revert auto formating

This commit is contained in:
Filip Sykala 2022-03-09 13:41:41 +01:00
parent c8e3836177
commit 9e1ebcf4c6

View File

@ -266,170 +266,147 @@ TEST_CASE("Italic check", "[Emboss]")
}
#endif // not __APPLE__
#include <CGAL/Polygon_mesh_processing/corefinement.h>
#include <CGAL/Exact_integer.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Cartesian_converter.h>
// Referencing a glyph contour (an ExPolygon) plus a vertex base of the contour.
struct GlyphContour
{
struct GlyphContour {
// Index of a glyph in a vector of glyphs.
int32_t glyph{-1};
int32_t glyph{ -1 };
// Index of an ExPolygon in ExPolygons of a glyph.
int32_t expoly{-1};
int32_t expoly{ -1 };
// Index of a contour in ExPolygon.
// 0 - outer contour, >0 - hole
int32_t contour{-1};
int32_t contour{ -1 };
// Base of the zero'th point of a contour in text mesh.
// There are two vertices (front and rear) created for each contour,
// thus there are 2x more vertices in text mesh than the number of contour points.
int32_t vertex_base{-1};
int32_t vertex_base{ -1 };
};
struct GlyphID
{
int32_t glyph_contour{-1};
int32_t glyph_contour{ -1 };
// vertex or edge ID, where edge ID is the index of the source point.
// There are 4 consecutive indices generated for a single glyph edge:
// 0th - 1st text edge (straight)
// 1th - 1st text face
// 2nd - 2nd text edge (diagonal)
// 3th - 2nd text face
int32_t idx{-1};
int32_t idx { -1 };
GlyphID &operator++()
{
++idx;
return *this;
}
GlyphID& operator++() { ++idx; return *this; }
};
namespace Slic3r::MeshBoolean::cgal2 {
namespace CGALProc = CGAL::Polygon_mesh_processing;
namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;
namespace CGALProc = CGAL::Polygon_mesh_processing;
namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;
// using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
// using _EpecMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;
using CGALMesh = _EpicMesh;
using CGALMesh = _EpicMesh;
// Add an indexed triangle mesh to CGAL Surface_mesh.
// Store map of CGAL face to source face index into object_face_source_id.
void triangle_mesh_to_cgal(
const std::vector<stl_vertex> &V,
const std::vector<stl_triangle_vertex_indices> &F,
CGALMesh &out,
CGALMesh::Property_map<CGAL::SM_Face_index, int32_t> object_face_source_id)
{
if (F.empty()) return;
// Add an indexed triangle mesh to CGAL Surface_mesh.
// Store map of CGAL face to source face index into object_face_source_id.
void triangle_mesh_to_cgal(
const std::vector<stl_vertex> &V,
const std::vector<stl_triangle_vertex_indices> &F,
CGALMesh &out,
CGALMesh::Property_map<CGAL::SM_Face_index, int32_t> object_face_source_id)
{
if (F.empty())
return;
size_t vertices_count = V.size();
size_t edges_count = (F.size() * 3) / 2;
size_t faces_count = F.size();
out.reserve(vertices_count, edges_count, faces_count);
size_t vertices_count = V.size();
size_t edges_count = (F.size() * 3) / 2;
size_t faces_count = F.size();
out.reserve(vertices_count, edges_count, faces_count);
for (auto &v : V)
out.add_vertex(typename CGALMesh::Point{v.x(), v.y(), v.z()});
for (auto& v : V)
out.add_vertex(typename CGALMesh::Point{ v.x(), v.y(), v.z() });
using VI = typename CGALMesh::Vertex_index;
for (auto &f : F) {
auto fid = out.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
object_face_source_id[fid] = int32_t(&f - &F.front());
using VI = typename CGALMesh::Vertex_index;
for (auto& f : F) {
auto fid = out.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
object_face_source_id[fid] = int32_t(&f - &F.front());
}
}
void glyph2model(
const ExPolygons &glyph,
int32_t glyph_id,
const Slic3r::Emboss::IProject &projection,
CGALMesh &out,
std::vector<GlyphContour> &glyph_contours,
CGALMesh::Property_map<CGAL::SM_Edge_index, GlyphID> &glyph_id_edge,
CGALMesh::Property_map<CGAL::SM_Face_index, GlyphID> &glyph_id_face)
{
std::vector<CGALMesh::Vertex_index> indices;
