From 9fce0ce3a614295331391ed1f6b4d05018a21600 Mon Sep 17 00:00:00 2001 From: tamasmeszaros Date: Fri, 1 Oct 2021 18:07:30 +0200 Subject: [PATCH] Fix compile issues and overlapping polygon fails --- src/libslic3r/Geometry.cpp | 214 +++++++++++++++++++++++++++- src/libslic3r/Geometry.hpp | 2 + tests/libslic3r/CMakeLists.txt | 1 + tests/libslic3r/test_geometry.cpp | 222 ++++++++++++++++++++++++++++++ 4 files changed, 438 insertions(+), 1 deletion(-) diff --git a/src/libslic3r/Geometry.cpp b/src/libslic3r/Geometry.cpp index 321443204..10c617c60 100644 --- a/src/libslic3r/Geometry.cpp +++ b/src/libslic3r/Geometry.cpp @@ -20,6 +20,12 @@ #include #include +#if defined(_MSC_VER) && defined(__clang__) +#define BOOST_NO_CXX17_HDR_STRING_VIEW +#endif + +#include + #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif @@ -1543,4 +1549,210 @@ double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) return (axis.z() < 0) ? -angle : angle; } -} } +namespace rotcalip { + +using int256_t = boost::multiprecision::int256_t; +using int128_t = boost::multiprecision::int128_t; + +inline int128_t magnsq(const Point &p) +{ + return int128_t(p.x()) * p.x() + int64_t(p.y()) * p.y(); +} + +inline int128_t dot(const Point &a, const Point &b) +{ + return int128_t(a.x()) * b.x() + int64_t(a.y()) * b.y(); +} + +template +inline Scalar dotperp(const Point &a, const Point &b) +{ + return Scalar(a.x()) * b.y() - Scalar(a.y()) * b.x(); +} + +using boost::multiprecision::abs; + +// Compares the angle enclosed by vectors dir and dirA (alpha) with the angle +// enclosed by -dir and dirB (beta). Returns -1 if alpha is less than beta, 0 +// if they are equal and 1 if alpha is greater than beta. Note that dir is +// reversed for beta, because it represents the opposite side of a caliper. +int cmp_angles(const Point &dir, const Point &dirA, const Point &dirB) { + int128_t dotA = dot(dir, dirA); + int128_t dotB = dot(-dir, dirB); + int256_t dcosa = int256_t(magnsq(dirB)) * int256_t(abs(dotA)) * dotA; + int256_t dcosb = int256_t(magnsq(dirA)) * int256_t(abs(dotB)) * dotB; + int256_t diff = dcosa - dcosb; + + return diff > 0? -1 : (diff < 0 ? 1 : 0); +} + +// A helper class to navigate on a polygon. Given a vertex index, one can +// get the edge belonging to that vertex, the coordinates of the vertex, the +// next and previous edges. Stuff that is needed in the rotating calipers algo. +class Idx +{ + size_t m_idx; + const Polygon *m_poly; +public: + explicit Idx(const Polygon &p): m_idx{0}, m_poly{&p} {} + explicit Idx(size_t idx, const Polygon &p): m_idx{idx}, m_poly{&p} {} + + size_t idx() const { return m_idx; } + void set_idx(size_t i) { m_idx = i; } + size_t next() const { return (m_idx + 1) % m_poly->size(); } + size_t inc() { return m_idx = (m_idx + 1) % m_poly->size(); } + Point prev_dir() const { + return pt() - (*m_poly)[(m_idx + m_poly->size() - 1) % m_poly->size()]; + } + + const Point &pt() const { return (*m_poly)[m_idx]; } + const Point dir() const { return (*m_poly)[next()] - pt(); } + const Point next_dir() const + { + return (*m_poly)[(m_idx + 2) % m_poly->size()] - (*m_poly)[next()]; + } + const Polygon &poly() const { return *m_poly; } +}; + +enum class AntipodalVisitMode { Full, EdgesOnly }; + +// Visit all antipodal pairs starting from the initial ia, ib pair which +// has to be a valid antipodal pair (not checked). fn is called for every +// antipodal pair encountered including the initial one. +// The callback Fn has a signiture of bool(size_t i, size_t j, const Point &dir) +// where i,j are the vertex indices of the antipodal pair and dir is the +// direction of the calipers touching the i vertex. +template +void visit_antipodals (Idx& ia, Idx &ib, Fn &&fn) +{ + // Set current caliper direction to be the lower edge angle from X axis + int cmp = cmp_angles(ia.prev_dir(), ia.dir(), ib.dir()); + Idx *current = cmp <= 0 ? &ia : &ib, *other = cmp <= 0 ? &ib : &ia; + bool visitor_continue = true; + + size_t a_start = ia.idx(), b_start = ib.idx(); + bool a_finished = false, b_finished = false; + + while (visitor_continue && !