Hopefully improved the seam placer performance a lot

This commit is contained in:
PavelMikus 2022-05-25 16:56:45 +02:00 committed by Lukas Matena
parent 6da220062c
commit a4201321e8
5 changed files with 243 additions and 157 deletions

View File

@ -245,6 +245,8 @@ add_library(libslic3r STATIC
Thread.hpp
TriangleSelector.cpp
TriangleSelector.hpp
TriangleSetSampling.cpp
TriangleSetSampling.hpp
MTUtils.hpp
Zipper.hpp
Zipper.cpp

View File

@ -9,15 +9,15 @@
#include <queue>
#include "libslic3r/AABBTreeLines.hpp"
#include "libslic3r/KDTreeIndirect.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/Layer.hpp"
#include "libslic3r/QuadricEdgeCollapse.hpp"
#include "libslic3r/Subdivide.hpp"
#include "libslic3r/Geometry/Curves.hpp"
#include "libslic3r/TriangleSetSampling.hpp"
#include "libslic3r/Utils.hpp"
@ -130,19 +130,22 @@ Vec3f sample_power_cosine_hemisphere(const Vec2f &samples, float power) {
return Vec3f(cos(term1) * term3, sin(term1) * term3, term2);
}
std::vector<FaceVisibilityInfo> raycast_visibility(const AABBTreeIndirect::Tree<3, float> &raycasting_tree,
const indexed_triangle_set &triangles, size_t negative_volumes_start_index) {
std::vector<float> raycast_visibility(const AABBTreeIndirect::Tree<3, float> &raycasting_tree,
const indexed_triangle_set &triangles,
const TriangleSetSamples &samples,
size_t negative_volumes_start_index) {
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: raycast visibility for " << triangles.indices.size() << " triangles: start";
<< "SeamPlacer: raycast visibility of " << samples.positions.size() << " samples over " << triangles.indices.size()
<< " triangles: end";
//prepare uniform samples of a hemisphere
float step_size = 1.0f / SeamPlacer::sqr_rays_per_triangle;
float step_size = 1.0f / SeamPlacer::sqr_rays_per_sample_point;
std::vector<Vec3f> precomputed_sample_directions(
SeamPlacer::sqr_rays_per_triangle * SeamPlacer::sqr_rays_per_triangle);
for (size_t x_idx = 0; x_idx < SeamPlacer::sqr_rays_per_triangle; ++x_idx) {
SeamPlacer::sqr_rays_per_sample_point * SeamPlacer::sqr_rays_per_sample_point);
for (size_t x_idx = 0; x_idx < SeamPlacer::sqr_rays_per_sample_point; ++x_idx) {
float sample_x = x_idx * step_size + step_size / 2.0;
for (size_t y_idx = 0; y_idx < SeamPlacer::sqr_rays_per_triangle; ++y_idx) {
size_t dir_index = x_idx * SeamPlacer::sqr_rays_per_triangle + y_idx;
for (size_t y_idx = 0; y_idx < SeamPlacer::sqr_rays_per_sample_point; ++y_idx) {
size_t dir_index = x_idx * SeamPlacer::sqr_rays_per_sample_point + y_idx;
float sample_y = y_idx * step_size + step_size / 2.0;
precomputed_sample_directions[dir_index] = sample_hemisphere_uniform( { sample_x, sample_y });
}
@ -150,24 +153,19 @@ std::vector<FaceVisibilityInfo> raycast_visibility(const AABBTreeIndirect::Tree<
bool model_contains_negative_parts = negative_volumes_start_index < triangles.indices.size();
std::vector<FaceVisibilityInfo> result(triangles.indices.size());
std::vector<float> result(samples.positions.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, result.size()),
[&triangles, &precomputed_sample_directions, model_contains_negative_parts, negative_volumes_start_index,
&raycasting_tree, &result](tbb::blocked_range<size_t> r) {
&raycasting_tree, &result, &samples](tbb::blocked_range<size_t> r) {
// Maintaining hits memory outside of the loop, so it does not have to be reallocated for each query.
std::vector<igl::Hit> hits;
for (size_t face_index = r.begin(); face_index < r.end(); ++face_index) {
FaceVisibilityInfo &dest = result[face_index];
dest.visibility = 1.0f;
constexpr float decrease = 1.0f
/ (SeamPlacer::sqr_rays_per_triangle * SeamPlacer::sqr_rays_per_triangle);
for (size_t s_idx = r.begin(); s_idx < r.end(); ++s_idx) {
result[s_idx] = 1.0f;
constexpr float decrease_step = 1.0f
/ (SeamPlacer::sqr_rays_per_sample_point * SeamPlacer::sqr_rays_per_sample_point);
Vec3i face = triangles.indices[face_index];
Vec3f A = triangles.vertices[face.x()];
Vec3f B = triangles.vertices[face.y()];
Vec3f C = triangles.vertices[face.z()];
Vec3f center = (A + B + C) / 3.0f;
Vec3f normal = ((B - A).cross(C - B)).normalized();
const Vec3f &center = samples.positions[s_idx];
const Vec3f &normal = samples.normals[s_idx];
// apply the local direction via Frame struct - the local_dir is with respect to +Z being forward
Frame f;
f.set_from_z(normal);