auto insert_contour = [&projection, &indices , &out, glyph_id, &glyph_contours, &glyph_id_edge, &glyph_id_face](const Polygon& polygon, int32_t iexpoly, int32_t id) {
indices.clear();
indices.reserve(polygon.points.size() * 2);
size_t num_vertices_old = out.number_of_vertices();
GlyphID glid{ int32_t(glyph_contours.size()), 0 };
glyph_contours.push_back({ glyph_id, iexpoly, id, int32_t(num_vertices_old) });
for (const Point& p2 : polygon.points) {
auto p = projection.project(p2);
auto vi = out.add_vertex(typename CGALMesh::Point{ p.first.x(), p.first.y(), p.first.z() });
assert((size_t)vi == indices.size() + num_vertices_old);
indices.emplace_back(vi);
vi = out.add_vertex(typename CGALMesh::Point{ p.second.x(), p.second.y(), p.second.z() });
assert((size_t)vi == indices.size() + num_vertices_old);
indices.emplace_back(vi);
}
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
int32_t j = (i + 2) % int32_t(indices.size());
auto find_edge = [&out](CGALMesh::Face_index fi, CGALMesh::Vertex_index from, CGALMesh::Vertex_index to) {
CGALMesh::Halfedge_index hi = out.halfedge(fi);
for (; out.target(hi) != to; hi = out.next(hi));
assert(out.source(hi) == from);
assert(out.target(hi) == to);
return hi;
};
auto fi = out.add_face(indices[i], indices[i + 1], indices[j]);
glyph_id_edge[out.edge(find_edge(fi, indices[i], indices[i + 1]))] = glid;
glyph_id_face[fi] = ++ glid;
glyph_id_edge[out.edge(find_edge(fi, indices[i + 1], indices[j]))] = ++ glid;
glyph_id_face[out.add_face(indices[j], indices[i + 1], indices[j + 1])] = ++ glid;
++ glid;
}
};
size_t count_point = count_points(glyph);
out.reserve(out.number_of_vertices() + 2 * count_point, out.number_of_edges() + 4 * count_point, out.number_of_faces() + 2 * count_point);
for (const ExPolygon &expolygon : glyph) {
int32_t idx_contour = &expolygon - &glyph.front();
insert_contour(expolygon.contour, idx_contour, 0);
for (const Polygon& hole : expolygon.holes)
insert_contour(hole, idx_contour, 1 + (&hole - &expolygon.holes.front()));
}
}
}
void glyph2model(
const ExPolygons &glyph,
int32_t glyph_id,
const Slic3r::Emboss::IProject &projection,
CGALMesh &out,
std::vector<GlyphContour> &glyph_contours,
CGALMesh::Property_map<CGAL::SM_Edge_index, GlyphID> &glyph_id_edge,
CGALMesh::Property_map<CGAL::SM_Face_index, GlyphID> &glyph_id_face)
{
std::vector<CGALMesh::Vertex_index> indices;
auto insert_contour = [&projection, &indices, &out, glyph_id,
&glyph_contours, &glyph_id_edge,
&glyph_id_face](const Polygon &polygon,
int32_t iexpoly, int32_t id) {
indices.clear();
indices.reserve(polygon.points.size() * 2);
size_t num_vertices_old = out.number_of_vertices();
GlyphID glid{int32_t(glyph_contours.size()), 0};
glyph_contours.push_back(
{glyph_id, iexpoly, id, int32_t(num_vertices_old)});
for (const Point &p2 : polygon.points) {
auto p = projection.project(p2);
auto vi = out.add_vertex(typename CGALMesh::Point{p.first.x(),
p.first.y(),
p.first.z()});
assert((size_t) vi == indices.size() + num_vertices_old);
indices.emplace_back(vi);
vi = out.add_vertex(typename CGALMesh::Point{p.second.x(),
p.second.y(),
p.second.z()});
assert((size_t) vi == indices.size() + num_vertices_old);
indices.emplace_back(vi);
}
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
int32_t j = (i + 2) % int32_t(indices.size());
auto find_edge = [&out](CGALMesh::Face_index fi,
CGALMesh::Vertex_index from,
CGALMesh::Vertex_index to) {
CGALMesh::Halfedge_index hi = out.halfedge(fi);
for (; out.target(hi) != to; hi = out.next(hi))
;
assert(out.source(hi) == from);
assert(out.target(hi) == to);
return hi;
};
auto fi = out.add_face(indices[i], indices[i + 1], indices[j]);
glyph_id_edge[out.edge(
find_edge(fi, indices[i], indices[i + 1]))] = glid;
glyph_id_face[fi] = ++glid;
glyph_id_edge[out.edge(
find_edge(fi, indices[i + 1], indices[j]))] = ++glid;
glyph_id_face[out.add_face(indices[j], indices[i + 1],
indices[j + 1])] = ++glid;
++glid;
}
};
size_t count_point = count_points(glyph);
out.reserve(out.number_of_vertices() + 2 * count_point,
