2 = (i == 0 ? border[0] - border[border.size()-1]
: border[i] - border[i-1]);
const Vec3d& v1 = i == border.size()-1 ? border[0] - border.back()
: border[i+1] - border[i];
double angle = -atan2(normal.dot(v1.cross(v2)), v1.dot(v2));
if (angle < -M_PI/2.)
angle += M_PI;
angles.push_back(angle);
}
assert(border.size() == angles.size());
bool circle = false;
std::vector<std::pair<size_t, size_t>> circles;
for (int i=1; i<angles.size(); ++i) {
if (angles[i] < edge_threshold && Slic3r::is_approx(angles[i], angles[i-1]) && i != angles.size()-1 ) {
// circle
if (! circle) {
circle = true;
start_idx = std::max(0, i-2);
}
} else {
if (circle) {
circles.emplace_back(start_idx, i);
circle = false;
}
}
}
for (const auto& [start_idx, end_idx] : circles) {
std::pair<Vec3d, double> center_and_radius = get_center_and_radius(border, start_idx, end_idx, trafo);
plane.surface_features.emplace_back(SurfaceFeature{
SurfaceFeature::Circle,
// border[start_idx], border[end_idx],
center_and_radius.first, center_and_radius.first, center_and_radius.second
});
}
std::cout << "==================== " << std::endl;
}
for (const SurfaceFeature& f : plane.surface_features) {
std::cout << "- detected " << (f.type == SurfaceFeature::Line ? "Line" : "Circle") << std::endl;
std::cout<< f.pos << std::endl << std::endl << f.endpoint << std::endl;
std::cout << "----------------" << std::endl;
}
}
void GLGizmoMeasure::update_planes()
{ {
const ModelObject* mo = m_c->selection_info()->model_object(); const ModelObject* mo = m_c->selection_info()->model_object();
TriangleMesh ch; if (m_state != On || ! mo || mo->instances.empty())
for (const ModelVolume* vol : mo->volumes) { return;
if (vol->type() != ModelVolumeType::MODEL_PART)
continue;
TriangleMesh vol_ch = vol->mesh();
vol_ch.transform(vol->get_matrix());
ch.merge(vol_ch);
}
m_planes.clear();
if (! m_measuring || mo != m_old_model_object
|| mo->volumes.size() != m_volumes_matrices.size())
goto UPDATE;
// Now we'll go through all the facets and append Points of facets sharing the same normal. // We want to recalculate when the scale changes - some planes could (dis)appear.
// This part is still performed in mesh coordinate system. if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale)
const size_t num_of_facets = ch.facets_count(); || ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror))
std::vector<size_t> face_to_plane(num_of_facets, size_t(-1)); goto UPDATE;
const std::vector<Vec3f> face_normals = its_face_normals(ch.its);
const std::vector<Vec3i> face_neighbors = its_face_neighbors(ch.its);
std::vector<int> facet_queue(num_of_facets, 0);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
size_t seed_facet_idx = 0;
auto is_same_normal = [](const stl_normal& a, const stl_normal& b) -> bool { for (unsigned int i=0; i < mo->volumes.size(); ++i)
return (std::abs(a(0) - b(0)) < 0.001 && std::abs(a(1) - b(1)) < 0.001 && std::abs(a(2) - b(2)) < 0.001); if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
}; || mo->volumes[i]->type() != m_volumes_types[i])
goto UPDATE;
while (1) { return;
// Find next unvisited triangle:
for (; seed_facet_idx < num_of_facets; ++ seed_facet_idx)
if (face_to_plane[seed_facet_idx] == size_t(-1)) {
facet_queue[facet_queue_cnt ++] = seed_facet_idx;
normal_ptr = &face_normals[seed_facet_idx];
face_to_plane[seed_facet_idx] = m_planes.size();
m_planes.emplace_back();
break;
}
if (seed_facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) { UPDATE:
int facet_idx = facet_queue[-- facet_queue_cnt]; m_measuring.reset(new Measure::Measuring(mo->volumes.front()->mesh().its));
