Further refactoring into struct Camera

This commit is contained in:
enricoturri1966 2021-04-16 14:05:55 +02:00
parent 074a44833e
commit a393df59d7
2 changed files with 69 additions and 97 deletions

View file

@ -21,12 +21,6 @@ double Camera::FrustrumMinNearZ = 100.0;
double Camera::FrustrumZMargin = 10.0; double Camera::FrustrumZMargin = 10.0;
double Camera::MaxFovDeg = 60.0; double Camera::MaxFovDeg = 60.0;
Camera::Camera()
: requires_zoom_to_bed(false)
{
set_default_orientation();
}
std::string Camera::get_type_as_string() const std::string Camera::get_type_as_string() const
{ {
switch (m_type) switch (m_type)
@ -49,11 +43,6 @@ void Camera::set_type(EType type)
} }
} }
void Camera::set_type(const std::string& type)
{
set_type((type == "1") ? Perspective : Ortho);
}
void Camera::select_next_type() void Camera::select_next_type()
{ {
unsigned char next = (unsigned char)m_type + 1; unsigned char next = (unsigned char)m_type + 1;
@ -65,24 +54,18 @@ void Camera::select_next_type()
void Camera::set_target(const Vec3d& target) void Camera::set_target(const Vec3d& target)
{ {
Vec3d new_target = validate_target(target); const Vec3d new_target = validate_target(target);
Vec3d new_displacement = new_target - m_target; const Vec3d new_displacement = new_target - m_target;
if (!new_displacement.isApprox(Vec3d::Zero())) if (!new_displacement.isApprox(Vec3d::Zero())) {
{
m_target = new_target; m_target = new_target;
m_view_matrix.translate(-new_displacement); m_view_matrix.translate(-new_displacement);
} }
} }
void Camera::update_zoom(double delta_zoom)
{
set_zoom(m_zoom / (1.0 - std::max(std::min(delta_zoom, 4.0), -4.0) * 0.1));
}
void Camera::set_zoom(double zoom) void Camera::set_zoom(double zoom)
{ {
// Don't allow to zoom too far outside the scene. // Don't allow to zoom too far outside the scene.
double zoom_min = min_zoom(); const double zoom_min = min_zoom();
if (zoom_min > 0.0) if (zoom_min > 0.0)
zoom = std::max(zoom, zoom_min); zoom = std::max(zoom, zoom_min);
@ -138,7 +121,7 @@ void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double fa
double w = 0.0; double w = 0.0;
double h = 0.0; double h = 0.0;
double old_distance = m_distance; const double old_distance = m_distance;
std::pair<double, double>* frustrum_zs = const_cast<std::pair<double, double>*>(&m_frustrum_zs); std::pair<double, double>* frustrum_zs = const_cast<std::pair<double, double>*>(&m_frustrum_zs);
*frustrum_zs = calc_tight_frustrum_zs_around(box); *frustrum_zs = calc_tight_frustrum_zs_around(box);
if (m_distance != old_distance) if (m_distance != old_distance)
@ -154,7 +137,7 @@ void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double fa
w = 0.5 * (double)m_viewport[2]; w = 0.5 * (double)m_viewport[2];
h = 0.5 * (double)m_viewport[3]; h = 0.5 * (double)m_viewport[3];
double inv_zoom = get_inv_zoom(); const double inv_zoom = get_inv_zoom();
w *= inv_zoom; w *= inv_zoom;
h *= inv_zoom; h *= inv_zoom;
@ -169,7 +152,7 @@ void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double fa
case Perspective: case Perspective:
{ {
// scale near plane to keep w and h constant on the plane at z = m_distance // scale near plane to keep w and h constant on the plane at z = m_distance
double scale = frustrum_zs->first / m_distance; const double scale = frustrum_zs->first / m_distance;
w *= scale; w *= scale;
h *= scale; h *= scale;
*const_cast<double*>(&m_gui_scale) = scale; *const_cast<double*>(&m_gui_scale) = scale;
@ -202,7 +185,7 @@ void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double fa
void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor) void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor)
{ {
// Calculate the zoom factor needed to adjust the view around the given box. // Calculate the zoom factor needed to adjust the view around the given box.