out.number_of_edges() + 4 * count_point,
out.number_of_faces() + 2 * count_point);
for (const ExPolygon &expolygon : glyph) {
int32_t idx_contour = &expolygon - &glyph.front();
insert_contour(expolygon.contour, idx_contour, 0);
for (const Polygon &hole : expolygon.holes)
insert_contour(hole, idx_contour,
1 + (&hole - &expolygon.holes.front()));
}
}
} // namespace Slic3r::MeshBoolean::cgal2
bool its_write_obj(const indexed_triangle_set &its,
const std::vector<Vec3f> &color,
const char *file)
bool its_write_obj(const indexed_triangle_set& its, const std::vector<Vec3f> &color, const char* file)
{
Slic3r::CNumericLocalesSetter locales_setter;
FILE *fp = fopen(file, "w");
if (fp == nullptr) { return false; }
FILE* fp = fopen(file, "w");
if (fp == nullptr) {
return false;
}
for (size_t i = 0; i < its.vertices.size(); ++i)
fprintf(fp, "v %f %f %f %f %f %f\n", its.vertices[i](0),
its.vertices[i](1), its.vertices[i](2), color[i](0),
color[i](1), color[i](2));
fprintf(fp, "v %f %f %f %f %f %f\n",
its.vertices[i](0), its.vertices[i](1), its.vertices[i](2),
color[i](0), color[i](1), color[i](2));
for (size_t i = 0; i < its.indices.size(); ++i)
fprintf(fp, "f %d %d %d\n", its.indices[i][0] + 1,
its.indices[i][1] + 1, its.indices[i][2] + 1);
fprintf(fp, "f %d %d %d\n", its.indices[i][0] + 1, its.indices[i][1] + 1, its.indices[i][2] + 1);
fclose(fp);
return true;
}
@ -459,116 +436,89 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
CHECK(!text.indices.empty());
#endif
auto cube = its_make_cube(782 - 49 + 50, 724 + 10 + 50, 5);
its_translate(cube, Vec3f(49 - 25, -10 - 25, 2.5));
auto cube2 = cube;
// its_translate(cube2, Vec3f(0, 0, 40));
// its_translate(cube2, Vec3f(0, 0, 40));
its_translate(cube2, Vec3f(0, -40, 40));
for (auto &face : cube2.indices)
for (int i = 0; i < 3; ++i) face(i) += int(cube.vertices.size());
for (int i = 0; i < 3; ++ i)
face(i) += int(cube.vertices.size());
append(cube.vertices, cube2.vertices);
append(cube.indices, cube2.indices);
MeshBoolean::cgal2::CGALMesh cgalcube, cgaltext;
auto object_face_source_id =
cgalcube
.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index,
int32_t>("f:object_face_source_id")
.first;
MeshBoolean::cgal2::triangle_mesh_to_cgal(cube.vertices, cube.indices,
cgalcube,
object_face_source_id);
auto object_face_source_id = cgalcube.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index, int32_t>("f:object_face_source_id").first;
MeshBoolean::cgal2::triangle_mesh_to_cgal(cube.vertices, cube.indices, cgalcube, object_face_source_id);
auto edge_glyph_id =
cgaltext
.add_property_map<MeshBoolean::cgal2::CGALMesh::Edge_index,
GlyphID>("e:glyph_id")
.first;
auto face_glyph_id =
cgaltext
.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index,
GlyphID>("f:glyph_id")
.first;
auto vertex_glyph_id =
cgalcube
.add_property_map<MeshBoolean::cgal2::CGALMesh::Vertex_index,
GlyphID>("v:glyph_id")
.first;
auto edge_glyph_id = cgaltext.add_property_map<MeshBoolean::cgal2::CGALMesh::Edge_index, GlyphID>("e:glyph_id").first;
auto face_glyph_id = cgaltext.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index, GlyphID>("f:glyph_id").first;
auto vertex_glyph_id = cgalcube.add_property_map<MeshBoolean::cgal2::CGALMesh::Vertex_index, GlyphID>("v:glyph_id").first;
std::vector<GlyphContour> glyph_contours;
MeshBoolean::cgal2::glyph2model(shape, 0, projection, cgaltext,
glyph_contours, edge_glyph_id,
face_glyph_id);
MeshBoolean::cgal2::glyph2model(shape, 0, projection, cgaltext, glyph_contours, edge_glyph_id, face_glyph_id);
struct Visitor
{
struct Visitor {
using TriangleMesh = Slic3r::MeshBoolean::cgal2::CGALMesh;
const TriangleMesh &object;
const TriangleMesh &glyphs;
// const std::vector<GlyphContour> &glyph_contours;
// const std::vector<GlyphContour> &glyph_contours;
// Properties of the glyphs mesh:
TriangleMesh::Property_map<CGAL::SM_Edge_index, GlyphID> glyph_id_edge;
TriangleMesh::Property_map<CGAL::SM_Face_index, GlyphID> glyph_id_face;
// Properties of the object mesh.