const stl_normal& this_normal = face_normals[facet_idx];
if (is_same_normal(this_normal, *normal_ptr)) {
const Vec3i& face = ch.its.indices[facet_idx];
face_to_plane[facet_idx] = m_planes.size() - 1; // Let's save what we calculated it from:
m_planes.back().facets.emplace_back(facet_idx);
for (int j = 0; j < 3; ++ j)
if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && face_to_plane[neighbor_idx] == size_t(-1))
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
m_planes.back().normal = normal_ptr->cast<double>();
std::sort(m_planes.back().facets.begin(), m_planes.back().facets.end());
}
assert(std::none_of(face_to_plane.begin(), face_to_plane.end(), [](size_t val) { return val == size_t(-1); }));
SurfaceMesh sm(ch.its);
for (int plane_id=0; plane_id < int(m_planes.size()); ++plane_id) {
//int plane_id = 5; {
const auto& facets = m_planes[plane_id].facets;
m_planes[plane_id].borders.clear();
std::vector<std::array<bool, 3>> visited(facets.size(), {false, false, false});
for (int face_id=0; face_id<int(facets.size()); ++face_id) {
assert(face_to_plane[facets[face_id]] == plane_id);
for (int edge_id=0; edge_id<3; ++edge_id) {
if (visited[face_id][edge_id] || face_to_plane[face_neighbors[facets[face_id]][edge_id]] == plane_id) {
visited[face_id][edge_id] = true;
continue;
}
Halfedge_index he = sm.halfedge(Face_index(facets[face_id]));
while (he.side() != edge_id)
he = sm.next(he);
// he is the first halfedge on the border. Now walk around and append the points.
//const Halfedge_index he_orig = he;
m_planes[plane_id].borders.emplace_back();
std::vector<Vec3d>& last_border = m_planes[plane_id].borders.back();
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
//Vertex_index target = sm.target(he);
const Halfedge_index he_start = he;
Face_index fi = he.face();
auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi));
assert(face_it != facets.end());
assert(*face_it == int(fi));
visited[face_it - facets.begin()][he.side()] = true;
do {
const Halfedge_index he_orig = he;
he = sm.next_around_target(he);
while ( face_to_plane[sm.face(he)] == plane_id && he != he_orig)
he = sm.next_around_target(he);
he = sm.opposite(he);
Face_index fi = he.face();
auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi));
assert(face_it != facets.end());
assert(*face_it == int(fi));
if (visited[face_it - facets.begin()][he.side()] && he != he_start) {
last_border.resize(1);
break;
}
visited[face_it - facets.begin()][he.side()] = true;
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
} while (he != he_start);
if (last_border.size() == 1)
m_planes[plane_id].borders.pop_back();
}
}
}
// DEBUGGING:
m_planes.erase(std::remove_if(m_planes.begin(), m_planes.end(), [](const PlaneData& p) { return p.borders.empty(); }), m_planes.end());
// Planes are finished - let's save what we calculated it from:
m_volumes_matrices.clear(); m_volumes_matrices.clear();
m_volumes_types.clear(); m_volumes_types.clear();
for (const ModelVolume* vol : mo->volumes) { for (const ModelVolume* vol : mo->volumes) {
@ -515,65 +256,6 @@ void GLGizmoMeasure::update_planes()
m_first_instance_scale = mo->instances.front()->get_scaling_factor(); m_first_instance_scale = mo->instances.front()->get_scaling_factor();
m_first_instance_mirror = mo->instances.front()->get_mirror(); m_first_instance_mirror = mo->instances.front()->get_mirror();
m_old_model_object = mo; m_old_model_object = mo;
// And finally create respective VBOs. The polygon is convex with
// the vertices in order, so triangulation is trivial.
