New ground route search implemented

Working gap avoidance for zero elevation
This commit is contained in:
tamasmeszaros 2022-11-15 15:08:28 +01:00
parent 963e8e6585
commit a20659fc2d
7 changed files with 360 additions and 159 deletions

View File

@ -72,9 +72,9 @@ public:
double m_t = infty(); double m_t = infty();
int m_face_id = -1; int m_face_id = -1;
const AABBMesh *m_mesh = nullptr; const AABBMesh *m_mesh = nullptr;
Vec3d m_dir; Vec3d m_dir = Vec3d::Zero();
Vec3d m_source; Vec3d m_source = Vec3d::Zero();
Vec3d m_normal; Vec3d m_normal = Vec3d::Zero();
friend class AABBMesh; friend class AABBMesh;
// A valid object of this class can only be obtained from // A valid object of this class can only be obtained from

View File

@ -39,7 +39,7 @@ class BranchingTreeBuilder: public branchingtree::Builder {
{ {
double w = WIDENING_SCALE * m_sm.cfg.pillar_widening_factor * j.weight; double w = WIDENING_SCALE * m_sm.cfg.pillar_widening_factor * j.weight;
return std::min(m_sm.cfg.base_radius_mm, double(j.Rmin) + w); return double(j.Rmin) + w;
} }
std::vector<size_t> m_unroutable_pinheads; std::vector<size_t> m_unroutable_pinheads;
@ -247,32 +247,18 @@ bool BranchingTreeBuilder::add_ground_bridge(const branchingtree::Node &from,
auto it = m_ground_mem.find(from.id); auto it = m_ground_mem.find(from.id);
if (it == m_ground_mem.end()) { if (it == m_ground_mem.end()) {
// std::optional<PointIndexEl> result = search_for_existing_pillar(from);
sla::Junction j{from.pos.cast<double>(), get_radius(from)}; sla::Junction j{from.pos.cast<double>(), get_radius(from)};
// if (!result) { Vec3d init_dir = (to.pos - from.pos).cast<double>().normalized();
auto conn = optimize_ground_connection(
ex_tbb,
m_sm,
j,
get_radius(to));
if (conn) { auto conn = deepsearch_ground_connection(ex_tbb, m_sm, j,
// Junction connlast = conn.path.back(); get_radius(to), init_dir);
// branchingtree::Node n{connlast.pos.cast<float>(), float(connlast.r)};
// n.left = from.id;
m_pillars.emplace_back(from);
// m_pillar_index.insert({n.pos, m_pillars.size() - 1});
m_gnd_connections[m_pillars.size() - 1] = conn;
ret = true; if (conn) {
} m_pillars.emplace_back(from);
// } else { m_gnd_connections[m_pillars.size() - 1] = conn;
// const auto &resnode = m_pillars[result->second];
// m_builder.add_diffbridge(j.pos, resnode.pos.cast<double>(), j.r, get_radius(resnode)); ret = true;
// m_pillars[result->second].right = from.id; }
// ret = true;
// }
// Remember that this node was tested if can go to ground, don't // Remember that this node was tested if can go to ground, don't
// test it with any other destination ground point because // test it with any other destination ground point because

View File

@ -84,6 +84,12 @@ struct SupportTreeConfig
2 * head_back_radius_mm - head_penetration_mm; 2 * head_back_radius_mm - head_penetration_mm;
} }
double safety_distance() const { return safety_distance_mm; }
double safety_distance(double r) const
{
return std::min(safety_distance_mm, r * safety_distance_mm / head_back_radius_mm);
}
// ///////////////////////////////////////////////////////////////////////// // /////////////////////////////////////////////////////////////////////////
// Compile time configuration values (candidates for runtime) // Compile time configuration values (candidates for runtime)
// ///////////////////////////////////////////////////////////////////////// // /////////////////////////////////////////////////////////////////////////
@ -91,7 +97,9 @@ struct SupportTreeConfig
// The max Z angle for a normal at which it will get completely ignored. // The max Z angle for a normal at which it will get completely ignored.