TriangleMesh::Property_map<CGAL::SM_Face_index, int32_t>
object_face_source_id;
TriangleMesh::Property_map<CGAL::SM_Vertex_index, GlyphID>
object_vertex_glyph_id;
TriangleMesh::Property_map<CGAL::SM_Face_index, int32_t> object_face_source_id;
TriangleMesh::Property_map<CGAL::SM_Vertex_index, GlyphID> object_vertex_glyph_id;
typedef boost::graph_traits<TriangleMesh> GT;
typedef typename GT::face_descriptor face_descriptor;
typedef typename GT::halfedge_descriptor halfedge_descriptor;
typedef typename GT::vertex_descriptor vertex_descriptor;
typedef typename GT::face_descriptor face_descriptor;
typedef typename GT::halfedge_descriptor halfedge_descriptor;
typedef typename GT::vertex_descriptor vertex_descriptor;
int32_t source_face_id;
void before_subface_creations(face_descriptor f_old,
TriangleMesh &mesh)
void before_subface_creations(face_descriptor f_old, TriangleMesh& mesh)
{
assert(&mesh == &object);
source_face_id = object_face_source_id[f_old];
}
void after_subface_created(face_descriptor f_new, TriangleMesh &mesh)
{
void after_subface_created(face_descriptor f_new, TriangleMesh& mesh) {
assert(&mesh == &object);
object_face_source_id[f_new] = source_face_id;
}
std::vector<const GlyphID *> intersection_point_glyph;
std::vector<const GlyphID*> intersection_point_glyph;
// Intersecting an edge hh_edge from tm_edge with a face hh_face of tm_face.
void intersection_point_detected(
// ID of the intersection point, starting at 0. Ids are consecutive.
std::size_t i_id,
// Dimension of a simplex part of face(hh_face) that is
// intersected by hh_edge: 0 for vertex: target(hh_face) 1 for
// edge: hh_face 2 for the interior of face: face(hh_face)
int simplex_dimension,
// Edge of tm_edge, see edge_source_coplanar_with_face &
// edge_target_coplanar_with_face whether any vertex of hh_edge is
// coplanar with face(hh_face).
std::size_t i_id,
// Dimension of a simplex part of face(hh_face) that is intersected by hh_edge:
// 0 for vertex: target(hh_face)
// 1 for edge: hh_face
// 2 for the interior of face: face(hh_face)
int simplex_dimension,
// Edge of tm_edge, see edge_source_coplanar_with_face & edge_target_coplanar_with_face whether any vertex of hh_edge is coplanar with face(hh_face).
halfedge_descriptor hh_edge,
// Vertex, halfedge or face of tm_face intersected by hh_edge, see
// comment at simplex_dimension.
// Vertex, halfedge or face of tm_face intersected by hh_edge, see comment at simplex_dimension.
halfedge_descriptor hh_face,
// Mesh containing hh_edge
const TriangleMesh &tm_edge,
const TriangleMesh& tm_edge,
// Mesh containing hh_face
const TriangleMesh &tm_face,
const TriangleMesh& tm_face,
// source(hh_edge) is coplanar with face(hh_face).
bool edge_source_coplanar_with_face,
bool edge_source_coplanar_with_face,
// target(hh_edge) is coplanar with face(hh_face).
bool edge_target_coplanar_with_face)
bool edge_target_coplanar_with_face)
{
if (i_id <= intersection_point_glyph.size()) {
intersection_point_glyph.reserve(
Slic3r::next_highest_power_of_2(i_id + 1));
intersection_point_glyph.reserve(Slic3r::next_highest_power_of_2(i_id + 1));
intersection_point_glyph.resize(i_id + 1);
}
const GlyphID *glyph = nullptr;
const GlyphID* glyph = nullptr;
if (&tm_face == &glyphs) {
assert(&tm_edge == &object);
switch (simplex_dimension) {
@ -580,7 +530,8 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
// edge x face intersection
glyph = &glyph_id_face[glyphs.face(hh_face)];
break;
default: assert(false);
default:
assert(false);
}
if (edge_source_coplanar_with_face)
object_vertex_glyph_id[object.source(hh_edge)] = *glyph;
@ -597,106 +548,67 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
intersection_point_glyph[i_id] = glyph;
}
void new_vertex_added(std::size_t node_id,
vertex_descriptor vh,
const TriangleMesh &tm)
void new_vertex_added(std::size_t node_id, vertex_descriptor vh, const TriangleMesh &tm)
{
assert(&tm == &object);
assert(node_id < intersection_point_glyph.size());
const GlyphID *glyph = intersection_point_glyph[node_id];
const GlyphID * glyph = intersection_point_glyph[node_id];
assert(glyph != nullptr);
assert(glyph->glyph_contour != -1);
assert(glyph->idx != -1);
object_vertex_glyph_id[vh] = glyph ? *glyph : GlyphID{};
