diff --git a/src/libslic3r/PrintObject.cpp b/src/libslic3r/PrintObject.cpp index 61c761be0..13fc92659 100644 --- a/src/libslic3r/PrintObject.cpp +++ b/src/libslic3r/PrintObject.cpp @@ -2,6 +2,7 @@ #include "BridgeDetector.hpp" #include "ExPolygon.hpp" #include "Exception.hpp" +#include "Flow.hpp" #include "KDTreeIndirect.hpp" #include "Point.hpp" #include "Polygon.hpp" @@ -1533,185 +1534,272 @@ void PrintObject::bridge_over_infill() { BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info(); - tbb::parallel_for(tbb::blocked_range(0, this->layers().size()), [po = this](tbb::blocked_range r) { - for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { - const Layer *layer = po->get_layer(lidx); + tbb::parallel_for( + tbb::blocked_range(0, this->layers().size()), + [po = this](tbb::blocked_range r) { + for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { + const Layer *layer = po->get_layer(lidx); - // gather also sparse infill surfaces on this layer, to which we can expand the bridges for anchoring - // gather potential internal bridging surfaces for the current layer - // pair of LayerSlice idx and surfaces. The LayerSlice idx simplifies the processing, since we cannot expand beyond it - std::unordered_map bridging_surface_candidates; - std::unordered_map expansion_space; - std::unordered_map max_bridge_flow_height; - std::unordered_map max_bridge_flow_width; - for (const LayerSlice &slice : layer->lslices_ex) { - std::unordered_set regions_to_check; - for (const LayerIsland &island : slice.islands) { - regions_to_check.insert(island.perimeters.region()); - if (!island.fill_expolygons_composite()) { - regions_to_check.insert(island.fill_region_id); - } - } - - for (size_t region_idx : regions_to_check) { - const LayerRegion *region = layer->get_region(region_idx); - auto region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid); - if (!region_internal_solids.empty()) { - max_bridge_flow_height[&slice] = std::max(max_bridge_flow_height[&slice], - region->bridging_flow(frSolidInfill).height()); - max_bridge_flow_width[&slice] = std::max(max_bridge_flow_width[&slice], - region->bridging_flow(frSolidInfill).width()); - } - bridging_surface_candidates[&slice].insert(bridging_surface_candidates[&slice].end(), region_internal_solids.begin(), - region_internal_solids.end()); - auto region_sparse_infill = region->fill_surfaces().filter_by_type(stInternal); - expansion_space[&slice].insert(expansion_space[&slice].end(), region_sparse_infill.begin(), region_sparse_infill.end()); - } - } - - // if there are none briding candidates, exit now, before making infill for the previous layer - if (std::all_of(bridging_surface_candidates.begin(), bridging_surface_candidates.end(), - [](const std::pair &candidates) { return candidates.second.empty(); })) { - continue; - } - - // Now, temporarily fill the previous layer and extract the extrusions. - // TODO - the make_fills function does a lot of work, some of it is not needed (e.g. sorting the paths) - // It would be nice to have a function that only creates the fill polylines, ideally without modifying the global state - po->get_layer(lidx)->lower_layer->make_fills(nullptr, nullptr, nullptr); - Polylines lower_layer_polylines; - for (const LayerRegion *region : layer->lower_layer->m_regions) { - for (const ExtrusionEntity *ee : region->fills().entities) { - assert(ee->is_collection()); - auto region_polylines = dynamic_cast(ee)->as_polylines(); - lower_layer_polylines.insert(lower_layer_polylines.end(), region_polylines.begin(), region_polylines.end()); - } - } - - for (const std::pair candidates : bridging_surface_candidates) { - if (candidates.second.empty()) { - continue; - }; - - // Gather lower layers sparse infill areas, to depth defined by used bridge flow - Polygons lower_layers_sparse_infill; - double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON; - LayerSlice::Links current_links = candidates.first->overlaps_below; - LayerSlice::Links next_links{}; - for (auto i = int(lidx) - 1; i >= 0; --i) { - // Stop iterating if layer is lower than bottom_z. - if (po->get_layer(i)->print_z < bottom_z) - break; - for (const auto &link : current_links) { - const LayerSlice &slice_below = po->get_layer(i)->lslices_ex[link.slice_idx]; - next_links.insert(next_links.end(), slice_below.overlaps_below.begin(), slice_below.overlaps_below.end()); - std::unordered_set regions_under_to_check; - for (const LayerIsland &island : slice_below.islands) { - regions_under_to_check.insert(island.perimeters.region()); - if (!island.fill_expolygons_composite()) { - regions_under_to_check.insert(island.fill_region_id); - } - } - - for (size_t region_idx : regions_under_to_check) { - const LayerRegion *region = layer->get_region(region_idx); - for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) { - Polygons p = to_polygons(surface->expolygon); - lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end()); - } + // gather also sparse infill surfaces on this layer, to which we can expand the bridges for anchoring + // gather potential internal bridging surfaces for the current layer + // pair of LayerSlice idx and surfaces. The LayerSlice idx simplifies the processing, since we cannot expand beyond it + std::unordered_map bridging_surface_candidates; + std::unordered_map expansion_space; + std::unordered_map max_bridge_flow_height; + std::unordered_map surface_to_region; + for (const LayerSlice &slice : layer->lslices_ex) { + std::unordered_set regions_to_check; + for (const LayerIsland &island : slice.islands) { + regions_to_check.insert(island.perimeters.region()); + if (!island.fill_expolygons_composite()) { + regions_to_check.insert(island.fill_region_id); } } - current_links = next_links; + + for (size_t region_idx : regions_to_check) { + const LayerRegion *region = layer->get_region(region_idx); + auto region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid); + if (!region_internal_solids.empty()) { + max_bridge_flow_height[&slice] = std::max(max_bridge_flow_height[&slice], + region->bridging_flow(frSolidInfill).height()); + } + for (const Surface *s : region_internal_solids) { + surface_to_region[s] = region; + } + bridging_surface_candidates[&slice].insert(bridging_surface_candidates[&slice].end(), + region_internal_solids.begin(), region_internal_solids.end()); + auto region_sparse_infill = region->fill_surfaces().filter_by_type(stInternal); + expansion_space[&slice].insert(expansion_space[&slice].end(), region_sparse_infill.begin(), + region_sparse_infill.end()); + } } - if (lower_layers_sparse_infill.empty()) { + + // if there are none briding candidates, exit now, before making infill for the previous layer + if (std::all_of(bridging_surface_candidates.begin(), bridging_surface_candidates.end(), + [](const std::pair &candidates) { return candidates.second.empty(); })) { continue; } - lower_layers_sparse_infill = union_(lower_layers_sparse_infill); - Polygons expand_area; - for (const Surface *sparse_infill : expansion_space[candidates.first]) { - assert(sparse_infill->surface_type == stInternal); - Polygons a = to_polygons(sparse_infill->expolygon); - expand_area.insert(expand_area.end(), a.begin(), a.end()); + // Now, temporarily fill the previous layer and extract the extrusions. + // TODO - the make_fills function does a lot of work, some of it is not needed (e.g. sorting the paths) + // It would be nice to have a function that only creates the fill polylines, ideally without modifying the global state + po->get_layer(lidx)->lower_layer->make_fills(nullptr, nullptr, nullptr); + Polylines lower_layer_polylines; + for (const LayerRegion *region : layer->lower_layer->m_regions) { + for (const ExtrusionEntity *ee : region->fills().entities) { + assert(ee->is_collection()); + auto region_polylines = dynamic_cast(ee)->as_polylines(); + lower_layer_polylines.insert(lower_layer_polylines.end(), region_polylines.begin(), region_polylines.end()); + } } - // Lower layers sparse infill sections gathered - // now we can intersected them with bridging surface candidates to get actual areas that need and can accumulate - // bridging. These areas we then expand (within the surrounding sparse infill only!) - // to touch the infill polylines on previous layer. - for (const Surface *candidate : candidates.second) { - assert(candidate->surface_type == stInternalSolid); - Polygons bridged_area = to_polygons(candidate->expolygon); - bridged_area = - intersection(bridged_area, - lower_layers_sparse_infill); // cut off parts which are not over sparse infill - material overflow - - if (bridged_area.empty()) { + for (const std::pair candidates : bridging_surface_candidates) { + if (candidates.second.empty()) { continue; - } + }; - Polygons max_area = expand_area; - max_area.insert(max_area.end(), bridged_area.begin(), bridged_area.end()); - closing(max_area, max_bridge_flow_width[candidates.first]); + // Gather lower layers sparse infill areas, to depth defined by used bridge flow + Polygons lower_layers_sparse_infill; + double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON; + LayerSlice::Links current_links = candidates.first->overlaps_below; + LayerSlice::Links next_links{}; + for (auto i = int(lidx) - 1; i >= 0; --i) { + // Stop iterating if layer is lower than bottom_z. + if (po->get_layer(i)->print_z < bottom_z) + break; + for (const auto &link : current_links) { + const LayerSlice &slice_below = po->get_layer(i)->lslices_ex[link.slice_idx]; + next_links.insert(next_links.end(), slice_below.overlaps_below.begin(), slice_below.overlaps_below.end()); + std::unordered_set regions_under_to_check; + for (const LayerIsland &island : slice_below.islands) { + regions_under_to_check.insert(island.perimeters.region()); + if (!island.fill_expolygons_composite()) { + regions_under_to_check.insert(island.fill_region_id); + } + } - Polylines anchors = intersection_pl(lower_layer_polylines, max_area); - anchors = diff_pl(anchors, shrink(bridged_area, scale_(max_bridge_flow_width[candidates.first]))); - - AABBTreeLines::LinesDistancer anchors_and_walls; - { - Lines tmp = to_lines(anchors); - Lines tmp2 = to_lines(max_area); - tmp.insert(tmp.end(), tmp.begin(), tmp.end()); - anchors_and_walls = AABBTreeLines::LinesDistancer{tmp}; - } - - double bridging_dir = 0; - { - std::vector> directions_with_distances; - for (const Polygon &p : bridged_area) { - for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) { - Vec2d start = p.points[point_idx].cast(); - Vec2d next = p.points[point_idx + 1].cast(); - Vec2d v = next - start; // vector from next to current - double dist_to_next = v.norm(); - v.normalize(); - int lines_count = int(std::ceil(dist_to_next / scaled(3.0))); - float step_size = dist_to_next / lines_count; - for (int i = 0; i < lines_count; ++i) { - Point a(start + v * (i * step_size)); - auto [distance, index, p] = anchors_and_walls.distance_from_lines_extra(a); - const Line& l = anchors_and_walls.get_line(index); - directions_with_distances.emplace_back(PI - l.direction(), unscaled(distance)); + for (size_t region_idx : regions_under_to_check) { + const LayerRegion *region = layer->get_region(region_idx); + for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) { + Polygons p = to_polygons(surface->expolygon); + lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end()); } } } - double max_dist = directions_with_distances[0].second; - for (const auto& dir :directions_with_distances) { - max_dist = std::max(max_dist, dir.second); - } - double acc = 0; - for (const auto& dir : directions_with_distances) { - bridging_dir += dir.first * (max_dist - dir.second); - acc += (max_dist - dir.second); - } - bridging_dir /= acc; + current_links = next_links; + } + if (lower_layers_sparse_infill.empty()) { + continue; + } + lower_layers_sparse_infill = union_(lower_layers_sparse_infill); + + Polygons expand_area; + for (const Surface *sparse_infill : expansion_space[candidates.first]) { + assert(sparse_infill->surface_type == stInternal); + Polygons a = to_polygons(sparse_infill->expolygon); + expand_area.insert(expand_area.end(), a.begin(), a.end()); } - //TODO use get_extens_rotated on the bridged_area polygons, generate vertical lines of the box, - // OR maybe get extens of rotated max_area, then fill with vertical lines, make AABB tree rotated for anchors and walls and also + // Lower layers sparse infill sections gathered + // now we can intersected them with bridging surface candidates to get actual areas that need and can accumulate + // bridging. These areas we then expand (within the surrounding sparse infill only!) + // to touch the infill polylines on previous layer. + for (const Surface *candidate : candidates.second) { + const Flow &flow = surface_to_region[candidate]->bridging_flow(frSolidInfill); + assert(candidate->surface_type == stInternalSolid); + Polygons bridged_area = to_polygons(candidate->expolygon); + bridged_area = + intersection(bridged_area, + lower_layers_sparse_infill); // cut off parts which are not over sparse infill - material overflow + + if (bridged_area.empty()) { + continue; + } + + Polygons max_area = expand_area; + max_area.insert(max_area.end(), bridged_area.begin(), bridged_area.end()); + closing(max_area, flow.scaled_width()); + + Polylines anchors = intersection_pl(lower_layer_polylines, max_area); + anchors = diff_pl(anchors, shrink(bridged_area, flow.scaled_width())); + + Lines anchors_and_walls = to_lines(anchors); + Lines tmp = to_lines(max_area); + tmp.insert(anchors_and_walls.end(), tmp.begin(), tmp.end()); + + double bridging_angle = 0; + { + AABBTreeLines::LinesDistancer lines_tree{anchors_and_walls}; + + std::vector> directions_with_distances; + for (const Polygon &p : bridged_area) { + for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) { + Vec2d start = p.points[point_idx].cast(); + Vec2d next = p.points[point_idx + 1].cast(); + Vec2d v = next - start; // vector from next to current + double dist_to_next = v.norm(); + v.normalize(); + int lines_count = int(std::ceil(dist_to_next / scaled(3.0))); + float step_size = dist_to_next / lines_count; + for (int i = 0; i < lines_count; ++i) { + Point a(start + v * (i * step_size)); + auto [distance, index, p] = lines_tree.distance_from_lines_extra(a); + const Line &l = lines_tree.get_line(index); + directions_with_distances.emplace_back(PI - l.direction(), unscaled(distance)); + } + } + } + double max_dist = directions_with_distances[0].second; + for (const auto &dir : directions_with_distances) { + max_dist = std::max(max_dist, dir.second); + } + double acc = 0; + for (const auto &dir : directions_with_distances) { + bridging_angle += dir.first * (max_dist - dir.second); + acc += (max_dist - dir.second); + } + bridging_angle /= acc; + } + + // TODO maybe get extens of rotated max_area, then fill with vertical lines, make AABB tree rotated for anchors and + // walls and also // for bridged area - // then cut off the vertical lines, compose the final polygon, and rotate back + // then cut off the vertical lines, compose the final polygon, and rotate back + auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) { + for (Line &l : lines) { + double ax = double(l.a.x()); + double ay = double(l.a.y()); + l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay)); + l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax)); + double bx = double(l.b.x()); + double by = double(l.b.y()); + l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by)); + l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx)); + } + }; + + Polygons expanded_bridged_area{}; + { + polygons_rotate(bridged_area, bridging_angle); + lines_rotate(anchors_and_walls, cos(bridging_angle), sin(bridging_angle)); + BoundingBox bb_x = get_extents(bridged_area); + BoundingBox bb_y = get_extents(anchors_and_walls); + + const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + flow.scaled_spacing() - 1) / flow.scaled_spacing(); + std::vector vertical_lines(n_vlines); + for (size_t i = 0; i < n_vlines; i++) { + coord_t x = bb_x.min.x() + i * flow.scaled_spacing(); + coord_t y_min = bb_y.min.y() - flow.scaled_spacing(); + coord_t y_max = bb_y.max.y() + flow.scaled_spacing(); + vertical_lines[i].a = Point{x, y_min}; + vertical_lines[i].b = Point{x, y_max}; + } + + auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer{std::move(anchors_and_walls)}; + auto bridged_area_tree = AABBTreeLines::LinesDistancer{to_lines(bridged_area)}; + + std::vector>> polygon_sections(n_vlines); + for (size_t i = 0; i < n_vlines; i++) { + auto area_intersections = bridged_area_tree.intersections_with_line(vertical_lines[i]); + if (area_intersections.size() < 2) { + if (area_intersections.size() > 0) { + polygon_sections[i].emplace_back(area_intersections[0].first, area_intersections[0].first); + } + continue; + } + auto anchors_intersections = anchors_and_walls_tree.intersections_with_line(vertical_lines[i]); + for (const auto &intersection : area_intersections) { + auto high_b = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), intersection, + [](const std::pair left, + const std::pair right) { + return left.first.y() > right.first.y(); + }); + Point low, high; + if (high_b == anchors_intersections.end()) { + assert(false); // should not happen + continue; + } else if (high_b == anchors_intersections.begin()) { + low = high_b->first; + high = (++high_b)->first; + } else { + low = (--high_b)->first; + high = high_b->first; + } + + if (polygon_sections[i].size() > 0 && polygon_sections[i].back().second.y() >= low.y()) { + polygon_sections[i].back().second = high; + } else { + polygon_sections[i].emplace_back(low, high); + } + } + } + + //reconstruct polygon from polygon sections + struct TracedPoly { + std::vector lows; + std::vector highs; + }; + + std::vector traced_polys; + for (const auto& layer : polygon_sections) { + for () + } + + + } + } } // surface iteration end } // island iteration end } // layer iteration end - }); + ); BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info(); } // void PrintObject::bridge_over_infill() -void a(){ +void a() +{ std::vector sparse_infill_regions; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) if (const PrintRegion ®ion = this->printing_region(region_id); region.config().fill_density.value < 100)