@ -183,11 +181,14 @@ std::vector<FaceVisibilityInfo> raycast_visibility(const AABBTreeIndirect::Tree<
bool hit = AABBTreeIndirect::intersect_ray_first_hit(triangles.vertices,
triangles.indices, raycasting_tree, ray_origin_d, final_ray_dir_d, hitpoint);
if (hit && its_face_normal(triangles, hitpoint.id).dot(final_ray_dir) <= 0) {
dest.visibility -= decrease;
result[s_idx] -= decrease_step;
}
} else { //TODO improve logic for order based boolean operations - consider order of volumes
bool casting_from_negative_volume = samples.triangle_indices[s_idx]
>= negative_volumes_start_index;
Vec3d ray_origin_d = (center + normal * 0.1).cast<double>(); // start above surface.
if (face_index >= negative_volumes_start_index) { // if casting from negative volume face, invert direction, change start pos
if (casting_from_negative_volume) { // if casting from negative volume face, invert direction, change start pos
final_ray_dir = -1.0 * final_ray_dir;
ray_origin_d = (center - normal * 0.03).cast<double>();
}
@ -209,7 +210,7 @@ std::vector<FaceVisibilityInfo> raycast_visibility(const AABBTreeIndirect::Tree<
}
}
if (counter == 0) {
dest.visibility -= decrease;
result[s_idx] -= decrease_step;
}
}
}
@ -218,7 +219,8 @@ std::vector<FaceVisibilityInfo> raycast_visibility(const AABBTreeIndirect::Tree<
});
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: raycast visibility for " << triangles.indices.size() << " triangles: end";
<< "SeamPlacer: raycast visibility of " << samples.positions.size() << " samples over " << triangles.indices.size()
<< " triangles: end";
return result;
}
@ -273,12 +275,28 @@ std::vector<float> calculate_polygon_angles_at_vertices(const Polygon &polygon,
return result;
}
struct CoordinateFunctor {
const std::vector<Vec3f> *coordinates;
CoordinateFunctor(const std::vector<Vec3f> *coords) :
coordinates(coords) {
}
CoordinateFunctor() :
coordinates(nullptr) {
}
const float& operator()(size_t idx, size_t dim) const {
return coordinates->operator [](idx)[dim];
}
};
// structure to store global information about the model - occlusion hits, enforcers, blockers
struct GlobalModelInfo {
indexed_triangle_set model;
std::vector<Vec3i> triangle_neighbours;
AABBTreeIndirect::Tree<3, float> model_tree;
std::vector<FaceVisibilityInfo> visiblity_info;
TriangleSetSamples mesh_samples;
std::vector<float> mesh_samples_visibility;
CoordinateFunctor mesh_samples_coordinate_functor;
KDTreeIndirect<3, float, CoordinateFunctor> mesh_samples_tree { CoordinateFunctor { } };
float mesh_samples_radius;
indexed_triangle_set enforcers;
indexed_triangle_set blockers;
AABBTreeIndirect::Tree<3, float> enforcers_tree;
@ -303,48 +321,72 @@ struct GlobalModelInfo {
}
float calculate_point_visibility(const Vec3f &position) const {
size_t hit_idx;
Vec3f hit_point;
if (AABBTreeIndirect::squared_distance_to_indexed_triangle_set(model.vertices, model.indices, model_tree,
position, hit_idx, hit_point) >= 0) {
float visibility = visiblity_info[hit_idx].visibility;
Vec3i neighbours = this->triangle_neighbours[hit_idx];
size_t n_count = 0;
for (int neighbour : neighbours) {
if (neighbour >= 0) {
visibility += visiblity_info[neighbour].visibility;
n_count++;
}
}
return visibility / (1 + n_count);
} else {
return 0.0f;
std::vector<size_t> points = find_nearby_points(mesh_samples_tree, position, mesh_samples_radius);
if (points.empty()) {
size_t idx = find_closest_point(mesh_samples_tree, position);
return mesh_samples_visibility[idx];
}
float total_weight = 0;
float total_visibility = 0;
for (size_t i = 0; i < points.size(); ++i) {
size_t sample_idx = points[i];
float weight = 1.0f; // SeamPlacer::visibility_samples_radius * SeamPlacer::visibility_samples_radius -
//(position - mesh_samples.positions[sample_idx]).squaredNorm();
total_visibility += weight * mesh_samples_visibility[sample_idx];
total_weight += weight;
}
return total_visibility / total_weight;
}
#ifdef DEBUG_FILES
void debug_export(const indexed_triangle_set &obj_mesh, const char *file_name) const {
void debug_export(const indexed_triangle_set &obj_mesh) const {
indexed_triangle_set divided_mesh = obj_mesh;
Slic3r::CNumericLocalesSetter locales_setter;
FILE *fp = boost::nowide::fopen(file_name, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "stl_write_obj: Couldn't open " << file_name << " for writing";
return;
{
auto filename = debug_out_path("visiblity.obj");
FILE *fp = boost::nowide::fopen(filename.c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "stl_write_obj: Couldn't open " << filename << " for writing";
return;
}
for (size_t i = 0; i < divided_mesh.vertices.size(); ++i) {
float visibility = calculate_point_visibility(divided_mesh.vertices[i]);
Vec3f color = value_to_rgbf(0.0f, 1.0f, visibility);
fprintf(fp, "v %f %f %f %f %f %f\n",
divided_mesh.vertices[i](0), divided_mesh.vertices[i](1), divided_mesh.vertices[i](2),
color(0), color(1), color(2));
}
for (size_t i = 0; i < divided_mesh.indices.size(); ++i)
fprintf(fp, "f %d %d %d\n", divided_mesh.indices[i][0] + 1, divided_mesh.indices[i][1] + 1,
divided_mesh.indices[i][2] + 1);
fclose(fp);
}
for (size_t i = 0; i < divided_mesh.vertices.size(); ++i) {
float visibility = calculate_point_visibility(divided_mesh.vertices[i]);
Vec3f color = value_to_rgbf(0.0f, 1.0f, visibility);
fprintf(fp, "v %f %f %f %f %f %f\n",
divided_mesh.vertices[i](0), divided_mesh.vertices[i](1), divided_mesh.vertices[i](2),
color(0), color(1), color(2));
{
auto filename = debug_out_path("visiblity_samples.obj");
FILE *fp = boost::nowide::fopen(filename.c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "stl_write_obj: Couldn't open " << filename << " for writing";
return;
}
for (size_t i = 0; i < mesh_samples.positions.size(); ++i) {
float visibility = mesh_samples_visibility[i];
Vec3f color = value_to_rgbf(0.0f, 1.0f, visibility);
fprintf(fp, "v %f %f %f %f %f %f\n",
mesh_samples.positions[i](0), mesh_samples.positions[i](1), mesh_samples.positions[i](2),
color(0), color(1), color(2));
}
fclose(fp);
}
for (size_t i = 0; i < divided_mesh.indices.size(); ++i)
fprintf(fp, "f %d %d %d\n", divided_mesh.indices[i][0] + 1, divided_mesh.indices[i][1] + 1,
divided_mesh.indices[i][2] + 1);
fclose(fp);
}
#endif
@ -563,86 +605,40 @@ void compute_global_occlusion(GlobalModelInfo &result, const PrintObject *po) {
}
}
}
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather occlusion meshes: end";
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: simplify occlusion meshes: start";
//simplify raycasting mesh
{
its_quadric_edge_collapse(triangle_set, SeamPlacer::raycasting_decimation_target_triangle_count, nullptr,
nullptr,
nullptr);
float triangle_set_area = tbb::parallel_reduce(tbb::blocked_range<size_t>(0, triangle_set.indices.size()), 0,
[&triangle_set](
tbb::blocked_range<size_t> r, float sum) {
for (size_t t_idx = r.begin(); t_idx < r.end(); ++t_idx) {
const Vec3f &a = triangle_set.vertices[triangle_set.indices[t_idx].x()];
const Vec3f &b = triangle_set.vertices[triangle_set.indices[t_idx].y()];
const Vec3f &c = triangle_set.vertices[triangle_set.indices[t_idx].z()];
sum += 0.5f * (b - a).cross(c - a).norm();
}
return sum;
}, std::plus<float>());
float target_triangle_area = triangle_set_area / SeamPlacer::raycasting_subdivision_target_triangle_count;
float target_triangle_length = 2 * 1.316 * sqrtf(target_triangle_area); //assuming 30-30-120 triangle
float subdivision_length = std::max(SeamPlacer::raycasting_subdivision_target_length, target_triangle_length);
triangle_set = its_subdivide(triangle_set, subdivision_length);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: triangle set after subdivision: " << triangle_set.indices.size();
}
//simplify negative volumes
{
its_quadric_edge_collapse(negative_volumes_set, SeamPlacer::raycasting_decimation_target_triangle_count,
nullptr,
nullptr,
nullptr);
float negative_volumes_set_area = tbb::parallel_reduce(
tbb::blocked_range<size_t>(0, negative_volumes_set.indices.size()), 0,
[&negative_volumes_set](
tbb::blocked_range<size_t> r, float sum) {
for (size_t t_idx = r.begin(); t_idx < r.end(); ++t_idx) {
const Vec3f &a = negative_volumes_set.vertices[negative_volumes_set.indices[t_idx].x()];
const Vec3f &b = negative_volumes_set.vertices[negative_volumes_set.indices[t_idx].y()];
const Vec3f &c = negative_volumes_set.vertices[negative_volumes_set.indices[t_idx].z()];
sum += 0.5f * (b - a).cross(c - a).norm();
}
return sum;
}, std::plus<float>());
float target_triangle_area = negative_volumes_set_area
/ SeamPlacer::raycasting_subdivision_target_triangle_count;
float target_triangle_length = 2 * 1.316 * sqrtf(target_triangle_area); //assuming 30-30-120 triangle