}
void after_subface_creations(TriangleMesh &) {}
void before_subface_created(TriangleMesh &) {}
void before_edge_split(halfedge_descriptor /* h */,
TriangleMesh & /* tm */)
{}
void edge_split(halfedge_descriptor /* hnew */,
TriangleMesh & /* tm */)
{}
void after_subface_creations(TriangleMesh&) {}
void before_subface_created(TriangleMesh&) {}
void before_edge_split(halfedge_descriptor /* h */, TriangleMesh& /* tm */) {}
void edge_split(halfedge_descriptor /* hnew */, TriangleMesh& /* tm */) {}
void after_edge_split() {}
void add_retriangulation_edge(halfedge_descriptor /* h */,
TriangleMesh & /* tm */)
{}
} visitor{cgalcube,
cgaltext,
/* glyph_contours, */ edge_glyph_id,
face_glyph_id,
object_face_source_id,
vertex_glyph_id};
void add_retriangulation_edge(halfedge_descriptor /* h */, TriangleMesh& /* tm */) {}
}
visitor { cgalcube, cgaltext, /* glyph_contours, */ edge_glyph_id, face_glyph_id, object_face_source_id, vertex_glyph_id};
auto ecm = get(CGAL::dynamic_edge_property_t<bool>(), cgalcube);
const auto &p =
CGAL::Polygon_mesh_processing::parameters::throw_on_self_intersection(
false)
.visitor(visitor)
.edge_is_constrained_map(ecm);
const auto &q = CGAL::Polygon_mesh_processing::parameters::visitor(visitor)
.do_not_modify(true);
auto ecm = get(CGAL::dynamic_edge_property_t<bool>(), cgalcube);
const auto& p = CGAL::Polygon_mesh_processing::parameters::throw_on_self_intersection(false).visitor(visitor).edge_is_constrained_map(ecm);
const auto& q = CGAL::Polygon_mesh_processing::parameters::visitor(visitor).do_not_modify(true);
// CGAL::Polygon_mesh_processing::corefine(cgalcube, cgalcube2, p, p);
CGAL::Polygon_mesh_processing::corefine(cgalcube, cgaltext, p, q);
auto vertex_colors =
cgalcube
.add_property_map<MeshBoolean::cgal2::CGALMesh::Vertex_index,
CGAL::Color>("v:color")
.first;
auto face_colors =
cgalcube
.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index,
CGAL::Color>("f:color")
.first;
auto vertex_colors = cgalcube.add_property_map<MeshBoolean::cgal2::CGALMesh::Vertex_index, CGAL::Color>("v:color").first;
auto face_colors = cgalcube.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index, CGAL::Color>("f:color").first;
const CGAL::Color marked{255, 0, 0};
const CGAL::Color marked { 255, 0, 0 };
for (auto fi : cgalcube.faces()) {
CGAL::Color color(0, 255, 0);
auto hi_end = cgalcube.halfedge(fi);
auto hi = hi_end;
auto hi_end = cgalcube.halfedge(fi);
auto hi = hi_end;
do {
if (get(ecm, cgalcube.edge(hi))) {
// This face has a constrained edge.
GlyphID g1 = vertex_glyph_id[cgalcube.source(hi)];
GlyphID g2 = vertex_glyph_id[cgalcube.target(hi)];
assert(g1.glyph_contour != -1 &&
g1.glyph_contour == g2.glyph_contour);
assert(g1.glyph_contour != -1 && g1.glyph_contour == g2.glyph_contour);
assert(g1.idx != -1);
assert(g2.idx != -1);
const GlyphContour &glyph_contour =
glyph_contours[g1.glyph_contour];
const auto &expoly = glyph->shape[glyph_contour.expoly];
const auto &contour =
glyph_contour.contour == 0 ?
expoly.contour :
expoly.holes[glyph_contour.contour - 1];
bool inside = false;
int32_t i1 = g1.idx / 4;
int32_t i2 = g2.idx / 4;
const GlyphContour &glyph_contour = glyph_contours[g1.glyph_contour];
const auto &expoly = glyph->shape[glyph_contour.expoly];
const auto &contour = glyph_contour.contour == 0 ? expoly.contour : expoly.holes[glyph_contour.contour - 1];
bool inside = false;
int32_t i1 = g1.idx / 4;
int32_t i2 = g2.idx / 4;
if (g1.idx == g2.idx) {
// Crossing both object vertices with the same glyph face.
int type = g1.idx % 4;
assert(type == 1 || type == 3);
const auto &p = cgalcube.point(
cgalcube.target(cgalcube.next(hi)));
const auto& p = cgalcube.point(cgalcube.target(cgalcube.next(hi)));
int i = i1 * 2;
int j = (i1 + 1 == int(contour.size())) ? 0 : i + 2;
i += glyph_contour.vertex_base;
j += glyph_contour.vertex_base;
auto abcp =
type == 1 ?
CGAL::orientation(
cgaltext.point(CGAL::SM_Vertex_index(i)),
cgaltext.point(CGAL::SM_Vertex_index(i + 1)),
cgaltext.point(CGAL::SM_Vertex_index(j)), p) :
CGAL::orientation(
cgaltext.point(CGAL::SM_Vertex_index(j)),
cgaltext.point(CGAL::SM_Vertex_index(i + 1)),
cgaltext.point(CGAL::SM_Vertex_index(j + 1)),
p);
auto abcp = type == 1 ?