(a_finished && b_finished)) { + Point current_dir_a = current == &ia ? current->dir() : -current->dir(); + visitor_continue = fn(ia.idx(), ib.idx(), current_dir_a); + + // Parallel edges encountered. An additional pair of antipodals + // can be yielded. + if constexpr (mode == AntipodalVisitMode::Full) + if (cmp == 0 && visitor_continue) { + visitor_continue = fn(current == &ia ? ia.idx() : ia.next(), + current == &ib ? ib.idx() : ib.next(), + current_dir_a); + } + + cmp = cmp_angles(current->dir(), current->next_dir(), other->dir()); + + current->inc(); + if (cmp > 0) { + std::swap(current, other); + } + + if (ia.idx() == a_start) a_finished = true; + if (ib.idx() == b_start) b_finished = true; + } +} + +} // namespace rotcalip + +bool intersects(const Polygon &A, const Polygon &B) +{ + using namespace rotcalip; + + // Establish starting antipodals as extremes in XY plane. Use the + // easily obtainable bounding boxes to check if A and B is disjoint + // and return false if the are. + + struct BB + { + size_t xmin = 0, xmax = 0, ymin = 0, ymax = 0; + const Polygon &P; + static bool cmpy(const Point &l, const Point &u) + { + return l.y() < u.y() || (l.y() == u.y() && l.x() < u.x()); + } + + BB(const Polygon &poly): P{poly} + { + for (size_t i = 0; i < P.size(); ++i) { + if (P[i] < P[xmin]) xmin = i; + if (P[xmax] < P[i]) xmax = i; + if (cmpy(P[i], P[ymin])) ymin = i; + if (cmpy(P[ymax], P[i])) ymax = i; + } + } + }; + + BB bA{A}, bB{B}; + BoundingBox bbA{{A[bA.xmin].x(), A[bA.ymin].y()}, {A[bA.xmax].x(), A[bA.ymax].y()}}; + BoundingBox bbB{{B[bB.xmin].x(), B[bB.ymin].y()}, {B[bB.xmax].x(), B[bB.ymax].y()}}; + + if (!bbA.overlap(bbB)) + return false; + + // Establish starting antipodals as extreme vertex pairs in X or Y direction + // which reside on different polygons. If no such pair is found, the two + // polygons are certainly not disjoint. + Idx imin{bA.xmin, A}, imax{bB.xmax, B}; + if (B[bB.xmin] < imin.pt()) imin = Idx{bB.xmin, B}; + if (imax.pt() < A[bA.xmax]) imax = Idx{bA.xmax, A}; + if (&imin.poly() == &imax.poly()) { + imin = Idx{bA.ymin, A}; + imax = Idx{bB.ymax, B}; + if (B[bB.ymin] < imin.pt()) imin = Idx{bB.ymin, B}; + if (imax.pt() < A[bA.ymax]) imax = Idx{bA.ymax, A}; + } + + if (&imin.poly() == &imax.poly()) + return true; + + bool found_divisor = false; + visit_antipodals( + imin, imax, + [&imin, &imax, &found_divisor](size_t ia, size_t ib, const Point &dir) { + // std::cout << "A" << ia << " B" << ib << " dir " << + // dir.x() << " " << dir.y() << std::endl; + const Polygon &A = imin.poly(), &B = imax.poly(); + + Point ref_a = A[(ia + 2) % A.size()], ref_b = B[(ib + 2) % B.size()]; + + bool is_left_a = dotperp( dir, ref_a - A[ia]) > 0; + bool is_left_b = dotperp(-dir, ref_b - B[ib]) > 0; + + // If both reference points are on the left (or right) of the + // support line and the opposite support line is to the righ (or + // left), the divisor line is found. We only test the reference + // point, as by definition, if that is on one side, all the other + // points must be on the same side of a support line. + + auto d = dotperp(dir, B[ib] - A[ia]); + if (d == 0 && ((is_left_a && is_left_b) || (!is_left_a && !is_left_b))) { + // The caliper lines are collinear, not just parallel + + // Check if the lines are overlapping and if they do ignore the divisor + Point a = A[ia], b = A[(ia + 1) % A.size()]; + if (b < a) std::swap(a, b); + Point c = B[ib], d = B[(ib + 1) % B.size()]; + if (d < c) std::swap(c, d); + + found_divisor = b < c; + + } else if (d > 0) { // B is to the left of (A, A+1) + found_divisor = !is_left_a && !is_left_b; + } else { // B is to the right of (A, A+1) + found_divisor = is_left_a && is_left_b; + } + + return !found_divisor; + }); + + // Intersects if the divisor was not found + return !found_divisor; +} + +}} // namespace Slic3r::Geometry diff --git a/src/libslic3r/Geometry.hpp b/src/libslic3r/Geometry.hpp index c6af515c8..bb583c33c 100644 --- a/src/libslic3r/Geometry.hpp +++ b/src/libslic3r/Geometry.hpp @@ -532,6 +532,8 @@ inline bool is_rotation_ninety_degrees(const Vec3d &rotation) return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z()); } +bool intersects(const Polygon &convex_poly1, const Polygon &convex_poly2); + } } // namespace Slicer::Geometry #endif diff --git a/tests/libslic3r/CMakeLists.txt b/tests/libslic3r/CMakeLists.txt index 575878cf2..05898db28 100644 --- a/tests/libslic3r/CMakeLists.txt +++ b/tests/libslic3r/CMakeLists.txt @@ -23,6 +23,7 @@ add_executable(${_TEST_NAME}_tests test_png_io.cpp test_timeutils.cpp test_indexed_triangle_set.cpp + ../libnest2d/printer_parts.cpp ) if (TARGET OpenVDB::openvdb) diff --git a/tests/libslic3r/test_geometry.cpp b/tests/libslic3r/test_geometry.cpp index 24e0908cc..308e29fca 100644 --- a/tests/libslic3r/test_geometry.cpp +++ b/tests/libslic3r/test_geometry.cpp @@ -9,6 +9,14 @@ #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/ShortestPath.hpp" +//#include +//#include "libnest2d/tools/benchmark.h" +#include "libslic3r/SVG.hpp" + +#include "../libnest2d/printer_parts.hpp" + +#include + using namespace Slic3r; TEST_CASE("Polygon::contains works properly", "[Geometry]"){ @@ -452,3 +460,217 @@ SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){ REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180)); } } + +TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") { + Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; + A.scale(1. / SCALING_FACTOR); + + Polygon B = A; + B.translate(20 / SCALING_FACTOR, 0); + + bool is_inters = Geometry::intersects(A, B); + + REQUIRE(is_inters != true); +} + +TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") { + Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; + A.scale(1. / SCALING_FACTOR); + + Polygon B = A; + B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR); + + bool is_inters = Geometry::intersects(A, B); + + REQUIRE(is_inters == true); +} + +TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") { + Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; + A.scale(1. / SCALING_FACTOR); + + Polygon B = A; + B.translate(10 / SCALING_FACTOR, 0); + + bool is_inters = Geometry::intersects(A, B); + + REQUIRE(is_inters == true); +} + +TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") { + Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; + A.scale(1. / SCALING_FACTOR); + + Polygon B = A; + B.translate(10 / SCALING_FACTOR, 10); + + bool is_inters = Geometry::intersects(A, B); + + REQUIRE(is_inters == true); +} + +TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") { + Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; + A.scale(1. / SCALING_FACTOR); + + Polygon B = A; + + bool is_inters = Geometry::intersects(A, B); + + REQUIRE(is_inters == true); +} + +// Only for benchmarking +//static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt) +//{ +// std::uniform_int_distribution dist(0, 100); + +// Polygon out; +// out.points.reserve(point_cnt); + +// coord_t tr = dist(rg) * 2 / SCALING_FACTOR; + +// for (size_t i = 0; i < point_cnt; ++i) +// out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR, +// tr + dist(rg) / SCALING_FACTOR); + +// return Geometry::convex_hull(out.points); +//} +//TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") { +// constexpr size_t TEST_CNT = 1000; +// constexpr size_t POINT_CNT = 1000; + +// std::mt19937_64 rg{std::random_device{}()}; +// Benchmark bench; + +// auto tests = reserve_vector>(TEST_CNT); +// auto results = reserve_vector(TEST_CNT); +// auto expects = reserve_vector(TEST_CNT); + +// for (size_t i = 0; i < TEST_CNT; ++i) { +// tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT)); +// } + +// bench.start(); +// for (const auto &test : tests) +// results.emplace_back(Geometry::intersects(test.first, test.second)); +// bench.stop(); + +// std::cout << "Test time: " << bench.getElapsedSec() << std::endl; + +// bench.start(); +// for (const auto &test : tests) +// expects.emplace_back(!intersection(test.first, test.second).empty()); +// bench.stop(); + +// std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl; + +// REQUIRE(results.size() == expects.size()); + +// for (size_t i = 0; i < results.size(); ++i) { +// // std::cout << expects[i] << " "; + +// if (results[i] != expects[i]) { +// SVG svg{std::string("fail") + std::to_string(i) + ".svg"}; +// svg.draw(tests[i].first, "blue"); +// svg.draw(tests[i].second, "green"); +// svg.Close(); + +// // std::cout << std::endl; +// } +// REQUIRE(results[i] == expects[i]); +// } +// std::cout << std::endl; + +//} + +struct Pair +{ + size_t first, second; + bool operator==(const Pair &b) const { return first == b.first && second == b.second; } +}; + +template<> struct std::hash { + size_t operator()(const Pair &c) const + { + return c.first * PRINTER_PART_POLYGONS.size() + c.second; + } +}; + +TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") { + + // Overlap of the same polygon should always be an intersection + for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) { + Polygon P = PRINTER_PART_POLYGONS[i]; + P = Geometry::convex_hull(P.points); + bool res = Geometry::intersects(P, P); + if (!res) { + SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"}; + svg.draw(P, "green"); + svg.Close(); + } + REQUIRE(res == true); + } + + std::unordered_set combos; + for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) { + for (size_t j = 0; j < PRINTER_PART_POLYGONS.size(); ++j) { + if (i != j) { + size_t a = std::min(i, j), b = std::max(i, j); + combos.insert(Pair{a, b}); + } + } + } + + // All disjoint + for (const auto &combo : combos) { + Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second]; + A = Geometry::convex_hull(A.points); + B = Geometry::convex_hull(B.points); + + auto bba = A.bounding_box(); + auto bbb = B.bounding_box(); + + A.translate(-bba.center()); + B.translate(-bbb.center()); + + B.translate(bba.size() + bbb.size()); + + bool res = Geometry::intersects(A, B); + bool ref = !intersection(A, B).empty(); + + if (res != ref) { + SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"}; + svg.draw(A, "blue"); + svg.draw(B, "green"); + svg.Close(); + } + + REQUIRE(res == ref); + } + + // All intersecting + for (const auto &combo : combos) { + Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second]; + A = Geometry::convex_hull(A.points); + B = Geometry::convex_hull(B.points); + + auto bba = A.bounding_box(); + auto bbb = B.bounding_box(); + + A.translate(-bba.center()); + B.translate(-bbb.center()); + + bool res = Geometry::intersects(A, B); + bool ref = !intersection(A, B).empty(); + + if (res != ref) { + SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"}; + svg.draw(A, "blue"); + svg.draw(B, "green"); + svg.Close(); + } + + REQUIRE(res == ref); + } +}