Fix failing tests for merge point search

Improvements and comments to find_merge_pt
This commit is contained in:
tamasmeszaros 2022-06-29 12:35:43 +02:00
parent f3d4a90721
commit a55be29568
3 changed files with 62 additions and 29 deletions

View file

@ -9,32 +9,65 @@ namespace Slic3r { namespace branchingtree {
std::optional<Vec3f> find_merge_pt(const Vec3f &A,
const Vec3f &B,
float max_slope)
float critical_angle)
{
Vec3f Da = (B - A).normalized(), Db = -Da;
auto [polar_da, azim_da] = Geometry::dir_to_spheric(Da);
auto [polar_db, azim_db] = Geometry::dir_to_spheric(Db);
polar_da = std::max(polar_da, float(PI) / 2.f + max_slope);
polar_db = std::max(polar_db, float(PI) / 2.f + max_slope);
// The idea is that A and B both have their support cones. But searching
// for the intersection of these support cones is difficult and its enough
// to reduce this problem to 2D and search for the intersection of two
// rays that merge somewhere between A and B. The 2D plane is a vertical
// slice of the 3D scene where the X axis is determined by the XY direction
// of the AB vector.
//
// Z^
// | A *
// | . . B *
// | . . . .
// | . . . .
// | . x .
// -------------------> X
Da = Geometry::spheric_to_dir<float>(polar_da, azim_da);
Db = Geometry::spheric_to_dir<float>(polar_db, azim_db);
// Determine the transformation matrix for the 2D projection:
Vec3f diff = {B.x() - A.x(), B.y() - A.y(), 0.f};
Vec3f dir = diff.normalized(); // TODO: avoid normalization
// This formula is based on
Eigen::Matrix<float, 2, 3> tr2D;
tr2D.row(0) = Vec3f{dir.x(), dir.y(), dir.z()};
tr2D.row(1) = Vec3f{0.f, 0.f, 1.f};
// Transform the 2 vectors A and B into 2D vector 'a' and 'b'. Here we can
// omit 'a', pretend that its the origin and use BA as the vector b.
Vec2f b = tr2D * (B - A);
// Get the slope of the ray emanating from 'a' towards 'b'. This ray might
// exceed the allowed angle but that is corrected subsequently.
// if b.x() is 0, slope is (+/-) pi/2 depending on b.y() sign
float slope_a = std::atan2(b.y(), b.x());
// slope from 'b' to 'a' is the opposite of slope_a, the angle will also
// be corrected later.
float slope_b = -slope_a;
// Derive the allowed angles from the given critical angle.
// critical_angle is measured from the horizontal X axis.
// The rays need to go downwards which corresponds to negative angles
float min_angle = critical_angle - float(PI) / 2.f;
slope_a = std::min(slope_a, min_angle);
slope_b = std::min(slope_b, min_angle);
Vec2f Da = {std::cos(slope_a), std::sin(slope_a)};
Vec2f Db = {-std::cos(slope_b), std::sin(slope_b)};
// Determine where two rays ([0, 0], Da), (b, Db) intersect.
// Based on
// https://stackoverflow.com/questions/27459080/given-two-points-and-two-direction-vectors-find-the-point-where-they-intersect
double t1 =
(A.z() * Db.x() + Db.z() * B.x() - B.z() * Db.x() - Db.z() * A.x()) /
(Da.x() * Db.z() - Da.z() * Db.x());
// One ray is emanating from (0, 0) so the formula is simplified
double t1 = (Db.y() * b.x() - b.y() * Db.x()) /
(Da.x() * Db.y() - Da.y() * Db.x());
if (std::isnan(t1) || std::abs(t1) < EPSILON)
t1 = (A.z() * Db.y() + Db.z() * B.y() - B.z() * Db.y() - Db.z() * A.y()) /
(Da.y() * Db.z() - Da.z() * Db.y());
Vec2f mp = t1 * Da;
Vec3f Mp = A + tr2D.transpose() * mp;
Vec3f m1 = A + t1 * Da;
double t2 = (m1.z() - B.z()) / Db.z();
return t1 >= 0. && t2 >= 0. ? m1 : std::optional<Vec3f>{};
return t1 >= 0.f ? Mp : Vec3f{};
}
void to_eigen_mesh(const indexed_triangle_set &its,