static const double constexpr normal_cutoff_angle = 150.0 * M_PI / 180.0; static const double constexpr normal_cutoff_angle = 150.0 * M_PI / 180.0;
// The shortest distance of any support structure from the model surface // The safety gap between a support structure and model body. For support
// struts smaller than head_back_radius, the safety distance is scaled
// down accordingly. see method safety_distance()
static const double constexpr safety_distance_mm = 0.5; static const double constexpr safety_distance_mm = 0.5;
static const double constexpr max_solo_pillar_height_mm = 15.0; static const double constexpr max_solo_pillar_height_mm = 15.0;
@ -117,11 +125,11 @@ struct SupportableMesh
: emesh{trmsh}, pts{sp}, cfg{c} : emesh{trmsh}, pts{sp}, cfg{c}
{} {}
explicit SupportableMesh(const AABBMesh &em, // explicit SupportableMesh(const AABBMesh &em,
const SupportPoints &sp, // const SupportPoints &sp,
const SupportTreeConfig &c) // const SupportTreeConfig &c)
: emesh{em}, pts{sp}, cfg{c} // : emesh{em}, pts{sp}, cfg{c}
{} // {}
}; };
inline double ground_level(const SupportableMesh &sm) inline double ground_level(const SupportableMesh &sm)

View File

@ -316,8 +316,7 @@ std::optional<DiffBridge> search_widening_path(Ex policy,
auto d = spheric_to_dir(plr, azm).normalized(); auto d = spheric_to_dir(plr, azm).normalized();
auto sd = new_radius * sm.cfg.safety_distance_mm / auto sd = sm.cfg.safety_distance(new_radius);
sm.cfg.head_back_radius_mm;
double ret = pinhead_mesh_hit(policy, sm.emesh, jp, d, radius, double ret = pinhead_mesh_hit(policy, sm.emesh, jp, d, radius,
new_radius, t, sd) new_radius, t, sd)
@ -427,7 +426,7 @@ bool optimize_pinhead_placement(Ex policy,
// Reassemble the now corrected normal // Reassemble the now corrected normal
auto nn = spheric_to_dir(polar, azimuth).normalized(); auto nn = spheric_to_dir(polar, azimuth).normalized();
double sd = m.cfg.safety_distance_mm; double sd = m.cfg.safety_distance(back_r);
// check available distance // check available distance
Hit t = pinhead_mesh_hit(policy, m.emesh, hp, nn, pin_r, back_r, w, sd); Hit t = pinhead_mesh_hit(policy, m.emesh, hp, nn, pin_r, back_r, w, sd);
@ -471,10 +470,10 @@ bool optimize_pinhead_placement(Ex policy,
head.r_back_mm = back_r; head.r_back_mm = back_r;
ret = true; ret = true;
} /*else if (back_r > m.cfg.head_fallback_radius_mm) { } else if (back_r > m.cfg.head_fallback_radius_mm) {
head.r_back_mm = m.cfg.head_fallback_radius_mm; head.r_back_mm = m.cfg.head_fallback_radius_mm;
ret = optimize_pinhead_placement(policy, m, head); ret = optimize_pinhead_placement(policy, m, head);
}*/ }
return ret; return ret;
} }
@ -527,116 +526,19 @@ GroundConnection find_pillar_route(Ex policy,
double end_radius) double end_radius)
{ {
GroundConnection ret; GroundConnection ret;
ret.path.emplace_back(source); ret.path.emplace_back(source);
Vec3d jp = source.pos, endp = jp, dir = sourcedir; double sd = sm.cfg.safety_distance(source.r);
