Getting rid of AppController.

This commit is contained in:
tamasmeszaros 2018-11-12 14:52:52 +01:00
parent c227dad8cc
commit a4e1ab2281
13 changed files with 857 additions and 1941 deletions

View File

@ -108,6 +108,7 @@ add_library(libslic3r STATIC
Model.cpp
Model.hpp
ModelArrange.hpp
ModelArrange.cpp
MotionPlanner.cpp
MotionPlanner.hpp
MultiPoint.cpp

View File

@ -0,0 +1,763 @@
#include "ModelArrange.hpp"
#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
// CHECK_ME -> Is the following correct ?
tmpmesh.scale(objinst->get_scaling_factor());
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->get_scaling_factor());
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
template<class TBin>
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
const double BIG_ITEM_TRESHOLD = 0.02;
Box boundingBox(const Box& pilebb, const Box& ibb ) {
auto& pminc = pilebb.minCorner();
auto& pmaxc = pilebb.maxCorner();
auto& iminc = ibb.minCorner();
auto& imaxc = ibb.maxCorner();
PointImpl minc, maxc;
setX(minc, std::min(getX(pminc), getX(iminc)));
setY(minc, std::min(getY(pminc), getY(iminc)));
setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
return Box(minc, maxc);
}
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
const shapelike::Shapes<PolygonImpl>& merged_pile,
const Box& pilebb,
const ItemGroup& items,
const Item &item,
double bin_area,
double norm, // A norming factor for physical dimensions
// a spatial index to quickly get neighbors of the candidate item
const SpatIndex& spatindex,
const SpatIndex& smalls_spatindex,
const ItemGroup& remaining
)
{
using Coord = TCoord<PointImpl>;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
auto isBig = [bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
};
// Candidate item bounding box
auto ibb = sl::boundingBox(item.transformedShape());
// Calculate the full bounding box of the pile with the candidate item
auto fullbb = boundingBox(pilebb, ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
if(isBig(item.area()) || spatindex.empty()) {
// This branch is for the bigger items..
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
dist = 0.8*dist + 0.2*bindist;
// Density is the pack density: how big is the arranged pile
double density = 0;
if(remaining.empty()) {
auto mp = merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
placers::EdgeCache<PolygonImpl> ec(chull);
double circ = ec.circumference() / norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
score = 0.5*circ + 0.5*bcirc;
} else {
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the alignment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = 1.0;
density = std::sqrt((fullbb.width() / norm )*
(fullbb.height() / norm));
auto querybb = item.boundingBox();
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(spatindex.size());
if(isBig(item.area())) {
spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
} else {
smalls_spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
}
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
Item& p = items[idx];
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neighbors
if(result.empty())
score = 0.5 * dist + 0.5 * density;
else
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
}
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.65f;
pcfg.parallel = true;
}
template<class TBin>
class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
using Placer = TPacker<TBin>;
using Selector = FirstFitSelection;
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = sl::Shapes<PolygonImpl>;
Packer m_pck;
PConfig m_pconf; // Placement configuration
double m_bin_area;
SpatIndex m_rtree;
SpatIndex m_smallsrtree;
double m_norm;
Pile m_merged_pile;
Box m_pilebb;
ItemGroup m_remaining;
ItemGroup m_items;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
m_pck(bin, dist), m_bin_area(sl::area(bin)),
m_norm(std::sqrt(sl::area(bin)))
{
fillConfig(m_pconf);
m_pconf.before_packing =
[this](const Pile& merged_pile, // merged pile
const ItemGroup& items, // packed items
const ItemGroup& remaining) // future items to be packed
{
m_items = items;
m_merged_pile = merged_pile;
m_remaining = remaining;
m_pilebb = sl::boundingBox(merged_pile);
m_rtree.clear();
m_smallsrtree.clear();
// We will treat big items (compared to the print bed) differently
auto isBig = [this](double a) {
return a/m_bin_area > BIG_ITEM_TRESHOLD ;
};
for(unsigned idx = 0; idx < items.size(); ++idx) {
Item& itm = items[idx];
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx});
}
};
m_pck.progressIndicator(progressind);
m_pck.stopCondition(stopcond);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
m_rtree.clear();
return m_pck.executeIndexed(std::forward<Args>(args)...);
}
};
template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<Box>(bin, dist, progressind, stopcond)
{
m_pconf.object_function = [this, bin] (const Item &item) {
auto result = objfunc(bin.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
double miss = Placer::overfit(fullbb, bin);
miss = miss > 0? miss : 0;
score += miss*miss;
return score;
};
m_pck.configure(m_pconf);
}
};
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
inline lnCircle to_lnCircle(const Circle& circ) {
return lnCircle({circ.center()(0), circ.center()(1)}, circ.radius());
}
template<>
class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
public:
AutoArranger(const lnCircle& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
m_pconf.object_function = [this, &bin] (const Item &item) {
auto result = objfunc(bin.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
auto isBig = [this](const Item& itm) {
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
};
if(isBig(item)) {
auto mp = m_merged_pile;
mp.push_back(item.transformedShape());
auto chull = sl::convexHull(mp);
double miss = Placer::overfit(chull, bin);
if(miss < 0) miss = 0;
score += miss*miss;
}
return score;
};
m_pck.configure(m_pconf);
}
};
template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
{
m_pconf.object_function = [this, &bin] (const Item &item) {
auto binbb = sl::boundingBox(bin);
auto result = objfunc(binbb.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
return score;
};
m_pck.configure(m_pconf);
}
};
template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
{
this->m_pconf.object_function = [this] (const Item &item) {
auto result = objfunc({0, 0},
m_merged_pile,
m_pilebb,
m_items,
item,
0,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
return std::get<0>(result);
};
this->m_pck.configure(m_pconf);
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), size_t(0),
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
// CHECK_ME -> is the following correct ?
tmpmesh.scale(objinst->get_scaling_factor());
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
// CHECK_ME -> is the following correct or it should take in account all three rotations ?
item.rotation(objinst->get_rotation(Z));
item.translation({
ClipperLib::cInt(objinst->get_offset(X)/SCALING_FACTOR),
ClipperLib::cInt(objinst->get_offset(Y)/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
void applyResult(
IndexedPackGroup::value_type& group,
Coord batch_offset,
ShapeData2D& shapemap)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the transformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Vec3d foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR,
inst_ptr->get_offset()(2));
// write the transformation data into the model instance
inst_ptr->set_rotation(Z, rot);
inst_ptr->set_offset(foff);
}
}
BedShapeHint bedShape(const Polyline &bed) {
BedShapeHint ret;
auto x = [](const Point& p) { return p(0); };
auto y = [](const Point& p) { return p(1); };
auto width = [x](const BoundingBox& box) {
return x(box.max) - x(box.min);
};
auto height = [y](const BoundingBox& box) {
return y(box.max) - y(box.min);
};
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
return w*h;
};
auto poly_area = [](Polyline p) {
Polygon pp; pp.points.reserve(p.points.size() + 1);
pp.points = std::move(p.points);
pp.points.emplace_back(pp.points.front());
return std::abs(pp.area());
};
auto distance_to = [x, y](const Point& p1, const Point& p2) {
double dx = x(p2) - x(p1);
double dy = y(p2) - y(p1);
return std::sqrt(dx*dx + dy*dy);
};
auto bb = bed.bounding_box();
auto isCircle = [bb, distance_to](const Polyline& polygon) {
auto center = bb.center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt: polygon.points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
Circle ret(center, avg_dist);
for (auto el: vertex_distances)
{
if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
ret = Circle();
break;
}
return ret;
};
auto parea = poly_area(bed);
if( (1.0 - parea/area(bb)) < 1e-3 ) {
ret.type = BedShapeType::BOX;
ret.shape.box = bb;
}
else if(auto c = isCircle(bed)) {
ret.type = BedShapeType::CIRCLE;
ret.shape.circ = c;
} else {
ret.type = BedShapeType::IRREGULAR;
ret.shape.polygon = bed;
}
// Determine the bed shape by hand
return ret;
}
bool arrange(Model &model,
coord_t min_obj_distance,
const Polyline &bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void (unsigned)> progressind,
std::function<bool ()> stopcondition)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
IndexedPackGroup result;
// If there is no hint about the shape, we will try to guess
if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
BoundingBox bbb(bed);
auto& cfn = stopcondition;
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min(0)),
static_cast<libnest2d::Coord>(bbb.min(1))
},
{
static_cast<libnest2d::Coord>(bbb.max(0)),
static_cast<libnest2d::Coord>(bbb.max(1))
});
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind, cfn);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind, cfn);
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind, cfn);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
if(result.empty() || stopcondition()) return false;
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
}