float subdivision_length = std::max(SeamPlacer::raycasting_subdivision_target_length, target_triangle_length);
negative_volumes_set = its_subdivide(negative_volumes_set, subdivision_length);
}
size_t negative_volumes_start_index = triangle_set.indices.size();
its_merge(triangle_set, negative_volumes_set);
its_transform(triangle_set, obj_transform);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: simplify occlusion meshes: end";
<< "SeamPlacer: gather occlusion meshes: end";
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: Compute visiblity sample points: start";
result.mesh_samples = sample_its_uniform_parallel(SeamPlacer::raycasting_visibility_samples_count,
triangle_set);
result.mesh_samples_coordinate_functor = CoordinateFunctor(&result.mesh_samples.positions);
result.mesh_samples_tree = KDTreeIndirect<3, float, CoordinateFunctor>(result.mesh_samples_coordinate_functor,
result.mesh_samples.positions.size());
result.mesh_samples_radius = sqrt(
4.0f * (result.mesh_samples.total_area / SeamPlacer::raycasting_visibility_samples_count) / PI);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: Compute visiblity sample points: end; mesh_sample_radius: " << result.mesh_samples_radius;
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer:build AABB tree: start";
auto raycasting_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(triangle_set.vertices,
triangle_set.indices);
std::vector<Vec3i> neighbours = its_face_neighbors_par(triangle_set);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer:build AABB tree: end";
result.model = triangle_set;
result.triangle_neighbours = neighbours;
result.model_tree = raycasting_tree;
result.visiblity_info = raycast_visibility(raycasting_tree, triangle_set, negative_volumes_start_index);
result.mesh_samples_visibility = raycast_visibility(raycasting_tree, triangle_set, result.mesh_samples,
negative_volumes_start_index);
#ifdef DEBUG_FILES
auto filename = debug_out_path("visiblity.obj");
result.debug_export(triangle_set, filename.c_str());
result.debug_export(triangle_set);
#endif
}
@ -1408,26 +1404,28 @@ void SeamPlacer::init(const Print &print) {
SeamPosition configured_seam_preference = po->config().seam_position.value;
SeamComparator comparator { configured_seam_preference };
GlobalModelInfo global_model_info { };
gather_enforcers_blockers(global_model_info, po);
{
GlobalModelInfo global_model_info { };
gather_enforcers_blockers(global_model_info, po);
if (configured_seam_preference == spAligned || configured_seam_preference == spNearest) {
compute_global_occlusion(global_model_info, po);
}
if (configured_seam_preference == spAligned || configured_seam_preference == spNearest) {
compute_global_occlusion(global_model_info, po);
}
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather_seam_candidates: start";
gather_seam_candidates(po, global_model_info, configured_seam_preference);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather_seam_candidates: end";
if (configured_seam_preference == spAligned || configured_seam_preference == spNearest) {
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_candidates_visibility : start";
calculate_candidates_visibility(po, global_model_info);
<< "SeamPlacer: gather_seam_candidates: start";
gather_seam_candidates(po, global_model_info, configured_seam_preference);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_candidates_visibility : end";
}
<< "SeamPlacer: gather_seam_candidates: end";
if (configured_seam_preference == spAligned || configured_seam_preference == spNearest) {
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_candidates_visibility : start";
calculate_candidates_visibility(po, global_model_info);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_candidates_visibility : end";
}
} // destruction of global_model_info (large structure, no longer needed)
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_overhangs and layer embdedding : start";
@ -1495,7 +1493,7 @@ void SeamPlacer::place_seam(const Layer *layer, ExtrusionLoop &loop, bool extern
Vec3f seam_position;
size_t seam_index;
if (const Perimeter &perimeter = layer_perimeters.points[closest_perimeter_point_index].perimeter ;
if (const Perimeter &perimeter = layer_perimeters.points[closest_perimeter_point_index].perimeter;
perimeter.finalized) {
seam_position = perimeter.final_seam_position;
seam_index = perimeter.seam_index;