double zoom = calc_zoom_to_bounding_box_factor(box, margin_factor); const double zoom = calc_zoom_to_bounding_box_factor(box, margin_factor);
if (zoom > 0.0) { if (zoom > 0.0) {
m_zoom = zoom; m_zoom = zoom;
// center view around box center // center view around box center
@ -213,9 +196,8 @@ void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor)
void Camera::zoom_to_volumes(const GLVolumePtrs& volumes, double margin_factor) void Camera::zoom_to_volumes(const GLVolumePtrs& volumes, double margin_factor)
{ {
Vec3d center; Vec3d center;
double zoom = calc_zoom_to_volumes_factor(volumes, center, margin_factor); const double zoom = calc_zoom_to_volumes_factor(volumes, center, margin_factor);
if (zoom > 0.0) if (zoom > 0.0) {
{
m_zoom = zoom; m_zoom = zoom;
// center view around the calculated center // center view around the calculated center
set_target(center); set_target(center);
@ -289,8 +271,8 @@ void Camera::rotate_on_sphere(double delta_azimut_rad, double delta_zenit_rad, b
} }
} }
Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target; const Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ()); const auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ());
m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right()); m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right());
m_view_rotation.normalize(); m_view_rotation.normalize();
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.)); m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
@ -299,10 +281,10 @@ void Camera::rotate_on_sphere(double delta_azimut_rad, double delta_zenit_rad, b
// Virtual trackball, rotate around an axis, where the eucledian norm of the axis gives the rotation angle in radians. // Virtual trackball, rotate around an axis, where the eucledian norm of the axis gives the rotation angle in radians.
void Camera::rotate_local_around_target(const Vec3d& rotation_rad) void Camera::rotate_local_around_target(const Vec3d& rotation_rad)
{ {
double angle = rotation_rad.norm(); const double angle = rotation_rad.norm();
if (std::abs(angle) > EPSILON) { if (std::abs(angle) > EPSILON) {
Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target; const Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
Vec3d axis = m_view_rotation.conjugate() * rotation_rad.normalized(); const Vec3d axis = m_view_rotation.conjugate() * rotation_rad.normalized();
m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)); m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis));
m_view_rotation.normalize(); m_view_rotation.normalize();
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.)); m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
@ -310,18 +292,13 @@ void Camera::rotate_local_around_target(const Vec3d& rotation_rad)
} }
} }
double Camera::min_zoom() const
{
return 0.7 * calc_zoom_to_bounding_box_factor(m_scene_box);
}
std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const
{ {
std::pair<double, double> ret; std::pair<double, double> ret;
auto& [near_z, far_z] = ret; auto& [near_z, far_z] = ret;
// box in eye space // box in eye space
BoundingBoxf3 eye_box = box.transformed(m_view_matrix); const BoundingBoxf3 eye_box = box.transformed(m_view_matrix);
near_z = -eye_box.max(2); near_z = -eye_box.max(2);
far_z = -eye_box.min(2); far_z = -eye_box.min(2);
@ -331,14 +308,14 @@ std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBo
// ensure min size // ensure min size
if (far_z - near_z < FrustrumMinZRange) { if (far_z - near_z < FrustrumMinZRange) {
double mid_z = 0.5 * (near_z + far_z); const double mid_z = 0.5 * (near_z + far_z);
double half_size = 0.5 * FrustrumMinZRange; const double half_size = 0.5 * FrustrumMinZRange;
near_z = mid_z - half_size; near_z = mid_z - half_size;
far_z = mid_z + half_size; far_z = mid_z + half_size;
} }
if (near_z < FrustrumMinNearZ) { if (near_z < FrustrumMinNearZ) {
double delta = FrustrumMinNearZ - near_z; const double delta = FrustrumMinNearZ - near_z;
set_distance(m_distance + delta); set_distance(m_distance + delta);
near_z += delta; near_z += delta;
far_z += delta; far_z += delta;
@ -358,45 +335,43 @@ std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBo
double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double margin_factor) const double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double margin_factor) const
{ {
double max_bb_size = box.max_size(); const double max_bb_size = box.max_size();
if (max_bb_size == 0.0) if (max_bb_size == 0.0)
return -1.0; return -1.0;
// project the box vertices on a plane perpendicular to the camera forward axis // project the box vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes // then calculates the vertices coordinate on this plane along the camera xy axes
Vec3d right = get_dir_right(); const Vec3d right = get_dir_right();