for (PlaneData& plane : m_planes) {
for (std::vector<Vec3d>& vertices : plane.borders) {
GLModel::Geometry init_data;
init_data.format = { GLModel::Geometry::EPrimitiveType::LineStrip, GLModel::Geometry::EVertexLayout::P3N3 };
init_data.reserve_vertices(vertices.size());
init_data.reserve_indices(vertices.size());
// vertices + indices
for (size_t i = 0; i < vertices.size(); ++i) {
init_data.add_vertex((Vec3f)vertices[i].cast<float>(), (Vec3f)plane.normal.cast<float>());
init_data.add_index((unsigned int)i);
}
plane.vbos.emplace_back();
plane.vbos.back().init_from(std::move(init_data));
vertices.pop_back(); // first and last are the same
}
static int n=0;
std::cout << "==================== " << std::endl;
std::cout << "==================== " << std::endl;
std::cout << "==================== " << std::endl;
std::cout << "Plane num. " << n++ << std::endl;
extract_features(plane);
// FIXME: vertices should really be local, they need not
// persist now when we use VBOs
plane.borders.clear();
plane.borders.shrink_to_fit();
}
m_planes_valid = true;
}
bool GLGizmoMeasure::is_plane_update_necessary() const
{
const ModelObject* mo = m_c->selection_info()->model_object();
if (m_state != On || ! mo || mo->instances.empty())
return false;
if (! m_planes_valid || mo != m_old_model_object
|| mo->volumes.size() != m_volumes_matrices.size())
return true;
// We want to recalculate when the scale changes - some planes could (dis)appear.
if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale)
|| ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror))
return true;
for (unsigned int i=0; i < mo->volumes.size(); ++i)
if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
|| mo->volumes[i]->type() != m_volumes_types[i])
return true;
return false;
} }
} // namespace GUI } // namespace GUI

View File

@ -9,10 +9,15 @@
#endif // ENABLE_LEGACY_OPENGL_REMOVAL #endif // ENABLE_LEGACY_OPENGL_REMOVAL
#include <memory>
namespace Slic3r { namespace Slic3r {
enum class ModelVolumeType : int; enum class ModelVolumeType : int;
namespace Measure { class Measuring; }
namespace GUI { namespace GUI {
@ -22,53 +27,27 @@ class GLGizmoMeasure : public GLGizmoBase
// This gizmo does not use grabbers. The m_hover_id relates to polygon managed by the class itself. // This gizmo does not use grabbers. The m_hover_id relates to polygon managed by the class itself.
private: private:
std::unique_ptr<Measure::Measuring> m_measuring;
int m_currently_shown_plane = 0;
bool m_show_all_planes = false;
bool m_show_points = true;
bool m_show_edges = true;
bool m_show_circles = true;
GLModel m_vbo_sphere; GLModel m_vbo_sphere;
GLModel m_vbo_cylinder; GLModel m_vbo_cylinder;
struct SurfaceFeature {
enum Type {
Circle,
Line
};
Type type;
Vec3d pos;
Vec3d endpoint; // for type == Line
double radius; // for type == Circle;
};
struct PlaneData {
std::vector<int> facets;
std::vector<std::vector<Vec3d>> borders; // should be in fact local in update_planes()
std::vector<SurfaceFeature> surface_features;
std::vector<GLModel> vbos;
Vec3d normal;
float area;
};
static void extract_features(PlaneData& plane);
// This holds information to decide whether recalculation is necessary: // This holds information to decide whether recalculation is necessary:
std::vector<Transform3d> m_volumes_matrices; std::vector<Transform3d> m_volumes_matrices;
std::vector<ModelVolumeType> m_volumes_types; std::vector<ModelVolumeType> m_volumes_types;
Vec3d m_first_instance_scale; Vec3d m_first_instance_scale;
Vec3d m_first_instance_mirror; Vec3d m_first_instance_mirror;
std::vector<PlaneData> m_planes;
std::vector<size_t> m_face_to_plane;
bool m_mouse_left_down = false; // for detection left_up of this gizmo bool m_mouse_left_down = false; // for detection left_up of this gizmo
bool m_planes_valid = false; bool m_planes_valid = false;
const ModelObject* m_old_model_object = nullptr; const ModelObject* m_old_model_object = nullptr;
std::vector<const Transform3d*> instances_matrices; std::vector<const Transform3d*> instances_matrices;
void update_planes(); int m_mouse_pos_x;
bool is_plane_update_necessary() const; int m_mouse_pos_y;
bool m_show_all = true;
void update_if_needed();
void set_flattening_data(const ModelObject* model_object); void set_flattening_data(const ModelObject* model_object);
public: public: