Measurement: extract features on the fly, not when the tool is opened

This commit is contained in:
Lukas Matena 2022-12-05 15:25:31 +01:00
parent a37f09edaa
commit a47bb5bf1b

View File

@ -8,6 +8,8 @@
#include <numeric> #include <numeric>
#define DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE 0
namespace Slic3r { namespace Slic3r {
namespace Measure { namespace Measure {
@ -63,17 +65,18 @@ public:
std::vector<SurfaceFeature> surface_features; std::vector<SurfaceFeature> surface_features;
Vec3d normal; Vec3d normal;
float area; float area;
bool features_extracted = false;
}; };
std::optional<SurfaceFeature> get_feature(size_t face_idx, const Vec3d& point) const; std::optional<SurfaceFeature> get_feature(size_t face_idx, const Vec3d& point);
int get_num_of_planes() const; int get_num_of_planes() const;
const std::vector<int>& get_plane_triangle_indices(int idx) const; const std::vector<int>& get_plane_triangle_indices(int idx) const;
const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id) const; const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id);
const TriangleMesh& get_mesh() const; const TriangleMesh& get_mesh() const;
private: private:
void update_planes(); void update_planes();
void extract_features(); void extract_features(int plane_idx);
std::vector<PlaneData> m_planes; std::vector<PlaneData> m_planes;
std::vector<size_t> m_face_to_plane; std::vector<size_t> m_face_to_plane;
@ -89,7 +92,13 @@ MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its)
: m_mesh(its) : m_mesh(its)
{ {
update_planes(); update_planes();
extract_features();
// Extracting features will be done as needed.
// To extract all planes at once, run the following:
#if DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE
for (int i=0; i<int(m_planes.size()); ++i)
extract_features(i);
#endif
} }
@ -251,238 +260,239 @@ void MeasuringImpl::update_planes()
void MeasuringImpl::extract_features() void MeasuringImpl::extract_features(int plane_idx)
{ {
assert(! m_planes[plane_idx].features_extracted);
PlaneData& plane = m_planes[plane_idx];
plane.surface_features.clear();
const Vec3d& normal = plane.normal;
Eigen::Quaterniond q;
q.setFromTwoVectors(plane.normal, Vec3d::UnitZ());
Transform3d trafo = Transform3d::Identity();
trafo.rotate(q);
const Transform3d trafo_inv = trafo.inverse();
std::vector<double> angles; // placed in outer scope to prevent reallocations std::vector<double> angles; // placed in outer scope to prevent reallocations
std::vector<double> lengths; std::vector<double> lengths;
for (const std::vector<Vec3d>& border : plane.borders) {
if (border.size() <= 1)
continue;
for (int i=0; i<(int)m_planes.size(); ++i) { bool done = false;
PlaneData& plane = m_planes[i];
plane.surface_features.clear();
const Vec3d& normal = plane.normal;
Eigen::Quaterniond q; if (border.size() > 4) {
q.setFromTwoVectors(plane.normal, Vec3d::UnitZ()); const auto& [center, radius, err] = get_center_and_radius(border, trafo, trafo_inv);
Transform3d trafo = Transform3d::Identity();
trafo.rotate(q);
const Transform3d trafo_inv = trafo.inverse();
for (const std::vector<Vec3d>& border : plane.borders) { if (err < 0.05) {
if (border.size() <= 1) // The whole border is one circle. Just add it into the list of features
continue; // and we are done.
bool done = false; bool is_polygon = border.size()>4 && border.size()<=8;
bool lengths_match = std::all_of(border.begin()+2, border.end(), [is_polygon](const Vec3d& pt) {
return Slic3r::is_approx((pt - *((&pt)-1)).squaredNorm(), (*((&pt)-1) - *((&pt)-2)).squaredNorm(), is_polygon ? 0.01 : 0.01);
});
if (border.size() > 4) { if (lengths_match && (is_polygon || border.size() > 8)) {
const auto& [center, radius, err] = get_center_and_radius(border, trafo, trafo_inv); if (is_polygon) {
// This is a polygon, add the separate edges with the center.
if (err < 0.05) { for (int j=0; j<int(border.size()); ++j)
// The whole border is one circle. Just add it into the list of features plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge,
// and we are done. border[j==0 ? border.size()-1 : j-1], border[j],
std::make_optional(center)));
bool is_polygon = border.size()>4 && border.size()<=8; } else {
bool lengths_match = std::all_of(border.begin()+2, border.end(), [is_polygon](const Vec3d& pt) { // The fit went well and it has more than 8 points - let's consider this a circle.
return Slic3r::is_approx((pt - *((&pt)-1)).squaredNorm(), (*((&pt)-1) - *((&pt)-2)).squaredNorm(), is_polygon ? 0.01 : 0.01); plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
});
if (lengths_match && (is_polygon || border.size() > 8)) {
if (is_polygon) {
// This is a polygon, add the separate edges with the center.
for (int j=0; j<int(border.size()); ++j)
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge,
border[j==0 ? border.size()-1 : j-1], border[j],
std::make_optional(center)));
} else {
// The fit went well and it has more than 8 points - let's consider this a circle.
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
}
done = true;
} }
done = true;
} }
} }
}
if (! done) { if (! done) {
// In this case, the border is not a circle and may contain circular // In this case, the border is not a circle and may contain circular
// segments. Try to find them and then add all remaining edges as edges. // segments. Try to find them and then add all remaining edges as edges.
auto are_angles_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); }; auto are_angles_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); };
auto are_lengths_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); }; auto are_lengths_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); };
// Given an idx into border, return the index that is idx+offset position, // Given an idx into border, return the index that is idx+offset position,
// while taking into account the need for wrap-around and the fact that // while taking into account the need for wrap-around and the fact that
// the first and last point are the same. // the first and last point are the same.
auto offset_to_index = [border_size = int(border.size())](int idx, int offset) -> int { auto offset_to_index = [border_size = int(border.size())](int idx, int offset) -> int {
assert(std::abs(offset) < border_size); assert(std::abs(offset) < border_size);
int out = idx+offset; int out = idx+offset;
if (out >= border_size) if (out >= border_size)
out = out - border_size; out = out - border_size;
else if (out < 0) else if (out < 0)
out = border_size + out; out = border_size + out;
return out; return out;
}; };
// First calculate angles at all the vertices. // First calculate angles at all the vertices.
angles.clear(); angles.clear();
lengths.clear(); lengths.clear();
int first_different_angle_idx = 0; int first_different_angle_idx = 0;
for (int i=0; i<int(border.size()); ++i) { for (int i=0; i<int(border.size()); ++i) {
const Vec3d& v2 = border[i] - (i == 0 ? border[border.size()-1] : border[i-1]); const Vec3d& v2 = border[i] - (i == 0 ? border[border.size()-1] : border[i-1]);
const Vec3d& v1 = (i == int(border.size()-1) ? border[0] : border[i+1]) - border[i]; const Vec3d& v1 = (i == int(border.size()-1) ? border[0] : border[i+1]) - border[i];
double angle = atan2(-normal.dot(v1.cross(v2)), -v1.dot(v2)) + M_PI; double angle = atan2(-normal.dot(v1.cross(v2)), -v1.dot(v2)) + M_PI;
if (angle > M_PI) if (angle > M_PI)
angle = 2*M_PI - angle; angle = 2*M_PI - angle;
angles.push_back(angle); angles.push_back(angle);
lengths.push_back(v2.norm()); lengths.push_back(v2.norm());
if (first_different_angle_idx == 0 && angles.size() > 1) { if (first_different_angle_idx == 0 && angles.size() > 1) {
if (! are_angles_same(angles.back(), angles[angles.size()-2])) if (! are_angles_same(angles.back(), angles[angles.size()-2]))
first_different_angle_idx = angles.size()-1; first_different_angle_idx = angles.size()-1;
}
} }
assert(border.size() == angles.size()); }
assert(border.size() == lengths.size()); assert(border.size() == angles.size());
assert(border.size() == lengths.size());
// First go around the border and pick what might be circular segments. // First go around the border and pick what might be circular segments.
// Save pair of indices to where such potential segments start and end. // Save pair of indices to where such potential segments start and end.
// Also remember the length of these segments. // Also remember the length of these segments.
int start_idx = -1; int start_idx = -1;
bool circle = false; bool circle = false;
bool first_iter = true; bool first_iter = true;
std::vector<SurfaceFeature> circles; std::vector<SurfaceFeature> circles;
std::vector<SurfaceFeature> edges; std::vector<SurfaceFeature> edges;
std::vector<std::pair<int, int>> circles_idxs; std::vector<std::pair<int, int>> circles_idxs;
//std::vector<double> circles_lengths; //std::vector<double> circles_lengths;
std::vector<Vec3d> single_circle; // could be in loop-scope, but reallocations std::vector<Vec3d> single_circle; // could be in loop-scope, but reallocations
double single_circle_length = 0.; double single_circle_length = 0.;
int first_pt_idx = offset_to_index(first_different_angle_idx, 1); int first_pt_idx = offset_to_index(first_different_angle_idx, 1);
int i = first_pt_idx; int i = first_pt_idx;
while (i != first_pt_idx || first_iter) { while (i != first_pt_idx || first_iter) {
if (are_angles_same(angles[i], angles[offset_to_index(i,-1)]) if (are_angles_same(angles[i], angles[offset_to_index(i,-1)])
&& i != offset_to_index(first_pt_idx, -1) // not the last point && i != offset_to_index(first_pt_idx, -1) // not the last point
&& i != start_idx ) { && i != start_idx ) {
// circle // circle
if (! circle) { if (! circle) {
circle = true; circle = true;
single_circle.clear(); single_circle.clear();
single_circle_length = 0.; single_circle_length = 0.;
start_idx = offset_to_index(i, -2); start_idx = offset_to_index(i, -2);
single_circle = { border[start_idx], border[offset_to_index(start_idx,1)] }; single_circle = { border[start_idx], border[offset_to_index(start_idx,1)] };
single_circle_length += lengths[offset_to_index(i, -1)]; single_circle_length += lengths[offset_to_index(i, -1)];
} }
single_circle.emplace_back(border[i]);
single_circle_length += lengths[i];
} else {
if (circle && single_circle.size() >= 5) { // Less than 5 vertices? Not a circle.
single_circle.emplace_back(border[i]); single_circle.emplace_back(border[i]);
single_circle_length += lengths[i]; single_circle_length += lengths[i];
} else {
if (circle && single_circle.size() >= 5) { // Less than 5 vertices? Not a circle.
single_circle.emplace_back(border[i]);
single_circle_length += lengths[i];
bool accept_circle = true; bool accept_circle = true;
{ {
// Check that lengths of internal (!!!) edges match. // Check that lengths of internal (!!!) edges match.
int j = offset_to_index(start_idx, 3); int j = offset_to_index(start_idx, 3);
while (j != i) { while (j != i) {
if (! are_lengths_same(lengths[offset_to_index(j,-1)], lengths[j])) { if (! are_lengths_same(lengths[offset_to_index(j,-1)], lengths[j])) {
accept_circle = false; accept_circle = false;
break; break;
}
j = offset_to_index(j, 1);
} }
j = offset_to_index(j, 1);
} }
}
if (accept_circle) {
const auto& [center, radius, err] = get_center_and_radius(single_circle, trafo, trafo_inv);
// Check that the fit went well. The tolerance is high, only to
// reject complete failures.
accept_circle &= err < 0.05;
// If the segment subtends less than 90 degrees, throw it away.
accept_circle &= single_circle_length / radius > 0.9*M_PI/2.;
if (accept_circle) { if (accept_circle) {
const auto& [center, radius, err] = get_center_and_radius(single_circle, trafo, trafo_inv); // Add the circle and remember indices into borders.
circles_idxs.emplace_back(start_idx, i);
// Check that the fit went well. The tolerance is high, only to circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
// reject complete failures.
accept_circle &= err < 0.05;
// If the segment subtends less than 90 degrees, throw it away.
accept_circle &= single_circle_length / radius > 0.9*M_PI/2.;
if (accept_circle) {
// Add the circle and remember indices into borders.
circles_idxs.emplace_back(start_idx, i);
circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
}
} }
} }
circle = false;
} }
// Take care of the wrap around. circle = false;
first_iter = false; }
// Take care of the wrap around.
first_iter = false;
i = offset_to_index(i, 1);
}
// We have the circles. Now go around again and pick edges, while jumping over circles.
if (circles_idxs.empty()) {
// Just add all edges.
for (int i=1; i<int(border.size()); ++i)
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[i-1], border[i]));
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[0], border[border.size()-1]));
} else if (circles_idxs.size() > 1 || circles_idxs.front().first != circles_idxs.front().second) {
// There is at least one circular segment. Start at its end and add edges until the start of the next one.
int i = circles_idxs.front().second;
int circle_idx = 1;
while (true) {
i = offset_to_index(i, 1); i = offset_to_index(i, 1);
} edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[offset_to_index(i,-1)], border[i]));
if (circle_idx < int(circles_idxs.size()) && i == circles_idxs[circle_idx].first) {
// We have the circles. Now go around again and pick edges, while jumping over circles. i = circles_idxs[circle_idx].second;
if (circles_idxs.empty()) { ++circle_idx;
// Just add all edges.
for (int i=1; i<int(border.size()); ++i)
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[i-1], border[i]));
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[0], border[border.size()-1]));
} else if (circles_idxs.size() > 1 || circles_idxs.front().first != circles_idxs.front().second) {
// There is at least one circular segment. Start at its end and add edges until the start of the next one.