Vec3d up = get_dir_up(); const Vec3d up = get_dir_up();
Vec3d forward = get_dir_forward(); const Vec3d forward = get_dir_forward();
const Vec3d bb_center = box.center();
Vec3d bb_center = box.center();
// box vertices in world space // box vertices in world space
std::vector<Vec3d> vertices; const std::vector<Vec3d> vertices = {
vertices.reserve(8); box.min,
vertices.push_back(box.min); { box.max(0), box.min(1), box.min(2) },
vertices.emplace_back(box.max(0), box.min(1), box.min(2)); { box.max(0), box.max(1), box.min(2) },
vertices.emplace_back(box.max(0), box.max(1), box.min(2)); { box.min(0), box.max(1), box.min(2) },
vertices.emplace_back(box.min(0), box.max(1), box.min(2)); { box.min(0), box.min(1), box.max(2) },
vertices.emplace_back(box.min(0), box.min(1), box.max(2)); { box.max(0), box.min(1), box.max(2) },
vertices.emplace_back(box.max(0), box.min(1), box.max(2)); box.max,
vertices.push_back(box.max); { box.min(0), box.max(1), box.max(2) }
vertices.emplace_back(box.min(0), box.max(1), box.max(2)); };
double min_x = DBL_MAX; double min_x = DBL_MAX;
double min_y = DBL_MAX; double min_y = DBL_MAX;
double max_x = -DBL_MAX; double max_x = -DBL_MAX;
double max_y = -DBL_MAX; double max_y = -DBL_MAX;
for (const Vec3d& v : vertices) for (const Vec3d& v : vertices) {
{
// project vertex on the plane perpendicular to camera forward axis // project vertex on the plane perpendicular to camera forward axis
Vec3d pos = v - bb_center; const Vec3d pos = v - bb_center;
Vec3d proj_on_plane = pos - pos.dot(forward) * forward; const Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes // calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right); const double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up); const double y_on_plane = proj_on_plane.dot(up);
min_x = std::min(min_x, x_on_plane); min_x = std::min(min_x, x_on_plane);
min_y = std::min(min_y, y_on_plane); min_y = std::min(min_y, y_on_plane);
@ -406,7 +381,7 @@ double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double
double dx = max_x - min_x; double dx = max_x - min_x;
double dy = max_y - min_y; double dy = max_y - min_y;
if ((dx <= 0.0) || (dy <= 0.0)) if (dx <= 0.0 || dy <= 0.0)
return -1.0f; return -1.0f;
dx *= margin_factor; dx *= margin_factor;
@ -423,13 +398,12 @@ double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& c
// project the volumes vertices on a plane perpendicular to the camera forward axis // project the volumes vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes // then calculates the vertices coordinate on this plane along the camera xy axes
Vec3d right = get_dir_right(); const Vec3d right = get_dir_right();
Vec3d up = get_dir_up(); const Vec3d up = get_dir_up();
Vec3d forward = get_dir_forward(); const Vec3d forward = get_dir_forward();
BoundingBoxf3 box; BoundingBoxf3 box;
for (const GLVolume* volume : volumes) for (const GLVolume* volume : volumes) {
{
box.merge(volume->transformed_bounding_box()); box.merge(volume->transformed_bounding_box());
} }
center = box.center(); center = box.center();
@ -439,24 +413,22 @@ double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& c
double max_x = -DBL_MAX; double max_x = -DBL_MAX;
double max_y = -DBL_MAX; double max_y = -DBL_MAX;
for (const GLVolume* volume : volumes) for (const GLVolume* volume : volumes) {
{
const Transform3d& transform = volume->world_matrix(); const Transform3d& transform = volume->world_matrix();
const TriangleMesh* hull = volume->convex_hull(); const TriangleMesh* hull = volume->convex_hull();
if (hull == nullptr) if (hull == nullptr)
continue; continue;
for (const Vec3f& vertex : hull->its.vertices) for (const Vec3f& vertex : hull->its.vertices) {
{ const Vec3d v = transform * vertex.cast<double>();
Vec3d v = transform * vertex.cast<double>();
// project vertex on the plane perpendicular to camera forward axis // project vertex on the plane perpendicular to camera forward axis
Vec3d pos = v - center; const Vec3d pos = v - center;
Vec3d proj_on_plane = pos - pos.dot(forward) * forward; const Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes // calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right); const double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up); const double y_on_plane = proj_on_plane.dot(up);
min_x = std::min(min_x, x_on_plane); min_x = std::min(min_x, x_on_plane);
min_y = std::min(min_y, y_on_plane); min_y = std::min(min_y, y_on_plane);
@ -467,8 +439,8 @@ double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& c
center += 0.5 * (max_x + min_x) * right + 0.5 * (max_y + min_y) * up; center += 0.5 * (max_x + min_x) * right + 0.5 * (max_y + min_y) * up;
double dx = margin_factor * (max_x - min_x); const double dx = margin_factor * (max_x - min_x);
double dy = margin_factor * (max_y - min_y); const double dy = margin_factor * (max_y - min_y);