bool can_add_base = false/*, non_head = false*/; auto gp = Vec3d{source.pos.x(), source.pos.y(), ground_level(sm)};
double gndlvl = 0.; // The Z level where pedestals should be auto hit = beam_mesh_hit(policy,
double jp_gnd = 0.; // The lowest Z where a junction center can be sm.emesh,
double gap_dist = 0.; // The gap distance between the model and the pad Beam{{source.pos, source.r}, {gp, end_radius}},
double radius = source.r; sd);
double sd = sm.cfg.safety_distance_mm;
double r2 = radius + (end_radius - radius) / (jp.z() - ground_level(sm));
auto to_floor = [&gndlvl](const Vec3d &p) { return Vec3d{p.x(), p.y(), gndlvl}; };
auto eval_limits = [&sm, &radius, &can_add_base, &gndlvl, &gap_dist, &jp_gnd]
(bool base_en = true)
{
can_add_base = base_en && radius >= sm.cfg.head_back_radius_mm;
double base_r = can_add_base ? sm.cfg.base_radius_mm : 0.;
gndlvl = ground_level(sm);
if (!can_add_base) gndlvl -= sm.pad_cfg.wall_thickness_mm;
jp_gnd = gndlvl + (can_add_base ? 0. : sm.cfg.head_back_radius_mm);
gap_dist = sm.cfg.pillar_base_safety_distance_mm + base_r + EPSILON;
};
eval_limits();
// We are dealing with a mini pillar that's potentially too long
if (radius < sm.cfg.head_back_radius_mm && jp.z() - gndlvl > 20 * radius)
{
std::optional<DiffBridge> diffbr =
search_widening_path(policy, sm, jp, dir, radius,
sm.cfg.head_back_radius_mm);
if (diffbr && diffbr->endp.z() > jp_gnd) {
endp = diffbr->endp;
radius = diffbr->end_r;
ret.path.emplace_back(endp, radius);
dir = diffbr->get_dir();
eval_limits();
} else return ret;
}
if (sm.cfg.object_elevation_mm < EPSILON)
{
// get a suitable direction for the corrector bridge. It is the
// original sourcedir's azimuth but the polar angle is saturated to the
// configured bridge slope.
auto [polar, azimuth] = dir_to_spheric(dir);
polar = PI - sm.cfg.bridge_slope;
Vec3d d = spheric_to_dir(polar, azimuth).normalized();
double t = beam_mesh_hit(policy, sm.emesh, Beam{endp, d, radius, r2}, sd).distance();
double tmax = std::min(sm.cfg.max_bridge_length_mm, t);
t = 0.;
double zd = endp.z() - jp_gnd;
double tmax2 = zd / std::sqrt(1 - sm.cfg.bridge_slope * sm.cfg.bridge_slope);
tmax = std::min(tmax, tmax2);
Vec3d nexp = endp;
double dlast = 0.;
while (((dlast = std::sqrt(sm.emesh.squared_distance(to_floor(nexp)))) < gap_dist ||
!std::isinf(beam_mesh_hit(policy, sm.emesh, Beam{nexp, DOWN, radius, r2}, sd).distance())) &&
t < tmax)
{
t += radius;
nexp = endp + t * d;
}
if (dlast < gap_dist && can_add_base) {
nexp = endp;
t = 0.;
can_add_base = false;
eval_limits(can_add_base);
zd = endp.z() - jp_gnd;
tmax2 = zd / std::sqrt(1 - sm.cfg.bridge_slope * sm.cfg.bridge_slope);
tmax = std::min(tmax, tmax2);
while (((dlast = std::sqrt(sm.emesh.squared_distance(to_floor(nexp)))) < gap_dist ||
!std::isinf(beam_mesh_hit(policy, sm.emesh, Beam{nexp, DOWN, radius}, sd).distance())) && t < tmax) {
t += radius;
nexp = endp + t * d;
}
}
// Could not find a path to avoid the pad gap
if (dlast < gap_dist) {
ret.path.clear();
return ret;
//return {false, pillar_id};
}
if (t > 0.) { // Need to make additional bridge
ret.path.emplace_back(nexp, radius);
endp = nexp;
}
}
Vec3d gp = to_floor(endp);
auto hit = beam_mesh_hit(policy, sm.emesh,
Beam{{endp, radius}, {gp, end_radius}}, sd);
if (std::isinf(hit.distance())) { if (std::isinf(hit.distance())) {
double base_radius = can_add_base ? double base_radius = std::max(sm.cfg.base_radius_mm, end_radius);
std::max(sm.cfg.base_radius_mm, end_radius) : end_radius;
Vec3d gp = to_floor(endp);
ret.pillar_base = ret.pillar_base =
Pedestal{gp, sm.cfg.base_height_mm, base_radius, end_radius}; Pedestal{gp, sm.cfg.base_height_mm, base_radius, end_radius};
} }
@ -644,6 +546,139 @@ GroundConnection find_pillar_route(Ex policy,
return ret; return ret;
} }
//template<class Ex>
//GroundConnection find_pillar_route(Ex policy,
// const SupportableMesh &sm,
// const Junction &source,
// const Vec3d &sourcedir,
// double end_radius)
//{
// GroundConnection ret;
// ret.path.emplace_back(source);
// Vec3d jp = source.pos, endp = jp, dir = sourcedir;
// bool can_add_base = false/*, non_head = false*/;
// double gndlvl = 0.; // The Z level where pedestals should be
// double jp_gnd = 0.; // The lowest Z where a junction center can be
// double gap_dist = 0.; // The gap distance between the model and the pad
// double radius = source.r;
// double sd = sm.cfg.safety_distance(radius);
// double r2 = radius + (end_radius - radius) / (jp.z() - ground_level(sm));
// auto to_floor = [&gndlvl](const Vec3d &p) { return Vec3d{p.x(), p.y(), gndlvl}; };
// auto eval_limits = [&sm, &radius, &can_add_base, &gndlvl, &gap_dist, &jp_gnd, end_radius]
// (bool base_en = true)
// {
// can_add_base = base_en && radius >= sm.cfg.head_back_radius_mm;
// double base_r = can_add_base ? std::max(sm.cfg.base_radius_mm, end_radius) : end_radius;
// gndlvl = ground_level(sm);
// if (!can_add_base) gndlvl -= sm.pad_cfg.wall_thickness_mm;
// jp_gnd = gndlvl + (can_add_base ? 0. : sm.cfg.head_back_radius_mm);
// gap_dist = sm.cfg.pillar_base_safety_distance_mm + base_r + EPSILON;
// };
// eval_limits();
// // We are dealing with a mini pillar that's potentially too long
// if (radius < sm.cfg.head_back_radius_mm && jp.z() - gndlvl > 20 * radius)
// {
// std::optional<DiffBridge> diffbr =
// search_widening_path(policy, sm, jp, dir, radius,
// sm.cfg.head_back_radius_mm);
// if (diffbr && diffbr->endp.z() > jp_gnd) {
// endp = diffbr->endp;
// radius = diffbr->end_r;
// ret.path.emplace_back(endp, radius);
// dir = diffbr->get_dir();
// eval_limits();
// } else return ret;
// }
// if (sm.cfg.object_elevation_mm < EPSILON)
// {
// // get a suitable direction for the corrector bridge. It is the
// // original sourcedir's azimuth but the polar angle is saturated to the
// // configured bridge slope.