View File

@ -2,549 +2,13 @@
#define MODELARRANGE_HPP
#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
class Model;
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
// CHECK_ME -> Is the following correct ?
tmpmesh.scale(objinst->get_scaling_factor());
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->get_scaling_factor());
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
template<class TBin>
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
const double BIG_ITEM_TRESHOLD = 0.02;
Box boundingBox(const Box& pilebb, const Box& ibb ) {
auto& pminc = pilebb.minCorner();
auto& pmaxc = pilebb.maxCorner();
auto& iminc = ibb.minCorner();
auto& imaxc = ibb.maxCorner();
PointImpl minc, maxc;
setX(minc, std::min(getX(pminc), getX(iminc)));
setY(minc, std::min(getY(pminc), getY(iminc)));
setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
return Box(minc, maxc);
}
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
const shapelike::Shapes<PolygonImpl>& merged_pile,
const Box& pilebb,
const ItemGroup& items,
const Item &item,
double bin_area,
double norm, // A norming factor for physical dimensions
// a spatial index to quickly get neighbors of the candidate item
const SpatIndex& spatindex,
const SpatIndex& smalls_spatindex,
const ItemGroup& remaining
)
{
using Coord = TCoord<PointImpl>;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
auto isBig = [bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
};
// Candidate item bounding box
auto ibb = sl::boundingBox(item.transformedShape());
// Calculate the full bounding box of the pile with the candidate item
auto fullbb = boundingBox(pilebb, ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
if(isBig(item.area()) || spatindex.empty()) {
// This branch is for the bigger items..
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
dist = 0.8*dist + 0.2*bindist;
// Density is the pack density: how big is the arranged pile
double density = 0;
if(remaining.empty()) {
auto mp = merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
placers::EdgeCache<PolygonImpl> ec(chull);
double circ = ec.circumference() / norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
score = 0.5*circ + 0.5*bcirc;
} else {
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the alignment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = 1.0;
density = std::sqrt((fullbb.width() / norm )*
(fullbb.height() / norm));
auto querybb = item.boundingBox();
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(spatindex.size());
if(isBig(item.area())) {
spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
} else {
smalls_spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
}
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
Item& p = items[idx];
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neighbors
if(result.empty())
score = 0.5 * dist + 0.5 * density;
else
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
}
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.65f;
pcfg.parallel = true;
}
template<class TBin>
class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
using Placer = TPacker<TBin>;
using Selector = FirstFitSelection;
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = sl::Shapes<PolygonImpl>;
Packer m_pck;
PConfig m_pconf; // Placement configuration
double m_bin_area;
SpatIndex m_rtree;
SpatIndex m_smallsrtree;
double m_norm;
Pile m_merged_pile;
Box m_pilebb;
ItemGroup m_remaining;
ItemGroup m_items;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
m_pck(bin, dist), m_bin_area(sl::area(bin)),
m_norm(std::sqrt(sl::area(bin)))
{
fillConfig(m_pconf);
m_pconf.before_packing =
[this](const Pile& merged_pile, // merged pile
const ItemGroup& items, // packed items
const ItemGroup& remaining) // future items to be packed
{
m_items = items;
m_merged_pile = merged_pile;
m_remaining = remaining;
m_pilebb = sl::boundingBox(merged_pile);
m_rtree.clear();
m_smallsrtree.clear();
// We will treat big items (compared to the print bed) differently
auto isBig = [this](double a) {
return a/m_bin_area > BIG_ITEM_TRESHOLD ;
};
for(unsigned idx = 0; idx < items.size(); ++idx) {
Item& itm = items[idx];
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx});
}
};
m_pck.progressIndicator(progressind);
m_pck.stopCondition(stopcond);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
m_rtree.clear();
return m_pck.executeIndexed(std::forward<Args>(args)...);
}
};
template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<Box>(bin, dist, progressind, stopcond)
{
m_pconf.object_function = [this, bin] (const Item &item) {
auto result = objfunc(bin.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
double miss = Placer::overfit(fullbb, bin);
miss = miss > 0? miss : 0;
score += miss*miss;
return score;
};
m_pck.configure(m_pconf);
}
};
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
template<>
class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
public:
AutoArranger(const lnCircle& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
m_pconf.object_function = [this, &bin] (const Item &item) {
auto result = objfunc(bin.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
auto isBig = [this](const Item& itm) {
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
};
if(isBig(item)) {
auto mp = m_merged_pile;
mp.push_back(item.transformedShape());
auto chull = sl::convexHull(mp);
double miss = Placer::overfit(chull, bin);
if(miss < 0) miss = 0;
score += miss*miss;
}
return score;
};
m_pck.configure(m_pconf);
}
};
template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
{
m_pconf.object_function = [this, &bin] (const Item &item) {
auto binbb = sl::boundingBox(bin);
auto result = objfunc(binbb.center(),
m_merged_pile,
m_pilebb,
m_items,
item,
m_bin_area,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
double score = std::get<0>(result);
return score;
};
m_pck.configure(m_pconf);
}
};
template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
_ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
{
this->m_pconf.object_function = [this] (const Item &item) {
auto result = objfunc({0, 0},
m_merged_pile,
m_pilebb,
m_items,
item,
0,
m_norm,
m_rtree,
m_smallsrtree,
m_remaining);
return std::get<0>(result);
};
this->m_pck.configure(m_pconf);
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), size_t(0),
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
// CHECK_ME -> is the following correct ?
tmpmesh.scale(objinst->get_scaling_factor());
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
// CHECK_ME -> is the following correct or it should take in account all three rotations ?
item.rotation(objinst->get_rotation(Z));
item.translation({
ClipperLib::cInt(objinst->get_offset(X)/SCALING_FACTOR),
ClipperLib::cInt(objinst->get_offset(Y)/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
class Circle {
Point center_;
double radius_;
@ -556,9 +20,9 @@ public:
inline double radius() const { return radius_; }
inline const Point& center() const { return center_; }
inline operator bool() { return !std::isnan(radius_); }
inline operator lnCircle() {
return lnCircle({center_(0), center_(1)}, radius_);
}
// inline operator lnCircle() {
// return lnCircle({center_(0), center_(1)}, radius_);
// }
};
enum class BedShapeType {
@ -577,109 +41,7 @@ struct BedShapeHint {
} shape;
};
BedShapeHint bedShape(const Polyline& bed) {
BedShapeHint ret;
auto x = [](const Point& p) { return p(0); };
auto y = [](const Point& p) { return p(1); };
auto width = [x](const BoundingBox& box) {
return x(box.max) - x(box.min);
};
auto height = [y](const BoundingBox& box) {
return y(box.max) - y(box.min);
};
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
return w*h;
};
auto poly_area = [](Polyline p) {
Polygon pp; pp.points.reserve(p.points.size() + 1);
pp.points = std::move(p.points);
pp.points.emplace_back(pp.points.front());
return std::abs(pp.area());
};
auto distance_to = [x, y](const Point& p1, const Point& p2) {
double dx = x(p2) - x(p1);
double dy = y(p2) - y(p1);
return std::sqrt(dx*dx + dy*dy);
};
auto bb = bed.bounding_box();
auto isCircle = [bb, distance_to](const Polyline& polygon) {
auto center = bb.center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt: polygon.points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
Circle ret(center, avg_dist);
for (auto el: vertex_distances)
{
if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
ret = Circle();
break;
}
return ret;
};
auto parea = poly_area(bed);
if( (1.0 - parea/area(bb)) < 1e-3 ) {
ret.type = BedShapeType::BOX;
ret.shape.box = bb;
}
else if(auto c = isCircle(bed)) {
ret.type = BedShapeType::CIRCLE;
ret.shape.circ = c;
} else {
ret.type = BedShapeType::IRREGULAR;
ret.shape.polygon = bed;
}
// Determine the bed shape by hand
return ret;
}
void applyResult(
IndexedPackGroup::value_type& group,
Coord batch_offset,
ShapeData2D& shapemap)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the transformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Vec3d foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR,
inst_ptr->get_offset()(2));
// write the transformation data into the model instance
inst_ptr->set_rotation(Z, rot);
inst_ptr->set_offset(foff);
}
}
BedShapeHint bedShape(const Polyline& bed);
/**
* \brief Arranges the model objects on the screen.
@ -707,112 +69,14 @@ void applyResult(
* packed. The unsigned argument is the number of items remaining to pack.
* \param stopcondition A predicate returning true if abort is needed.
*/
bool arrange(Model &model, coordf_t min_obj_distance,
bool arrange(Model &model, coord_t min_obj_distance,
const Slic3r::Polyline& bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcondition)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
IndexedPackGroup result;
// If there is no hint about the shape, we will try to guess
if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
BoundingBox bbb(bed);
auto& cfn = stopcondition;
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min(0)),
static_cast<libnest2d::Coord>(bbb.min(1))
},
{
static_cast<libnest2d::Coord>(bbb.max(0)),
static_cast<libnest2d::Coord>(bbb.max(1))
});
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind, cfn);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = lnCircle(c);
AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind, cfn);
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind, cfn);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
if(result.empty() || stopcondition()) return false;
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
std::function<bool(void)> stopcondition);
}
}
#endif // MODELARRANGE_HPP

View File

@ -1,364 +0,0 @@
#include "AppController.hpp"
#include <slic3r/GUI/GUI.hpp>
#include <future>
#include <chrono>
#include <sstream>
#include <cstdarg>
#include <thread>
#include <unordered_map>
#include <PrintConfig.hpp>
#include <Print.hpp>
#include <PrintExport.hpp>
#include <Geometry.hpp>
#include <Model.hpp>
#include <ModelArrange.hpp>
namespace Slic3r {
class AppControllerGui::PriData {
public:
std::mutex m;
std::thread::id ui_thread;
inline explicit PriData(std::thread::id uit): ui_thread(uit) {}
};
AppControllerGui::AppControllerGui()
:m_pri_data(new PriData(std::this_thread::get_id())) {}
AppControllerGui::~AppControllerGui() {
m_pri_data.reset();
}
bool AppControllerGui::is_main_thread() const
{
return m_pri_data->ui_thread == std::this_thread::get_id();
}
// namespace GUI {
// PresetBundle* get_preset_bundle();
// }
static const PrintObjectStep STEP_SLICE = posSlice;
static const PrintObjectStep STEP_PERIMETERS = posPerimeters;
static const PrintObjectStep STEP_PREPARE_INFILL = posPrepareInfill;
static const PrintObjectStep STEP_INFILL = posInfill;
static const PrintObjectStep STEP_SUPPORTMATERIAL = posSupportMaterial;
static const PrintStep STEP_SKIRT = psSkirt;
static const PrintStep STEP_BRIM = psBrim;
static const PrintStep STEP_WIPE_TOWER = psWipeTower;
ProgresIndicatorPtr AppControllerGui::global_progress_indicator() {
ProgresIndicatorPtr ret;
m_pri_data->m.lock();
ret = m_global_progressind;
m_pri_data->m.unlock();
return ret;
}
void AppControllerGui::global_progress_indicator(ProgresIndicatorPtr gpri)
{
m_pri_data->m.lock();
m_global_progressind = gpri;
m_pri_data->m.unlock();
}
PrintController::PngExportData
PrintController::query_png_export_data(const DynamicPrintConfig& conf)
{
PngExportData ret;
auto c = GUI::get_appctl();
auto zippath = c->query_destination_path("Output zip file", "*.zip",
"export-png",
"out");
ret.zippath = zippath;
ret.width_mm = conf.opt_float("display_width");
ret.height_mm = conf.opt_float("display_height");
ret.width_px = conf.opt_int("display_pixels_x");
ret.height_px = conf.opt_int("display_pixels_y");
auto opt_corr = conf.opt<ConfigOptionFloats>("printer_correction");
if(opt_corr) {
ret.corr_x = opt_corr->values[0];
ret.corr_y = opt_corr->values[1];
ret.corr_z = opt_corr->values[2];
}
ret.exp_time_first_s = conf.opt_float("initial_exposure_time");
ret.exp_time_s = conf.opt_float("exposure_time");
return ret;
}
void PrintController::slice(ProgresIndicatorPtr pri)
{
m_print->set_status_callback([pri](int st, const std::string& msg){
pri->update(unsigned(st), msg);
});
m_print->process();
}
void PrintController::slice()
{
auto ctl = GUI::get_appctl();
auto pri = ctl->global_progress_indicator();
if(!pri) pri = ctl->create_progress_indicator(100, L("Slicing"));
slice(pri);
}
template<> class LayerWriter<Zipper> {
Zipper m_zip;
public:
inline LayerWriter(const std::string& zipfile_path): m_zip(zipfile_path) {}
inline void next_entry(const std::string& fname) { m_zip.next_entry(fname); }
inline std::string get_name() const { return m_zip.get_name(); }
template<class T> inline LayerWriter& operator<<(const T& arg) {
m_zip.stream() << arg; return *this;
}
inline void close() { m_zip.close(); }
};
void PrintController::slice_to_png()
{
// using Pointf3 = Vec3d;
// auto ctl = GUI::get_appctl();
// auto presetbundle = GUI::wxGetApp().preset_bundle;
// assert(presetbundle);
// // FIXME: this crashes in command line mode
// auto pt = presetbundle->printers.get_selected_preset().printer_technology();
// if(pt != ptSLA) {
// ctl->report_issue(IssueType::ERR, L("Printer technology is not SLA!"),
// L("Error"));
// return;
// }
// auto conf = presetbundle->full_config();
// conf.validate();
// auto exd = query_png_export_data(conf);
// if(exd.zippath.empty()) return;
// Print *print = m_print;
// try {
// print->apply_config(conf);
// print->validate();
// } catch(std::exception& e) {
// ctl->report_issue(IssueType::ERR, e.what(), "Error");
// return;
// }
// // TODO: copy the model and work with the copy only
// bool correction = false;
// if(exd.corr_x != 1.0 || exd.corr_y != 1.0 || exd.corr_z != 1.0) {
// correction = true;
//// print->invalidate_all_steps();
//// for(auto po : print->objects) {
//// po->model_object()->scale(
//// Pointf3(exd.corr_x, exd.corr_y, exd.corr_z)
//// );
//// po->model_object()->invalidate_bounding_box();
//// po->reload_model_instances();
//// po->invalidate_all_steps();
//// }
// }
// // Turn back the correction scaling on the model.
// auto scale_back = [this, print, correction, exd]() {
// if(correction) { // scale the model back
//// print->invalidate_all_steps();
//// for(auto po : print->objects) {
//// po->model_object()->scale(
//// Pointf3(1.0/exd.corr_x, 1.0/exd.corr_y, 1.0/exd.corr_z)
//// );
//// po->model_object()->invalidate_bounding_box();
//// po->reload_model_instances();
//// po->invalidate_all_steps();
//// }
// }
// };
// auto print_bb = print->bounding_box();
// Vec2d punsc = unscale(print_bb.size());
// // If the print does not fit into the print area we should cry about it.
// if(px(punsc) > exd.width_mm || py(punsc) > exd.height_mm) {
// std::stringstream ss;
// ss << L("Print will not fit and will be truncated!") << "\n"
// << L("Width needed: ") << px(punsc) << " mm\n"
// << L("Height needed: ") << py(punsc) << " mm\n";
// if(!ctl->report_issue(IssueType::WARN_Q, ss.str(), L("Warning"))) {
// scale_back();
// return;
// }
// }
// auto pri = ctl->create_progress_indicator(
// 200, L("Slicing to zipped png files..."));
// pri->on_cancel([&print](){ print->cancel(); });
// try {
// pri->update(0, L("Slicing..."));
// slice(pri);
// } catch (std::exception& e) {
// ctl->report_issue(IssueType::ERR, e.what(), L("Exception occurred"));
// scale_back();
// if(print->canceled()) print->restart();
// return;
// }
// auto initstate = unsigned(pri->state());
// print->set_status_callback([pri, initstate](int st, const std::string& msg)
// {
// pri->update(initstate + unsigned(st), msg);
// });
// try {
// print_to<FilePrinterFormat::PNG, Zipper>( *print, exd.zippath,
// exd.width_mm, exd.height_mm,
// exd.width_px, exd.height_px,
// exd.exp_time_s, exd.exp_time_first_s);
// } catch (std::exception& e) {
// ctl->report_issue(IssueType::ERR, e.what(), L("Exception occurred"));
// }
// scale_back();
// if(print->canceled()) print->restart();
// print->set_status_default();
}
const PrintConfig &PrintController::config() const
{
return m_print->config();
}
void ProgressIndicator::message_fmt(
const std::string &fmtstr, ...) {
std::stringstream ss;
va_list args;
va_start(args, fmtstr);
auto fmt = fmtstr.begin();
while (*fmt != '\0') {
if (*fmt == 'd') {
int i = va_arg(args, int);
ss << i << '\n';
} else if (*fmt == 'c') {
// note automatic conversion to integral type
int c = va_arg(args, int);
ss << static_cast<char>(c) << '\n';
} else if (*fmt == 'f') {
double d = va_arg(args, double);
ss << d << '\n';
}
++fmt;
}
va_end(args);
message(ss.str());
}
void AppController::arrange_model()
{
using Coord = libnest2d::TCoord<libnest2d::PointImpl>;
auto ctl = GUI::get_appctl();
if(m_arranging.load()) return;
// to prevent UI reentrancies
m_arranging.store(true);
unsigned count = 0;
for(auto obj : m_model->objects) count += obj->instances.size();
auto pind = ctl->global_progress_indicator();
float pmax = 1.0;
if(pind) {
pmax = pind->max();
// Set the range of the progress to the object count
pind->max(count);
pind->on_cancel([this](){
m_arranging.store(false);
});
}
auto dist = print_ctl()->config().min_object_distance();
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
auto& bedpoints = print_ctl()->config().bed_shape.values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints)
bed.append(Point::new_scale(v(0), v(1)));
if(pind) pind->update(0, L("Arranging objects..."));
try {
arr::BedShapeHint hint;
// TODO: from Sasha from GUI
hint.type = arr::BedShapeType::WHO_KNOWS;
arr::arrange(*m_model,
min_obj_distance,
bed,
hint,
false, // create many piles not just one pile
[this, pind, &ctl, count](unsigned rem) {
if(pind)
pind->update(count - rem, L("Arranging objects..."));
ctl->process_events();
}, [this] () { return !m_arranging.load(); });
} catch(std::exception& e) {
std::cerr << e.what() << std::endl;
ctl->report_issue(IssueType::ERR,
L("Could not arrange model objects! "
"Some geometries may be invalid."),
L("Exception occurred"));
}
// Restore previous max value
if(pind) {
pind->max(pmax);
pind->update(0, m_arranging.load() ? L("Arranging done.") :
L("Arranging canceled."));
pind->on_cancel(/*remove cancel function*/);
}
m_arranging.store(false);
}
}