CGAL::orientation(cgaltext.point(CGAL::SM_Vertex_index(i)), cgaltext.point(CGAL::SM_Vertex_index(i + 1)), cgaltext.point(CGAL::SM_Vertex_index(j)), p) :
CGAL::orientation(cgaltext.point(CGAL::SM_Vertex_index(j)), cgaltext.point(CGAL::SM_Vertex_index(i + 1)), cgaltext.point(CGAL::SM_Vertex_index(j + 1)), p);
inside = abcp == CGAL::POSITIVE;
} else if (g1.idx < g2.idx) {
if (i1 == 0 && i2 + 1 == contour.size()) {
@ -715,15 +627,13 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
// Is this face oriented towards p or away from p?
const auto &a = cgalcube.point(cgalcube.source(hi));
const auto &b = cgalcube.point(cgalcube.target(hi));
const auto &c = cgalcube.point(
cgalcube.target(cgalcube.next(hi)));
// FIXME prosim nahrad skutecnou projekci.
// projection.project()
const auto p =
a +
MeshBoolean::cgal2::EpicKernel::Vector_3(0, 0, 10);
const auto &c = cgalcube.point(cgalcube.target(cgalcube.next(hi)));
//FIXME prosim nahrad skutecnou projekci.
//projection.project()
const auto p = a + MeshBoolean::cgal2::EpicKernel::Vector_3(0, 0, 10);
auto abcp = CGAL::orientation(a, b, c, p);
if (abcp == CGAL::POSITIVE) color = marked;
if (abcp == CGAL::POSITIVE)
color = marked;
}
break;
}
@ -742,9 +652,7 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
auto hi = cgalcube.halfedge(fi_seed);
auto hi_prev = cgalcube.prev(hi);
auto hi_next = cgalcube.next(hi);
if (!get(ecm, cgalcube.edge(hi)) &&
!get(ecm, cgalcube.edge(hi_prev)) &&
!get(ecm, cgalcube.edge(hi_next))) {
if (! get(ecm, cgalcube.edge(hi)) && ! get(ecm, cgalcube.edge(hi_prev)) && ! get(ecm, cgalcube.edge(hi_next))) {
queue.emplace_back(fi_seed);
do {
auto fi = queue.back();
@ -752,28 +660,21 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
auto hi = cgalcube.halfedge(fi);
auto hi_prev = cgalcube.prev(hi);
auto hi_next = cgalcube.next(hi);
// The following condition may not apply if crossing a
// silhouette wrt. the glyph projection direction.
// assert(! get(ecm, cgalcube.edge(hi))
// && ! get(ecm, cgalcube.edge(hi_prev))
// && ! get(ecm, cgalcube.edge(hi_next)));
// The following condition may not apply if crossing a silhouette wrt. the glyph projection direction.
// assert(! get(ecm, cgalcube.edge(hi)) && ! get(ecm, cgalcube.edge(hi_prev)) && ! get(ecm, cgalcube.edge(hi_next)));
auto this_opposite = cgalcube.face(cgalcube.opposite(hi));
bool this_marked = face_colors[this_opposite] == marked;
auto prev_opposite = cgalcube.face(
cgalcube.opposite(hi_prev));
auto prev_opposite = cgalcube.face(cgalcube.opposite(hi_prev));
bool prev_marked = face_colors[prev_opposite] == marked;
auto next_opposite = cgalcube.face(
cgalcube.opposite(hi_next));
bool next_marked = face_colors[next_opposite] == marked;
int num_marked = this_marked + prev_marked + next_marked;
auto next_opposite = cgalcube.face(cgalcube.opposite(hi_next));
bool next_marked = face_colors[next_opposite] == marked;
int num_marked = this_marked + prev_marked + next_marked;
if (num_marked >= 2) {
face_colors[fi] = marked;
if (num_marked == 2)
queue.emplace_back(!this_marked ? this_opposite :
!prev_marked ? prev_opposite :
next_opposite);
queue.emplace_back(! this_marked ? this_opposite : ! prev_marked ? prev_opposite : next_opposite);
}
} while (!queue.empty());
} while (! queue.empty());
}
}
@ -788,8 +689,7 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
MarkedSplit = -5,
UnmarkedEmitted = -6,
};
std::vector<FaceState> face_states(cube.indices.size(),
FaceState::Unknown);
std::vector<FaceState> face_states(cube.indices.size(), FaceState::Unknown);
for (auto fi_seed : cgalcube.faces()) {
FaceState &state = face_states[object_face_source_id[fi_seed]];
bool m = face_colors[fi_seed] == marked;
@ -802,126 +702,94 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
state = m ? FaceState::MarkedSplit : FaceState::UnmarkedSplit;
break;
case FaceState::Marked:
case FaceState::MarkedSplit: state = FaceState::MarkedSplit; break;
default: assert(false);
case FaceState::MarkedSplit:
state = FaceState::MarkedSplit;
break;
default:
assert(false);
}
}
indexed_triangle_set its_extruded;
its_extruded.indices.reserve(cgalcube.number_of_faces());
its_extruded.vertices.reserve(cgalcube.number_of_vertices());
// Mapping of its_extruded vertices (original and offsetted) to
// cgalcuble's vertices.