View File

@ -87,10 +87,6 @@ struct SeamCandidate {
bool central_enforcer; //marks this candidate as central point of enforced segment on the perimeter - important for alignment
};
struct FaceVisibilityInfo {
float visibility;
};
struct SeamCandidateCoordinateFunctor {
SeamCandidateCoordinateFunctor(const std::vector<SeamCandidate> &seam_candidates) :
seam_candidates(seam_candidates) {
@ -125,15 +121,13 @@ struct PrintObjectSeamData
class SeamPlacer {
public:
static constexpr size_t raycasting_decimation_target_triangle_count = 10000;
// for subdivision, both following criteria are considered, and the one with less resulting triangles is used
static constexpr size_t raycasting_subdivision_target_triangle_count = 20000;
static constexpr float raycasting_subdivision_target_length = 2.0f;
//square of number of rays per triangle
static constexpr size_t sqr_rays_per_triangle = 7;
// Number of samples generated on the mesh. There are sqr_rays_per_sample_point*sqr_rays_per_sample_point rays casted from each samples
static constexpr size_t raycasting_visibility_samples_count = 40000;
//square of number of rays per sample point
static constexpr size_t sqr_rays_per_sample_point = 8;
// arm length used during angles computation
static constexpr float polygon_local_angles_arm_distance = 0.1f;
static constexpr float polygon_local_angles_arm_distance = 0.3f;
// max tolerable distance from the previous layer is overhang_distance_tolerance_factor * flow_width
@ -141,7 +135,7 @@ public:
// determines angle importance compared to visibility ( neutral value is 1.0f. )
static constexpr float angle_importance = 0.7f;
static constexpr float angle_importance = 0.6f;
// If enforcer or blocker is closer to the seam candidate than this limit, the seam candidate is set to Blocker or Enforcer
static constexpr float enforcer_blocker_distance_tolerance = 0.35f;
@ -150,7 +144,7 @@ public:
// When searching for seam clusters for alignment:
// following value describes, how much worse score can point have and still be picked into seam cluster instead of original seam point on the same layer
static constexpr float seam_align_score_tolerance = 0.25f;
static constexpr float seam_align_score_tolerance = 0.27f;
// seam_align_tolerable_dist - if next layer closes point is too far away, break string
static constexpr float seam_align_tolerable_dist = 1.0f;
// if the seam of the current layer is too far away, and the closest seam candidate is not very good, layer is skipped.