View File

@ -1,414 +0,0 @@
#ifndef APPCONTROLLER_HPP
#define APPCONTROLLER_HPP
#include <string>
#include <vector>
#include <memory>
#include <atomic>
#include <iostream>
#include "GUI/ProgressIndicator.hpp"
#include <PrintConfig.hpp>
namespace Slic3r {
class Model;
class Print;
class PrintObject;
class PrintConfig;
class ProgressStatusBar;
class DynamicPrintConfig;
/// A Progress indicator object smart pointer
using ProgresIndicatorPtr = std::shared_ptr<ProgressIndicator>;
using FilePath = std::string;
using FilePathList = std::vector<FilePath>;
/// Common runtime issue types
enum class IssueType {
INFO,
WARN,
WARN_Q, // Warning with a question to continue
ERR,
FATAL
};
/**
* @brief A boilerplate class for creating application logic. It should provide
* features as issue reporting and progress indication, etc...
*
* The lower lever UI independent classes can be manipulated with a subclass
* of this controller class. We can also catch any exceptions that lower level
* methods could throw and display appropriate errors and warnings.
*
* Note that the outer and the inner interface of this class is free from any
* UI toolkit dependencies. We can implement it with any UI framework or make it
* a cli client.
*/
class AppControllerBase {
public:
using Ptr = std::shared_ptr<AppControllerBase>;
inline virtual ~AppControllerBase() {}
/**
* @brief Query some paths from the user.
*
* It should display a file chooser dialog in case of a UI application.
* @param title Title of a possible query dialog.
* @param extensions Recognized file extensions.
* @return Returns a list of paths chosen by the user.
*/
virtual FilePathList query_destination_paths(
const std::string& title,
const std::string& extensions,
const std::string& functionid = "",
const std::string& hint = "") const = 0;
/**
* @brief Same as query_destination_paths but works for directories only.
*/
virtual FilePathList query_destination_dirs(
const std::string& title,
const std::string& functionid = "",
const std::string& hint = "") const = 0;
/**
* @brief Same as query_destination_paths but returns only one path.
*/
virtual FilePath query_destination_path(
const std::string& title,
const std::string& extensions,
const std::string& functionid = "",
const std::string& hint = "") const = 0;
/**
* @brief Report an issue to the user be it fatal or recoverable.
*
* In a UI app this should display some message dialog.
*
* @param issuetype The type of the runtime issue.
* @param description A somewhat longer description of the issue.
* @param brief A very brief description. Can be used for message dialog
* title.
*/
virtual bool report_issue(IssueType issuetype,
const std::string& description,
const std::string& brief) = 0;
/**
* @brief Return the global progress indicator for the current controller.
* Can be empty as well.
*
* Only one thread should use the global indicator at a time.
*/
virtual ProgresIndicatorPtr global_progress_indicator() = 0;
virtual void global_progress_indicator(ProgresIndicatorPtr gpri) = 0;
/**
* @brief A predicate telling the caller whether it is the thread that
* created the AppConroller object itself. This probably means that the
* execution is in the UI thread. Otherwise it returns false meaning that
* some worker thread called this function.
* @return Return true for the same caller thread that created this
* object and false for every other.
*/
virtual bool is_main_thread() const = 0;
/**
* @brief The frontend supports asynch execution.
*
* A Graphic UI will support this, a CLI may not. This can be used in
* subclass methods to decide whether to start threads for block free UI.
*
* Note that even a progress indicator's update called regularly can solve
* the blocking UI problem in some cases even when an event loop is present.
* This is how wxWidgets gauge work but creating a separate thread will make
* the UI even more fluent.
*
* @return true if a job or method can be executed asynchronously, false
* otherwise.
*/
virtual bool supports_asynch() const = 0;
virtual void process_events() = 0;
/**
* @brief Create a new progress indicator and return a smart pointer to it.
* @param statenum The number of states for the given procedure.
* @param title The title of the procedure.
* @param firstmsg The message for the first subtask to be displayed.
* @return Smart pointer to the created object.
*/
virtual ProgresIndicatorPtr create_progress_indicator(
unsigned statenum,
const std::string& title,
const std::string& firstmsg = "") const = 0;
};
/**
* @brief Implementation of AppControllerBase for the GUI app
*/
class AppControllerGui: public AppControllerBase {
private:
class PriData; // Some structure to store progress indication data
// Pimpl data for thread safe progress indication features
std::unique_ptr<PriData> m_pri_data;
public:
AppControllerGui();
virtual ~AppControllerGui();
virtual FilePathList query_destination_paths(
const std::string& title,
const std::string& extensions,
const std::string& functionid,
const std::string& hint) const override;
virtual FilePathList query_destination_dirs(
const std::string& /*title*/,
const std::string& /*functionid*/,
const std::string& /*hint*/) const override { return {}; }
virtual FilePath query_destination_path(
const std::string& title,
const std::string& extensions,
const std::string& functionid,
const std::string& hint) const override;
virtual bool report_issue(IssueType issuetype,
const std::string& description,
const std::string& brief = std::string()) override;
virtual ProgresIndicatorPtr global_progress_indicator() override;
virtual void global_progress_indicator(ProgresIndicatorPtr gpri) override;
virtual bool is_main_thread() const override;
virtual bool supports_asynch() const override;
virtual void process_events() override;
virtual ProgresIndicatorPtr create_progress_indicator(
unsigned statenum,
const std::string& title,
const std::string& firstmsg) const override;
protected:
// This is a global progress indicator placeholder. In the Slic3r UI it can
// contain the progress indicator on the statusbar.
ProgresIndicatorPtr m_global_progressind;
};
class AppControllerCli: public AppControllerBase {
class CliProgress : public ProgressIndicator {
std::string m_msg, m_title;
public:
virtual void message(const std::string& msg) override {
m_msg = msg;
}
virtual void title(const std::string& title) override {
m_title = title;
}
};
public:
AppControllerCli() {
std::cout << "Cli AppController ready..." << std::endl;
m_global_progressind = std::make_shared<CliProgress>();
}
virtual ~AppControllerCli() {}
virtual FilePathList query_destination_paths(
const std::string& /*title*/,
const std::string& /*extensions*/,
const std::string& /*functionid*/,
const std::string& /*hint*/) const override { return {}; }
virtual FilePathList query_destination_dirs(
const std::string& /*title*/,
const std::string& /*functionid*/,
const std::string& /*hint*/) const override { return {}; }
virtual FilePath query_destination_path(
const std::string& /*title*/,
const std::string& /*extensions*/,
const std::string& /*functionid*/,
const std::string& /*hint*/) const override { return "out.zip"; }
virtual bool report_issue(IssueType /*issuetype*/,
const std::string& description,
const std::string& brief) override {
std::cerr << brief << ": " << description << std::endl;
return true;
}
virtual ProgresIndicatorPtr global_progress_indicator() override {
return m_global_progressind;
}
virtual void global_progress_indicator(ProgresIndicatorPtr) override {}
virtual bool is_main_thread() const override { return true; }
virtual bool supports_asynch() const override { return false; }
virtual void process_events() override {}
virtual ProgresIndicatorPtr create_progress_indicator(
unsigned /*statenum*/,
const std::string& /*title*/,
const std::string& /*firstmsg*/) const override {
return std::make_shared<CliProgress>();
}
protected:
// This is a global progress indicator placeholder. In the Slic3r UI it can
// contain the progress indicator on the statusbar.
ProgresIndicatorPtr m_global_progressind;
};
class Zipper {
struct Impl;
std::unique_ptr<Impl> m_impl;
public:
Zipper(const std::string& zipfilepath);
~Zipper();
void next_entry(const std::string& fname);
std::string get_name() const;
std::ostream& stream();
void close();
};
/**
* @brief Implementation of the printing logic.
*/
class PrintController {
Print *m_print = nullptr;
std::function<void()> m_rempools;
protected:
// Data structure with the png export input data
struct PngExportData {
std::string zippath; // output zip file
unsigned long width_px = 1440; // resolution - rows
unsigned long height_px = 2560; // resolution columns
double width_mm = 68.0, height_mm = 120.0; // dimensions in mm
double exp_time_first_s = 35.0; // first exposure time
double exp_time_s = 8.0; // global exposure time
double corr_x = 1.0; // offsetting in x
double corr_y = 1.0; // offsetting in y
double corr_z = 1.0; // offsetting in y
};
// Should display a dialog with the input fields for printing to png
PngExportData query_png_export_data(const DynamicPrintConfig&);
// The previous export data, to pre-populate the dialog
PngExportData m_prev_expdata;
void slice(ProgresIndicatorPtr pri);
public:
// Must be public for perl to use it
explicit inline PrintController(Print *print): m_print(print) {}
PrintController(const PrintController&) = delete;
PrintController(PrintController&&) = delete;
using Ptr = std::unique_ptr<PrintController>;
inline static Ptr create(Print *print) {
return PrintController::Ptr( new PrintController(print) );
}
/**
* @brief Slice the loaded print scene.
*/
void slice();
/**
* @brief Slice the print into zipped png files.
*/
void slice_to_png();
const PrintConfig& config() const;
};
/**
* @brief Top level controller.
*/
class AppController {
Model *m_model = nullptr;
PrintController::Ptr printctl;
std::atomic<bool> m_arranging;
public:
/**
* @brief Get the print controller object.
*
* @return Return a raw pointer instead of a smart one for perl to be able
* to use this function and access the print controller.
*/
PrintController * print_ctl() { return printctl.get(); }
/**
* @brief Set a model object.
*
* @param model A raw pointer to the model object. This can be used from
* perl.
*/
void set_model(Model *model) { m_model = model; }
/**
* @brief Set the print object from perl.
*
* This will create a print controller that will then be accessible from
* perl.
* @param print A print object which can be a perl-ish extension as well.
*/
void set_print(Print *print) {
printctl = PrintController::create(print);
}
/**
* @brief Set up a global progress indicator.
*
* In perl we have a progress indicating status bar on the bottom of the
* window which is defined and created in perl. We can pass the ID-s of the
* gauge and the statusbar id and make a wrapper implementation of the
* ProgressIndicator interface so we can use this GUI widget from C++.
*
* This function should be called from perl.
*
* @param gauge_id The ID of the gague widget of the status bar.
* @param statusbar_id The ID of the status bar.
*/
void set_global_progress_indicator(ProgressStatusBar *prs);
void arrange_model();
};
}
#endif // APPCONTROLLER_HPP