std::vector<std::pair<int32_t, int32_t>>
map_vertices(cgalcube.number_of_vertices(),
std::pair<int32_t, int32_t>{-1, -1});
// Mapping of its_extruded vertices (original and offsetted) to cgalcuble's vertices.
std::vector<std::pair<int32_t, int32_t>> map_vertices(cgalcube.number_of_vertices(), std::pair<int32_t, int32_t>{-1, -1});
Vec3f extrude_dir{0, 0, 5.f};
Vec3f extrude_dir { 0, 0, 5.f };
for (auto fi : cgalcube.faces()) {
const int32_t source_face_id = object_face_source_id[fi];
const FaceState state = face_states[source_face_id];
assert(state == FaceState::Unmarked ||
state == FaceState::UnmarkedSplit ||
state == FaceState::UnmarkedEmitted ||
assert(state == FaceState::Unmarked || state == FaceState::UnmarkedSplit || state == FaceState::UnmarkedEmitted ||
state == FaceState::Marked || state == FaceState::MarkedSplit);
if (state == FaceState::UnmarkedEmitted) {
// Already emitted.
} else if (state == FaceState::Unmarked ||
state == FaceState::UnmarkedSplit) {
} else if (state == FaceState::Unmarked || state == FaceState::UnmarkedSplit) {
// Just copy the unsplit source face.
const Vec3i source_vertices = cube.indices[source_face_id];
Vec3i target_vertices;
for (int i = 0; i < 3; ++i) {
target_vertices(i) = map_vertices[source_vertices(i)].first;
if (target_vertices(i) == -1) {
map_vertices[source_vertices(i)].first = target_vertices(
i) = int(its_extruded.vertices.size());
its_extruded.vertices.emplace_back(
cube.vertices[source_vertices(i)]);
map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
its_extruded.vertices.emplace_back(cube.vertices[source_vertices(i)]);
}
}
its_extruded.indices.emplace_back(target_vertices);
face_states[source_face_id] = FaceState::UnmarkedEmitted;
} else {
auto hi = cgalcube.halfedge(fi);
auto hi = cgalcube.halfedge(fi);
auto hi_prev = cgalcube.prev(hi);
auto hi_next = cgalcube.next(hi);
const Vec3i
source_vertices{int((std::size_t) cgalcube.target(hi)),
int((std::size_t) cgalcube.target(hi_next)),
int((std::size_t) cgalcube.target(hi_prev))};
Vec3i target_vertices;
const Vec3i source_vertices{ int((std::size_t)cgalcube.target(hi)), int((std::size_t)cgalcube.target(hi_next)), int((std::size_t)cgalcube.target(hi_prev)) };
Vec3i target_vertices;
if (face_colors[fi] == marked) {
// Extrude the face. Neighbor edges separating extruded face
// from non-extruded face will be extruded.
bool boundary_vertex[3] = {false, false, false};
Vec3i target_vertices_extruded{-1, -1, -1};
// Extrude the face. Neighbor edges separating extruded face from non-extruded face will be extruded.
bool boundary_vertex[3] = { false, false, false };
Vec3i target_vertices_extruded { -1, -1, -1 };
for (int i = 0; i < 3; ++i) {
if (face_colors[cgalcube.face(cgalcube.opposite(hi))] !=
marked)
if (face_colors[cgalcube.face(cgalcube.opposite(hi))] != marked)
// Edge separating extruded / non-extruded region.