View File

@ -0,0 +1,72 @@
#include "TriangleSetSampling.hpp"
#include <map>
#include <random>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
namespace Slic3r {
TriangleSetSamples sample_its_uniform_parallel(size_t samples_count, const indexed_triangle_set &triangle_set) {
std::vector<float> triangles_area(triangle_set.indices.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, triangle_set.indices.size()),
[&triangle_set, &triangles_area](
tbb::blocked_range<size_t> r) {
for (size_t t_idx = r.begin(); t_idx < r.end(); ++t_idx) {
const Vec3f &a = triangle_set.vertices[triangle_set.indices[t_idx].x()];
const Vec3f &b = triangle_set.vertices[triangle_set.indices[t_idx].y()];
const Vec3f &c = triangle_set.vertices[triangle_set.indices[t_idx].z()];
float area = 0.5f * (b - a).cross(c - a).norm();
triangles_area[t_idx] = area;
}
});
std::map<float, size_t> area_sum_to_triangle_idx;
float area_sum = 0;
for (size_t t_idx = 0; t_idx < triangles_area.size(); ++t_idx) {
area_sum += triangles_area[t_idx];
area_sum_to_triangle_idx[area_sum] = t_idx;
}
std::random_device rnd_device;
std::mt19937 mersenne_engine { rnd_device() };
// random numbers on interval [0, 1)
std::uniform_real_distribution<float> fdistribution;
auto get_random = [&fdistribution, &mersenne_engine]() {
return Vec3f { fdistribution(mersenne_engine), fdistribution(mersenne_engine), fdistribution(mersenne_engine) };
};
std::vector<Vec3f> random_samples(samples_count);
std::generate(random_samples.begin(), random_samples.end(), get_random);
TriangleSetSamples result;
result.total_area = area_sum;
result.positions.resize(samples_count);
result.normals.resize(samples_count);
result.triangle_indices.resize(samples_count);
tbb::parallel_for(tbb::blocked_range<size_t>(0, samples_count),
[&triangle_set, &area_sum_to_triangle_idx, &area_sum, &random_samples, &result](
tbb::blocked_range<size_t> r) {
for (size_t s_idx = r.begin(); s_idx < r.end(); ++s_idx) {
float t_sample = random_samples[s_idx].x() * area_sum;
size_t t_idx = area_sum_to_triangle_idx.upper_bound(t_sample)->second;
float sq_u = std::sqrt(random_samples[s_idx].y());
float v = random_samples[s_idx].z();
Vec3f A = triangle_set.vertices[triangle_set.indices[t_idx].x()];
Vec3f B = triangle_set.vertices[triangle_set.indices[t_idx].y()];
Vec3f C = triangle_set.vertices[triangle_set.indices[t_idx].z()];
result.positions[s_idx] = A * (1 - sq_u) + B * (sq_u * (1 - v)) + C * (v * sq_u);
result.normals[s_idx] = ((B - A).cross(C - B)).normalized();
result.triangle_indices[s_idx] = t_idx;
}
});
return result;
}
}

View File

@ -0,0 +1,20 @@
#ifndef SRC_LIBSLIC3R_TRIANGLESETSAMPLING_HPP_
#define SRC_LIBSLIC3R_TRIANGLESETSAMPLING_HPP_
#include <admesh/stl.h>
#include "libslic3r/Point.hpp"
namespace Slic3r {
struct TriangleSetSamples {
float total_area;
std::vector<Vec3f> positions;
std::vector<Vec3f> normals;
std::vector<size_t> triangle_indices;
};
TriangleSetSamples sample_its_uniform_parallel(size_t samples_count, const indexed_triangle_set &triangle_set);
}
#endif /* SRC_LIBSLIC3R_TRIANGLESETSAMPLING_HPP_ */