// auto [polar, azimuth] = dir_to_spheric(dir);
// polar = PI - sm.cfg.bridge_slope;
// Vec3d d = spheric_to_dir(polar, azimuth).normalized();
// double t = beam_mesh_hit(policy, sm.emesh, Beam{endp, d, radius, r2}, sd).distance();
// double tmax = std::min(sm.cfg.max_bridge_length_mm, t);
// t = 0.;
// double zd = endp.z() - jp_gnd;
// double tmax2 = zd / std::sqrt(1 - sm.cfg.bridge_slope * sm.cfg.bridge_slope);
// tmax = std::min(tmax, tmax2);
// Vec3d nexp = endp;
// double dlast = 0.;
// double rnext = radius;
// while (((dlast = std::sqrt(sm.emesh.squared_distance(to_floor(nexp)))) < gap_dist ||
// !std::isinf(beam_mesh_hit(policy, sm.emesh, Beam{nexp, DOWN, rnext, end_radius}, sd).distance())) &&
// t < tmax)
// {
// t += radius;
// nexp = endp + t * d;
// double bridge_ratio = dlast / (dlast + (nexp.z() - ground_level(sm)));
// rnext = rnext + bridge_ratio * (end_radius - rnext);
// }
// // If could not find avoidance bridge for the pad gap, try again
// // without the pillar base
// if (dlast < gap_dist && can_add_base) {
// nexp = endp;
// t = 0.;
// rnext = radius;
// can_add_base = false;
// eval_limits(can_add_base);
// zd = endp.z() - jp_gnd;
// tmax2 = zd / std::sqrt(1 - sm.cfg.bridge_slope * sm.cfg.bridge_slope);
// tmax = std::min(tmax, tmax2);
// while (((dlast = std::sqrt(sm.emesh.squared_distance(to_floor(nexp)))) < gap_dist ||
// !std::isinf(beam_mesh_hit(policy, sm.emesh, Beam{nexp, DOWN, rnext, end_radius}, sd).distance())) && t < tmax) {
// t += radius;
// nexp = endp + t * d;
// double bridge_ratio = dlast / (dlast + (nexp.z() - ground_level(sm)));
// rnext = rnext + bridge_ratio * (end_radius - rnext);
// }
// }
// // Could not find a path to avoid the pad gap
// if (dlast < gap_dist) {
// ret.path.clear();
// return ret;
// }
// if (t > 0.) { // Need to make additional bridge
// ret.path.emplace_back(nexp, rnext);
// endp = nexp;
// }
// }
// Vec3d gp = to_floor(endp);
// auto hit = beam_mesh_hit(policy, sm.emesh,
// Beam{{endp, radius}, {gp, end_radius}}, sd);
// if (std::isinf(hit.distance())) {
// double base_radius = can_add_base ?
// std::max(sm.cfg.base_radius_mm, end_radius) : end_radius;
// Vec3d gp = to_floor(endp);
// ret.pillar_base =
// Pedestal{gp, sm.cfg.base_height_mm, base_radius, end_radius};
// }
// return ret;
//}
inline long build_ground_connection(SupportTreeBuilder &builder, inline long build_ground_connection(SupportTreeBuilder &builder,
const SupportableMesh &sm, const SupportableMesh &sm,
const GroundConnection &conn) const GroundConnection &conn)
@ -689,7 +724,7 @@ GroundConnection find_ground_connection(
{ {
auto hjp = j.pos; auto hjp = j.pos;
double r = j.r; double r = j.r;
auto sd = sm.cfg.safety_distance_mm; auto sd = sm.cfg.safety_distance(r);
double r2 = j.r + (end_r - j.r) / (j.pos.z() - ground_level(sm)); double r2 = j.r + (end_r - j.r) / (j.pos.z() - ground_level(sm));
double t = beam_mesh_hit(policy, sm.emesh, Beam{hjp, dir, r, r2}, sd).distance(); double t = beam_mesh_hit(policy, sm.emesh, Beam{hjp, dir, r, r2}, sd).distance();
@ -700,7 +735,7 @@ GroundConnection find_ground_connection(
while (!gnd_route && d < t) { while (!gnd_route && d < t) {
Vec3d endp = hjp + d * dir; Vec3d endp = hjp + d * dir;
double bridge_ratio = d / (d + (endp.z() - sm.emesh.ground_level())); double bridge_ratio = d / (d + (endp.z() - ground_level(sm)));
double pill_r = r + bridge_ratio * (end_r - r); double pill_r = r + bridge_ratio * (end_r - r);