View File

@ -1,340 +0,0 @@
#include "AppController.hpp"
#include <wx/stdstream.h>
#include <wx/wfstream.h>
#include <wx/zipstrm.h>
#include <thread>
#include <future>
#include <slic3r/GUI/GUI.hpp>
#include <slic3r/GUI/ProgressStatusBar.hpp>
#include <wx/app.h>
#include <wx/filedlg.h>
#include <wx/msgdlg.h>
#include <wx/progdlg.h>
#include <wx/gauge.h>
#include <wx/statusbr.h>
#include <wx/event.h>
// This source file implements the UI dependent methods of the AppControllers.
// It will be clear what is needed to be reimplemented in case of a UI framework
// change or a CLI client creation. In this particular case we use wxWidgets to
// implement everything.
namespace Slic3r {
bool AppControllerGui::supports_asynch() const
{
return true;
}
void AppControllerGui::process_events()
{
wxYieldIfNeeded();
}
FilePathList AppControllerGui::query_destination_paths(
const std::string &title,
const std::string &extensions,
const std::string &/*functionid*/,
const std::string& hint) const
{
wxFileDialog dlg(wxTheApp->GetTopWindow(), _(title) );
dlg.SetWildcard(extensions);
dlg.SetFilename(hint);
FilePathList ret;
if(dlg.ShowModal() == wxID_OK) {
wxArrayString paths;
dlg.GetPaths(paths);
for(auto& p : paths) ret.push_back(p.ToStdString());
}
return ret;
}
FilePath AppControllerGui::query_destination_path(
const std::string &title,
const std::string &extensions,
const std::string &/*functionid*/,
const std::string& hint) const
{
wxFileDialog dlg(wxTheApp->GetTopWindow(), _(title) );
dlg.SetWildcard(extensions);
dlg.SetFilename(hint);
FilePath ret;
if(dlg.ShowModal() == wxID_OK) {
ret = FilePath(dlg.GetPath());
}
return ret;
}
bool AppControllerGui::report_issue(IssueType issuetype,
const std::string &description,
const std::string &brief)
{
auto icon = wxICON_INFORMATION;
auto style = wxOK|wxCENTRE;
switch(issuetype) {
case IssueType::INFO: break;
case IssueType::WARN: icon = wxICON_WARNING; break;
case IssueType::WARN_Q: icon = wxICON_WARNING; style |= wxCANCEL; break;
case IssueType::ERR:
case IssueType::FATAL: icon = wxICON_ERROR;
}
auto ret = wxMessageBox(_(description), _(brief), icon | style);
return ret != wxCANCEL;
}
wxDEFINE_EVENT(PROGRESS_STATUS_UPDATE_EVENT, wxCommandEvent);
struct Zipper::Impl {
wxFileName fpath;
wxFFileOutputStream zipfile;
wxZipOutputStream zipstream;
wxStdOutputStream pngstream;
Impl(const std::string& zipfile_path):
fpath(zipfile_path),
zipfile(zipfile_path),
zipstream(zipfile),
pngstream(zipstream)
{
if(!zipfile.IsOk())
throw std::runtime_error(L("Cannot create zip file."));
}
};
Zipper::Zipper(const std::string &zipfilepath)
{
m_impl.reset(new Impl(zipfilepath));
}
Zipper::~Zipper() {}
void Zipper::next_entry(const std::string &fname)
{
m_impl->zipstream.PutNextEntry(fname);
}
std::string Zipper::get_name() const
{
return m_impl->fpath.GetName().ToStdString();
}
std::ostream &Zipper::stream()
{
return m_impl->pngstream;
}
void Zipper::close()
{
m_impl->zipstream.Close();
m_impl->zipfile.Close();
}
namespace {
/*
* A simple thread safe progress dialog implementation that can be used from
* the main thread as well.
*/
class GuiProgressIndicator:
public ProgressIndicator, public wxEvtHandler {
wxProgressDialog m_gauge;
using Base = ProgressIndicator;
wxString m_message;
int m_range; wxString m_title;
bool m_is_asynch = false;
const int m_id = wxWindow::NewControlId();
// status update handler
void _state( wxCommandEvent& evt) {
unsigned st = evt.GetInt();
m_message = evt.GetString();
_state(st);
}
// Status update implementation
void _state( unsigned st) {
if(!m_gauge.IsShown()) m_gauge.ShowModal();
Base::state(st);
if(!m_gauge.Update(static_cast<int>(st), m_message)) {
cancel();
}
}
public:
/// Setting whether it will be used from the UI thread or some worker thread
inline void asynch(bool is) { m_is_asynch = is; }
/// Get the mode of parallel operation.
inline bool asynch() const { return m_is_asynch; }
inline GuiProgressIndicator(int range, const wxString& title,
const wxString& firstmsg) :
m_gauge(title, firstmsg, range, wxTheApp->GetTopWindow(),
wxPD_APP_MODAL | wxPD_AUTO_HIDE | wxPD_CAN_ABORT),
m_message(firstmsg),
m_range(range), m_title(title)
{
Base::max(static_cast<float>(range));
Base::states(static_cast<unsigned>(range));
Bind(PROGRESS_STATUS_UPDATE_EVENT,
&GuiProgressIndicator::_state,
this, m_id);
}
virtual void state(float val) override {
state(static_cast<unsigned>(val));
}
void state(unsigned st) {
// send status update event
if(m_is_asynch) {
auto evt = new wxCommandEvent(PROGRESS_STATUS_UPDATE_EVENT, m_id);
evt->SetInt(st);