boundary_vertex[i] = boundary_vertex[(i + 2) % 3] =
true;
boundary_vertex[i] = boundary_vertex[(i + 2) % 3] = true;
hi = cgalcube.next(hi);
}
for (int i = 0; i < 3; ++i) {
target_vertices_extruded(
i) = map_vertices[source_vertices(i)].second;
for (int i = 0; i < 3; ++ i) {
target_vertices_extruded(i) = map_vertices[source_vertices(i)].second;
if (target_vertices_extruded(i) == -1) {
map_vertices[source_vertices(i)].second =
target_vertices_extruded(i) = int(
its_extruded.vertices.size());
const auto &p = cgalcube.point(cgalcube.target(hi));
its_extruded.vertices.emplace_back(
Vec3f{float(p.x()), float(p.y()), float(p.z())} +
extrude_dir);
map_vertices[source_vertices(i)].second = target_vertices_extruded(i) = int(its_extruded.vertices.size());
const auto& p = cgalcube.point(cgalcube.target(hi));
its_extruded.vertices.emplace_back(Vec3f{ float(p.x()), float(p.y()), float(p.z()) } + extrude_dir);
}
if (boundary_vertex[i]) {
target_vertices(
i) = map_vertices[source_vertices(i)].first;
target_vertices(i) = map_vertices[source_vertices(i)].first;
if (target_vertices(i) == -1) {
map_vertices[source_vertices(i)].first =
target_vertices(i) = int(
its_extruded.vertices.size());
const auto &p = cgalcube.point(
cgalcube.target(hi));
its_extruded.vertices.emplace_back(p.x(), p.y(),
p.z());
map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
const auto& p = cgalcube.point(cgalcube.target(hi));
its_extruded.vertices.emplace_back(p.x(), p.y(), p.z());
}
}
hi = cgalcube.next(hi);
}
its_extruded.indices.emplace_back(target_vertices_extruded);
// Add the sides.
for (int i = 0; i < 3; ++i) {
for (int i = 0; i < 3; ++ i) {
int j = (i + 1) % 3;
assert(target_vertices_extruded[i] != -1 &&
target_vertices_extruded[j] != -1);
assert(target_vertices_extruded[i] != -1 && target_vertices_extruded[j] != -1);
if (boundary_vertex[i] && boundary_vertex[j]) {
assert(target_vertices[i] != -1 &&
target_vertices[j] != -1);
its_extruded.indices.emplace_back(
Vec3i{target_vertices[i], target_vertices[j],
target_vertices_extruded[i]});
its_extruded.indices.emplace_back(
Vec3i{target_vertices_extruded[i],
target_vertices[j],
target_vertices_extruded[j]});
assert(target_vertices[i] != -1 && target_vertices[j] != -1);
its_extruded.indices.emplace_back(Vec3i{ target_vertices[i], target_vertices[j], target_vertices_extruded[i] });
its_extruded.indices.emplace_back(Vec3i{ target_vertices_extruded[i], target_vertices[j], target_vertices_extruded[j] });
}
}
} else {
// Copy the face.
Vec3i target_vertices;
for (int i = 0; i < 3; ++i) {
target_vertices(
i) = map_vertices[source_vertices(i)].first;
for (int i = 0; i < 3; ++ i) {
target_vertices(i) = map_vertices[source_vertices(i)].first;
if (target_vertices(i) == -1) {
map_vertices[source_vertices(i)].first =
target_vertices(i) = int(
its_extruded.vertices.size());
map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
const auto &p = cgalcube.point(cgalcube.target(hi));
its_extruded.vertices.emplace_back(p.x(), p.y(),
p.z());
its_extruded.vertices.emplace_back(p.x(), p.y(), p.z());
}
hi = cgalcube.next(hi);
}
@ -936,25 +804,21 @@ TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
std::vector<Vec3f> edges_its_colors;
for (auto ei : cgalcube.edges())
if (cgalcube.is_valid(ei)) {
const auto &p1 = cgalcube.point(cgalcube.vertex(ei, 0));
const auto &p2 = cgalcube.point(cgalcube.vertex(ei, 1));
bool constrained = get(ecm, ei);
Vec3f color = constrained ? Vec3f{1.f, 0, 0} : Vec3f{0, 1., 0};
edges_its.indices.emplace_back(
Vec3i(edges_its.vertices.size(), edges_its.vertices.size() + 1,
edges_its.vertices.size() + 2));
const auto &p1 = cgalcube.point(cgalcube.vertex(ei, 0));
const auto &p2 = cgalcube.point(cgalcube.vertex(ei, 1));
bool constrained = get(ecm, ei);
Vec3f color = constrained ? Vec3f{ 1.f, 0, 0 } : Vec3f{ 0, 1., 0 };
edges_its.indices.emplace_back(Vec3i(edges_its.vertices.size(), edges_its.vertices.size() + 1, edges_its.vertices.size() + 2));
edges_its.vertices.emplace_back(Vec3f(p1.x(), p1.y(), p1.z()));
edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z()));
edges_its.vertices.emplace_back(
Vec3f(p2.x(), p2.y(), p2.z() + 0.001));
edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z() + 0.001));
edges_its_colors.emplace_back(color);
edges_its_colors.emplace_back(color);
edges_its_colors.emplace_back(color);
}
its_write_obj(edges_its, edges_its_colors,
"c:\\data\\temp\\corefined-edges.obj");
its_write_obj(edges_its, edges_its_colors, "c:\\data\\temp\\corefined-edges.obj");
// MeshBoolean::cgal::minus(cube, cube2);
// MeshBoolean::cgal::minus(cube, cube2);
// REQUIRE(!MeshBoolean::cgal::does_self_intersect(cube));
// REQUIRE(!MeshBoolean::cgal::does_self_intersect(cube));
}