gnd_route = find_pillar_route(policy, sm, {endp, pill_r}, dir, end_r); gnd_route = find_pillar_route(policy, sm, {endp, pill_r}, dir, end_r);
@ -745,7 +780,7 @@ GroundConnection optimize_ground_connection(
Optimizer<opt::AlgNLoptMLSL> solver(get_criteria(sm.cfg).stop_score(1e6)); Optimizer<opt::AlgNLoptMLSL> solver(get_criteria(sm.cfg).stop_score(1e6));
solver.seed(0); // we want deterministic behavior solver.seed(0); // we want deterministic behavior
auto sd = sm.cfg.safety_distance_mm; auto sd = sm.cfg.safety_distance(j.r);
auto oresult = solver.to_max().optimize( auto oresult = solver.to_max().optimize(
[&j, sd, &policy, &sm, &downdst, &end_radius](const opt::Input<2> &input) { [&j, sd, &policy, &sm, &downdst, &end_radius](const opt::Input<2> &input) {
auto &[plr, azm] = input; auto &[plr, azm] = input;
@ -762,6 +797,120 @@ GroundConnection optimize_ground_connection(
return find_ground_connection(policy, sm, j, bridgedir, end_radius); return find_ground_connection(policy, sm, j, bridgedir, end_radius);
} }
template<class Ex>
GroundConnection deepsearch_ground_connection(
Ex policy,
const SupportableMesh &sm,
const Junction &j,
double end_radius,
const Vec3d &init_dir = DOWN)
{
// Score is the total lenght of the route. Feasible routes will have
// infinite length (rays not colliding with model), thus the stop score
// should be a reasonably big number.
constexpr double StopScore = 1e6;
const auto sd = sm.cfg.safety_distance(j.r);
const auto gndlvl = ground_level(sm);
const double widening = end_radius - j.r;
const double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
const double zelev_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
auto criteria = get_criteria(sm.cfg).stop_score(StopScore);
Optimizer<opt::AlgNLoptMLSL> solver(criteria);
solver.seed(0); // enforce deterministic behavior
auto optfn = [&](const opt::Input<3> &input) {
double ret = NaNd;
// solver suggests polar, azimuth and bridge length values:
auto &[plr, azm, bridge_len] = input;
Vec3d n = spheric_to_dir(plr, azm);
Vec3d bridge_end = j.pos + bridge_len * n;
double full_len = bridge_len + bridge_end.z() - gndlvl;
double bridge_r = j.r + widening * bridge_len / full_len;
double brhit_dist = 0.;
if (bridge_len > EPSILON) {
// beam_mesh_hit with a zero lenght bridge is invalid
Beam bridgebeam{Ball{j.pos, j.r}, Ball{bridge_end, bridge_r}};
auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
brhit_dist = brhit.distance();
}
if (brhit_dist < bridge_len) {
ret = brhit_dist;
} else {
// check if pillar can be placed below
auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
Beam gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
if (std::isinf(gndhit.distance())) {
// Ground route is free with this bridge
if (sm.cfg.object_elevation_mm < EPSILON) {
// Dealing with zero elevation mode, to not route pillars
// into the gap between the optional pad and the model
double gap = std::sqrt(sm.emesh.squared_distance(gp));
if (gap < zelev_gap)
ret = full_len - zelev_gap + gap;
else // success
ret = StopScore;
} else {
// No zero elevation, return success
ret = StopScore;
}
} else {
// Ground route is not free
ret = bridge_len + gndhit.distance();
}
}
return ret;
};
auto [plr_init, azm_init] = dir_to_spheric(init_dir);
// Saturate the polar angle to max tilt defined in config
plr_init = std::max(plr_init, PI - sm.cfg.bridge_slope);