evt->SetString(m_message);
wxQueueEvent(this, evt);
} else _state(st);
}
virtual void message(const std::string & msg) override {
m_message = _(msg);
}
virtual void messageFmt(const std::string& fmt, ...) {
va_list arglist;
va_start(arglist, fmt);
m_message = wxString::Format(_(fmt), arglist);
va_end(arglist);
}
virtual void title(const std::string & title) override {
m_title = _(title);
}
};
}
ProgresIndicatorPtr AppControllerGui::create_progress_indicator(
unsigned statenum,
const std::string& title,
const std::string& firstmsg) const
{
auto pri =
std::make_shared<GuiProgressIndicator>(statenum, title, firstmsg);
// We set up the mode of operation depending of the creator thread's
// identity
pri->asynch(!is_main_thread());
return pri;
}
namespace {
class Wrapper: public ProgressIndicator, public wxEvtHandler {
ProgressStatusBar *m_sbar;
using Base = ProgressIndicator;
wxString m_message;
AppControllerBase& m_ctl;
void showProgress(bool show = true) {
m_sbar->show_progress(show);
}
void _state(unsigned st) {
if( st <= ProgressIndicator::max() ) {
Base::state(st);
m_sbar->set_status_text(m_message);
m_sbar->set_progress(st);
}
}
// status update handler
void _state( wxCommandEvent& evt) {
unsigned st = evt.GetInt(); _state(st);
}
const int id_ = wxWindow::NewControlId();
public:
inline Wrapper(ProgressStatusBar *sbar,
AppControllerBase& ctl):
m_sbar(sbar), m_ctl(ctl)
{
Base::max(static_cast<float>(m_sbar->get_range()));
Base::states(static_cast<unsigned>(m_sbar->get_range()));
Bind(PROGRESS_STATUS_UPDATE_EVENT,
&Wrapper::_state,
this, id_);
}
virtual void state(float val) override {
state(unsigned(val));
}
virtual void max(float val) override {
if(val > 1.0) {
m_sbar->set_range(static_cast<int>(val));
ProgressIndicator::max(val);
}
}
void state(unsigned st) {
if(!m_ctl.is_main_thread()) {
auto evt = new wxCommandEvent(PROGRESS_STATUS_UPDATE_EVENT, id_);
evt->SetInt(st);
wxQueueEvent(this, evt);
} else {
_state(st);
}
}
virtual void message(const std::string & msg) override {
m_message = _(msg);
}
virtual void message_fmt(const std::string& fmt, ...) override {
va_list arglist;
va_start(arglist, fmt);
m_message = wxString::Format(_(fmt), arglist);
va_end(arglist);
}
virtual void title(const std::string & /*title*/) override {}
virtual void on_cancel(CancelFn fn) override {
m_sbar->set_cancel_callback(fn);
Base::on_cancel(fn);
}
};
}
void AppController::set_global_progress_indicator(ProgressStatusBar *prsb)
{
if(prsb) {
auto ctl = GUI::get_appctl();
ctl->global_progress_indicator(std::make_shared<Wrapper>(prsb, *ctl));
}
}
}

View File

@ -123,9 +123,6 @@ add_library(libslic3r_gui STATIC
Utils/Time.hpp
Utils/HexFile.cpp
Utils/HexFile.hpp
AppController.hpp
AppController.cpp
AppControllerWx.cpp
)
target_link_libraries(libslic3r_gui libslic3r avrdude)

View File

@ -1,6 +1,5 @@
#include "GUI.hpp"
#include "GUI_App.hpp"
#include "../AppController.hpp"
#include "WipeTowerDialog.hpp"
#include <assert.h>
@ -453,23 +452,4 @@ void desktop_open_datadir_folder()
#endif
}
namespace {
AppControllerPtr g_appctl;
}
AppControllerPtr get_appctl()
{
return g_appctl;
}
void set_cli_appctl()
{
g_appctl = std::make_shared<AppControllerCli>();
}
void set_gui_appctl()
{
g_appctl = std::make_shared<AppControllerGui>();
}
} }

View File

@ -11,7 +11,6 @@
#include "Tab.hpp"
#include "PresetBundle.hpp"
#include "../AppController.hpp"
#include "ProgressStatusBar.hpp"
#include "3DScene.hpp"
#include "Print.hpp"
@ -30,8 +29,6 @@ wxFrame(NULL, wxID_ANY, SLIC3R_BUILD, wxDefaultPosition, wxDefaultSize, wxDEFAUL
m_no_plater(no_plater),
m_loaded(loaded)
{
m_appController = new Slic3r::AppController();
// Load the icon either from the exe, or from the ico file.
#if _WIN32
{
@ -59,14 +56,6 @@ wxFrame(NULL, wxID_ANY, SLIC3R_BUILD, wxDefaultPosition, wxDefaultSize, wxDEFAUL
SLIC3R_VERSION +
_(L(" - Remember to check for updates at http://github.com/prusa3d/slic3r/releases")));
m_appController->set_model(&m_plater->model());
m_appController->set_print(&m_plater->print());
GUI::set_gui_appctl();
// Make the global status bar and its progress indicator available in C++
m_appController->set_global_progress_indicator(m_statusbar);
m_loaded = true;
// initialize layout
@ -373,7 +362,7 @@ void MainFrame::slice_to_png()
{
// m_plater->stop_background_process();
// m_plater->async_apply_config();
m_appController->print_ctl()->slice_to_png();
// m_appController->print_ctl()->slice_to_png();
}
// To perform the "Quck Slice", "Quick Slice and Save As", "Repeat last Quick Slice" and "Slice to SVG".