if (dx <= 0.0 || dy <= 0.0) if (dx <= 0.0 || dy <= 0.0)
return -1.0f; return -1.0f;
@ -486,13 +458,13 @@ void Camera::set_distance(double distance) const
void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up) void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up)
{ {
Vec3d unit_z = (position - target).normalized(); const Vec3d unit_z = (position - target).normalized();
Vec3d unit_x = up.cross(unit_z).normalized(); const Vec3d unit_x = up.cross(unit_z).normalized();
Vec3d unit_y = unit_z.cross(unit_x).normalized(); const Vec3d unit_y = unit_z.cross(unit_x).normalized();
m_target = target; m_target = target;
m_distance = (position - target).norm(); m_distance = (position - target).norm();
Vec3d new_position = m_target + m_distance * unit_z; const Vec3d new_position = m_target + m_distance * unit_z;
m_view_matrix(0, 0) = unit_x(0); m_view_matrix(0, 0) = unit_x(0);
m_view_matrix(0, 1) = unit_x(1); m_view_matrix(0, 1) = unit_x(1);
@ -524,10 +496,10 @@ void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up
void Camera::set_default_orientation() void Camera::set_default_orientation()
{ {
m_zenit = 45.0f; m_zenit = 45.0f;
double theta_rad = Geometry::deg2rad(-(double)m_zenit); const double theta_rad = Geometry::deg2rad(-(double)m_zenit);
double phi_rad = Geometry::deg2rad(45.0); const double phi_rad = Geometry::deg2rad(45.0);
double sin_theta = ::sin(theta_rad); const double sin_theta = ::sin(theta_rad);
Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad)); const Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));
m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ()); m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ());
m_view_rotation.normalize(); m_view_rotation.normalize();
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- camera_pos), m_view_rotation, Vec3d(1., 1., 1.)); m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- camera_pos), m_view_rotation, Vec3d(1., 1., 1.));
@ -542,9 +514,9 @@ Vec3d Camera::validate_target(const Vec3d& target) const
test_box.scale(ScaleFactor); test_box.scale(ScaleFactor);
test_box.translate(m_scene_box.center()); test_box.translate(m_scene_box.center());
return Vec3d(std::clamp(target(0), test_box.min(0), test_box.max(0)), return { std::clamp(target(0), test_box.min(0), test_box.max(0)),
std::clamp(target(1), test_box.min(1), test_box.max(1)), std::clamp(target(1), test_box.min(1), test_box.max(1)),
std::clamp(target(2), test_box.min(2), test_box.max(2))); std::clamp(target(2), test_box.min(2), test_box.max(2)) };
} }
void Camera::update_zenit() void Camera::update_zenit()

View file

@ -26,7 +26,7 @@ struct Camera
Num_types Num_types
}; };
bool requires_zoom_to_bed; bool requires_zoom_to_bed{ false };
private: private:
EType m_type{ Perspective }; EType m_type{ Perspective };
@ -48,13 +48,13 @@ private:
BoundingBoxf3 m_scene_box; BoundingBoxf3 m_scene_box;
public: public:
Camera(); Camera() { set_default_orientation(); }
EType get_type() const { return m_type; } EType get_type() const { return m_type; }
std::string get_type_as_string() const; std::string get_type_as_string() const;
void set_type(EType type); void set_type(EType type);
// valid values for type: "0" -> ortho, "1" -> perspective // valid values for type: "0" -> ortho, "1" -> perspective
void set_type(const std::string& type); void set_type(const std::string& type) { set_type((type == "1") ? Perspective : Ortho); }
void select_next_type(); void select_next_type();
void enable_update_config_on_type_change(bool enable) { m_update_config_on_type_change_enabled = enable; } void enable_update_config_on_type_change(bool enable) { m_update_config_on_type_change_enabled = enable; }
@ -67,7 +67,7 @@ public:
double get_zoom() const { return m_zoom; } double get_zoom() const { return m_zoom; }
double get_inv_zoom() const { assert(m_zoom != 0.0); return 1.0 / m_zoom; } double get_inv_zoom() const { assert(m_zoom != 0.0); return 1.0 / m_zoom; }
void update_zoom(double delta_zoom); void update_zoom(double delta_zoom) { set_zoom(m_zoom / (1.0 - std::max(std::min(delta_zoom, 4.0), -4.0) * 0.1)); }
void set_zoom(double zoom); void set_zoom(double zoom);
const BoundingBoxf3& get_scene_box() const { return m_scene_box; } const BoundingBoxf3& get_scene_box() const { return m_scene_box; }
@ -127,7 +127,7 @@ public:
void look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up); void look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up);
double max_zoom() const { return 250.0; } double max_zoom() const { return 250.0; }
double min_zoom() const; double min_zoom() const { return 0.7 * calc_zoom_to_bounding_box_factor(m_scene_box); }
private: private:
// returns tight values for nearZ and farZ plane around the given bounding box // returns tight values for nearZ and farZ plane around the given bounding box