auto oresult = solver.to_max().optimize(
optfn,
initvals({plr_init, azm_init, 0.}), // start with a zero bridge
bounds({ {PI - sm.cfg.bridge_slope, PI}, // bounds for polar angle
{-PI, PI}, // bounds for azimuth
{0., sm.cfg.max_bridge_length_mm} }) // bounds bridge length
);
GroundConnection conn;
if (oresult.score >= StopScore) {
// search was successful, extract and apply the result
auto &[plr, azm, bridge_len] = oresult.optimum;
Vec3d n = spheric_to_dir(plr, azm);
Vec3d bridge_end = j.pos + bridge_len * n;
double full_len = bridge_len + bridge_end.z() - gndlvl;
double bridge_r = j.r + widening * bridge_len / full_len;
Vec3d gp{bridge_end.x(), bridge_end.y(), gndlvl};
conn.path.emplace_back(j);
conn.path.emplace_back(Junction{bridge_end, bridge_r});
conn.pillar_base =
Pedestal{gp, sm.cfg.base_height_mm, base_r, end_radius};
}
return conn;
}
template<class Ex> template<class Ex>
bool optimize_anchor_placement(Ex policy, bool optimize_anchor_placement(Ex policy,
const SupportableMesh &sm, const SupportableMesh &sm,
@ -779,8 +928,7 @@ bool optimize_anchor_placement(Ex policy,
double lmax = std::min(sm.cfg.head_width_mm, double lmax = std::min(sm.cfg.head_width_mm,
distance(from.pos, anchor.pos) - 2 * from.r); distance(from.pos, anchor.pos) - 2 * from.r);
double sd = anchor.r_back_mm * sm.cfg.safety_distance_mm / double sd = sm.cfg.safety_distance(anchor.r_back_mm);
sm.cfg.head_back_radius_mm;
Optimizer<AlgNLoptGenetic> solver(get_criteria(sm.cfg) Optimizer<AlgNLoptGenetic> solver(get_criteria(sm.cfg)
.stop_score(anchor.fullwidth()) .stop_score(anchor.fullwidth())

View File

@ -28,7 +28,7 @@ TEST_CASE("Avoid disk below junction", "[suptreeutils]")
sla::SupportableMesh sm{disk, sla::SupportPoints{}, cfg}; sla::SupportableMesh sm{disk, sla::SupportPoints{}, cfg};
sla::GroundConnection conn = sla::GroundConnection conn =
sla::optimize_ground_connection(ex_seq, sm, j, EndRadius, sla::DOWN); sla::deepsearch_ground_connection(ex_seq, sm, j, EndRadius, sla::DOWN);
#ifndef NDEBUG #ifndef NDEBUG
@ -63,6 +63,66 @@ TEST_CASE("Avoid disk below junction", "[suptreeutils]")
REQUIRE(pR + FromRadius > CylRadius); REQUIRE(pR + FromRadius > CylRadius);
} }
TEST_CASE("Avoid disk below junction - Zero elevation", "[suptreeutils]")
{
// In this test there will be a disk mesh with some radius, centered at
// (0, 0, 0) and above the disk, a junction from which the support pillar
// should be routed. The algorithm needs to find an avoidance route.
using namespace Slic3r;
constexpr double FromRadius = .5;
constexpr double EndRadius = 1.;
constexpr double CylRadius = 4.;
constexpr double CylHeight = 1.;
sla::SupportTreeConfig cfg;
cfg.object_elevation_mm = 0.;
indexed_triangle_set disk = its_make_cylinder(CylRadius, CylHeight);
// 2.5 * CyRadius height should be enough to be able to insert a bridge
// with 45 degree tilt above the disk.
sla::Junction j{Vec3d{0., 0., 2.5 * CylRadius}, FromRadius};
sla::SupportableMesh sm{disk, sla::SupportPoints{}, cfg};
sla::GroundConnection conn =
sla::deepsearch_ground_connection(ex_seq, sm, j, EndRadius, sla::DOWN);
#ifndef NDEBUG
sla::SupportTreeBuilder builder;
if (!conn)
builder.add_junction(j);
sla::build_ground_connection(builder, sm, conn);
its_merge(disk, builder.merged_mesh());
its_write_stl_ascii("output_disk_ze.stl", "disk", disk);
#endif
REQUIRE(bool(conn));
// The route should include the source and one avoidance junction.