View File

@ -20,7 +20,6 @@ class wxProgressDialog;
namespace Slic3r {
class ProgressStatusBar;
class AppController;
// #define _(s) Slic3r::GUI::I18N::translate((s))
@ -54,7 +53,6 @@ class MainFrame : public wxFrame
wxString m_qs_last_output_file = wxEmptyString;
wxString m_last_config = wxEmptyString;
AppController* m_appController { nullptr };
std::map<std::string, Tab*> m_options_tabs;
wxMenuItem* m_menu_item_reslice_now { nullptr };
@ -97,8 +95,6 @@ public:
void select_tab(size_t tab) const;
void select_view(const std::string& direction);
AppController* app_controller() { return m_appController; }
std::vector<PresetTab>& get_preset_tabs();
Plater* m_plater { nullptr };
@ -110,4 +106,4 @@ public:
} // GUI
} //Slic3r
#endif // slic3r_MainFrame_hpp_
#endif // slic3r_MainFrame_hpp_

View File

@ -25,6 +25,7 @@
#include "libslic3r/libslic3r.h"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/ModelArrange.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/GCode/PreviewData.hpp"
@ -33,7 +34,7 @@
#include "libslic3r/Format/STL.hpp"
#include "libslic3r/Format/AMF.hpp"
#include "libslic3r/Format/3mf.hpp"
#include "slic3r/AppController.hpp"
//#include "slic3r/AppController.hpp"
#include "GUI.hpp"
#include "GUI_App.hpp"
#include "GUI_ObjectList.hpp"
@ -887,6 +888,7 @@ struct Plater::priv
wxGLCanvas *canvas3D; // TODO: Use GLCanvas3D when we can
Preview *preview;
BackgroundSlicingProcess background_process;
std::atomic<bool> arranging;
wxTimer background_process_timer;
@ -1470,13 +1472,86 @@ void Plater::priv::mirror(Axis axis)
void Plater::priv::arrange()
{
this->background_process.stop();
main_frame->app_controller()->arrange_model();
// don't do anything if currently arranging. Then this is a re-entrance
if(arranging.load()) return;
// Guard the arrange process
arranging.store(true);
_3DScene::enable_toolbar_item(canvas3D, "arrange", can_arrange());
this->background_process.stop();
unsigned count = 0;
for(auto obj : model.objects) count += obj->instances.size();
auto prev_range = statusbar()->get_range();
statusbar()->set_range(count);
auto statusfn = [this, count] (unsigned st, const std::string& msg) {
/* // In case we would run the arrange asynchronously
wxCommandEvent event(EVT_PROGRESS_BAR);
event.SetInt(st);
event.SetString(msg);
wxQueueEvent(this->q, event.Clone()); */
statusbar()->set_progress(count - st);
statusbar()->set_status_text(msg);
// ok, this is dangerous, but we are protected by the atomic flag
// 'arranging'. This call is needed for the cancel button to work.
wxYieldIfNeeded();
};
statusbar()->set_cancel_callback([this, statusfn](){
arranging.store(false);
statusfn(0, L("Arranging canceled"));
});
static const std::string arrangestr = L("Arranging");
// FIXME: I don't know how to obtain the minimum distance, it depends
// on printer technology. I guess the following should work but it crashes.
double dist = 6; //PrintConfig::min_object_distance(config);
auto min_obj_distance = static_cast<coord_t>(dist/SCALING_FACTOR);
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
assert(bed_shape_opt);
auto& bedpoints = bed_shape_opt->values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
statusfn(0, arrangestr);
try {
arr::BedShapeHint hint;
// TODO: from Sasha from GUI or
hint.type = arr::BedShapeType::WHO_KNOWS;
arr::arrange(model,
min_obj_distance,
bed,
hint,
false, // create many piles not just one pile
[statusfn](unsigned st) { statusfn(st, arrangestr); },
[this] () { return !arranging.load(); });
} catch(std::exception& /*e*/) {
GUI::show_error(this->q, L("Could not arrange model objects! "
"Some geometries may be invalid."));
}
statusfn(0, L("Arranging done."));
statusbar()->set_range(prev_range);
statusbar()->set_cancel_callback(); // remove cancel button
arranging.store(false);
this->schedule_background_process();
// ignore arrange failures on purpose: user has visual feedback and we don't need to warn him
// when parts don't fit in print bed
// ignore arrange failures on purpose: user has visual feedback and we
// don't need to warn him when parts don't fit in print bed
_3DScene::enable_toolbar_item(canvas3D, "arrange", can_arrange());
update();
}
@ -1932,7 +2007,7 @@ bool Plater::priv::can_delete_all() const
bool Plater::priv::can_arrange() const
{
return !model.objects.empty();
return !model.objects.empty() && !arranging.load();
}
bool Plater::priv::can_mirror() const

View File

@ -1,29 +0,0 @@
%module{Slic3r::XS};
%{
#include <xsinit.h>
#include "slic3r/AppController.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Print.hpp"
#include "slic3r/GUI/ProgressStatusBar.hpp"
%}
%name{Slic3r::PrintController} class PrintController {
PrintController(Print *print);
void slice_to_png();
void slice();
};
%name{Slic3r::AppController} class AppController {
AppController();
PrintController *print_ctl();
void set_model(Model *model);
void set_print(Print *print);
void set_global_progress_indicator(ProgressStatusBar *prs);
void arrange_model();
};

View File

@ -216,8 +216,6 @@ Ref<PrintObjectSupportMaterial> O_OBJECT_SLIC3R_T
Clone<PrintObjectSupportMaterial> O_OBJECT_SLIC3R_T
AppConfig* O_OBJECT_SLIC3R
AppController* O_OBJECT_SLIC3R
PrintController* O_OBJECT_SLIC3R
Ref<AppConfig> O_OBJECT_SLIC3R_T
BackgroundSlicingProcess* O_OBJECT_SLIC3R
Ref<BackgroundSlicingProcess> O_OBJECT_SLIC3R_T