int i = circles_idxs.front().second;
int circle_idx = 1;
while (true) {
i = offset_to_index(i, 1);
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[offset_to_index(i,-1)], border[i]));
if (circle_idx < int(circles_idxs.size()) && i == circles_idxs[circle_idx].first) {
i = circles_idxs[circle_idx].second;
++circle_idx;
}
if (i == circles_idxs.front().first)
break;
} }
if (i == circles_idxs.front().first)
break;
} }
}
// Merge adjacent edges where needed. // Merge adjacent edges where needed.
assert(std::all_of(edges.begin(), edges.end(), assert(std::all_of(edges.begin(), edges.end(),
[](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; })); [](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; }));
for (int i=edges.size()-1; i>=0; --i) { for (int i=edges.size()-1; i>=0; --i) {
const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge(); const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge();
const auto& [second_start, second_end] = edges[i].get_edge(); const auto& [second_start, second_end] = edges[i].get_edge();
if (Slic3r::is_approx(first_end, second_start) if (Slic3r::is_approx(first_end, second_start)
&& Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) { && Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) {
// The edges have the same direction and share a point. Merge them. // The edges have the same direction and share a point. Merge them.
edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end); edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end);
edges.erase(edges.begin() + i); edges.erase(edges.begin() + i);
}
} }
// Now move the circles and edges into the feature list for the plane.
assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Circle;
}));
assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Edge;
}));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()),
std::make_move_iterator(circles.end()));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()),
std::make_move_iterator(edges.end()));
} }
}
// The last surface feature is the plane itself. // Now move the circles and edges into the feature list for the plane.
Vec3d cog = Vec3d::Zero(); assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) {
size_t counter = 0; return f.get_type() == SurfaceFeatureType::Circle;
for (const std::vector<Vec3d>& b : plane.borders) { }));
for (size_t i = 1; i < b.size(); ++i) { assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) {
cog += b[i]; return f.get_type() == SurfaceFeatureType::Edge;
++counter; }));
} plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()),
std::make_move_iterator(circles.end()));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()),
std::make_move_iterator(edges.end()));
} }
cog /= double(counter);
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Plane,
plane.normal, cog, std::optional<Vec3d>(), i + 0.0001));
plane.borders.clear();
plane.borders.shrink_to_fit();
} }
// The last surface feature is the plane itself.
Vec3d cog = Vec3d::Zero();
size_t counter = 0;
for (const std::vector<Vec3d>& b : plane.borders) {
for (size_t i = 1; i < b.size(); ++i) {
cog += b[i];
++counter;
}
}
cog /= double(counter);
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Plane,
plane.normal, cog, std::optional<Vec3d>(), plane_idx + 0.0001));
plane.borders.clear();
plane.borders.shrink_to_fit();
plane.features_extracted = true;
} }
@ -492,12 +502,15 @@ void MeasuringImpl::extract_features()
std::optional<SurfaceFeature> MeasuringImpl::get_feature(size_t face_idx, const Vec3d& point) const std::optional<SurfaceFeature> MeasuringImpl::get_feature(size_t face_idx, const Vec3d& point)
{ {
if (face_idx >= m_face_to_plane.size()) if (face_idx >= m_face_to_plane.size())
return std::optional<SurfaceFeature>(); return std::optional<SurfaceFeature>();
const PlaneData& plane = m_planes[m_face_to_plane[face_idx]]; const PlaneData& plane = m_planes[m_face_to_plane[face_idx]];
if (! plane.features_extracted)
extract_features(m_face_to_plane[face_idx]);
size_t closest_feature_idx = size_t(-1); size_t closest_feature_idx = size_t(-1);
double min_dist = std::numeric_limits<double>::max(); double min_dist = std::numeric_limits<double>::max();
@ -560,9 +573,11 @@ const std::vector<int>& MeasuringImpl::get_plane_triangle_indices(int idx) const
return m_planes[idx].facets; return m_planes[idx].facets;
} }
const std::vector<SurfaceFeature>& MeasuringImpl::get_plane_features(unsigned int plane_id) const const std::vector<SurfaceFeature>& MeasuringImpl::get_plane_features(unsigned int plane_id)
{ {
assert(plane_id < m_planes.size()); assert(plane_id < m_planes.size());
if (! m_planes[plane_id].features_extracted)
extract_features(plane_id);
return m_planes[plane_id].surface_features; return m_planes[plane_id].surface_features;
} }