REQUIRE(conn.path.size() == 2);
// Check if the radius increases with each node
REQUIRE(conn.path.front().r < conn.path.back().r);
REQUIRE(conn.path.back().r < conn.pillar_base->r_top);
// The end radius and the pillar base's upper radius should match
REQUIRE(conn.pillar_base->r_top == Approx(EndRadius));
// Check if the avoidance junction is indeed outside of the disk barrier's
// edge.
auto p = conn.path.back().pos;
double pR = std::sqrt(p.x() * p.x()) + std::sqrt(p.y() * p.y());
REQUIRE(pR + FromRadius > CylRadius);
}
TEST_CASE("Avoid disk below junction with barrier on the side", "[suptreeutils]") TEST_CASE("Avoid disk below junction with barrier on the side", "[suptreeutils]")
{ {
// In this test there will be a disk mesh with some radius, centered at // In this test there will be a disk mesh with some radius, centered at
@ -91,7 +151,7 @@ TEST_CASE("Avoid disk below junction with barrier on the side", "[suptreeutils]"
sla::SupportableMesh sm{disk, sla::SupportPoints{}, cfg}; sla::SupportableMesh sm{disk, sla::SupportPoints{}, cfg};
sla::GroundConnection conn = sla::GroundConnection conn =
sla::optimize_ground_connection(ex_seq, sm, j, EndRadius, sla::DOWN); sla::deepsearch_ground_connection(ex_seq, sm, j, EndRadius, sla::DOWN);
#ifndef NDEBUG #ifndef NDEBUG

View File

@ -118,7 +118,7 @@ void test_supports(const std::string &obj_filename,
// Create the special index-triangle mesh with spatial indexing which // Create the special index-triangle mesh with spatial indexing which
// is the input of the support point and support mesh generators // is the input of the support point and support mesh generators
AABBMesh emesh{mesh}; sla::SupportableMesh sm{mesh.its, {}, supportcfg};
#ifdef SLIC3R_HOLE_RAYCASTER #ifdef SLIC3R_HOLE_RAYCASTER
if (hollowingcfg.enabled) if (hollowingcfg.enabled)
@ -130,23 +130,23 @@ void test_supports(const std::string &obj_filename,
// Create the support point generator // Create the support point generator
sla::SupportPointGenerator::Config autogencfg; sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}}; sla::SupportPointGenerator point_gen{sm.emesh, autogencfg, [] {}, [](int) {}};
point_gen.seed(0); // Make the test repeatable point_gen.seed(0); // Make the test repeatable
point_gen.execute(out.model_slices, out.slicegrid); point_gen.execute(out.model_slices, out.slicegrid);
// Get the calculated support points. // Get the calculated support points.
std::vector<sla::SupportPoint> support_points = point_gen.output(); sm.pts = point_gen.output();
int validityflags = ASSUME_NO_REPAIR; int validityflags = ASSUME_NO_REPAIR;
// If there is no elevation, support points shall be removed from the // If there is no elevation, support points shall be removed from the
// bottom of the object. // bottom of the object.
if (std::abs(supportcfg.object_elevation_mm) < EPSILON) { if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
sla::remove_bottom_points(support_points, zmin + supportcfg.base_height_mm); sla::remove_bottom_points(sm.pts, zmin + supportcfg.base_height_mm);
} else { } else {
// Should be support points at least on the bottom of the model // Should be support points at least on the bottom of the model
REQUIRE_FALSE(support_points.empty()); REQUIRE_FALSE(sm.pts.empty());
// Also the support mesh should not be empty. // Also the support mesh should not be empty.
validityflags |= ASSUME_NO_EMPTY; validityflags |= ASSUME_NO_EMPTY;
@ -154,7 +154,6 @@ void test_supports(const std::string &obj_filename,
// Generate the actual support tree // Generate the actual support tree
sla::SupportTreeBuilder treebuilder; sla::SupportTreeBuilder treebuilder;
sla::SupportableMesh sm{emesh, support_points, supportcfg};
switch (sm.cfg.tree_type) { switch (sm.cfg.tree_type) {
case sla::SupportTreeType::Default: { case sla::SupportTreeType::Default: {