Updates in the C++ infill code.
This commit is contained in:
parent
b2a6f43923
commit
a5b7f14dfa
@ -87,7 +87,7 @@ static std::vector<Pointfs> makeNormalisedGrid(coordf_t z, size_t gridWidth, siz
|
||||
|
||||
// sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
|
||||
coordf_t a = std::sqrt(coordf_t(2.)); // period
|
||||
coordf_t wave = abs(fmod(z, a) - a/2.)/a*4. - 1.;
|
||||
coordf_t wave = fabs(fmod(z, a) - a/2.)/a*4. - 1.;
|
||||
coordf_t offset = wave * octagramGap;
|
||||
|
||||
std::vector<Pointfs> points;
|
||||
@ -139,9 +139,14 @@ static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t
|
||||
return result;
|
||||
}
|
||||
|
||||
Polylines Fill3DHoneycomb::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
void Fill3DHoneycomb::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
ExPolygon expolygon = surface->expolygon;
|
||||
// no rotation is supported for this infill pattern
|
||||
BoundingBox bb = expolygon.contour.bounding_box();
|
||||
Point size = bb.size();
|
||||
coord_t distance = coord_t(scale_(this->spacing) / params.density);
|
||||
@ -149,9 +154,7 @@ Polylines Fill3DHoneycomb::fill_surface(const Surface *surface, const FillParams
|
||||
// align bounding box to a multiple of our honeycomb grid module
|
||||
// (a module is 2*$distance since one $distance half-module is
|
||||
// growing while the other $distance half-module is shrinking)
|
||||
bb.merge(Point(
|
||||
bb.min.x - (bb.min.x % (2*distance)),
|
||||
bb.min.y - (bb.min.y % (2*distance))));
|
||||
bb.merge(_align_to_grid(bb.min, Point(2*distance, 2*distance)));
|
||||
|
||||
// generate pattern
|
||||
Polylines polylines = makeGrid(
|
||||
@ -159,7 +162,7 @@ Polylines Fill3DHoneycomb::fill_surface(const Surface *surface, const FillParams
|
||||
distance,
|
||||
ceil(size.x / distance) + 1,
|
||||
ceil(size.y / distance) + 1,
|
||||
((this->layer_id / surface->thickness_layers) % 2) + 1);
|
||||
((this->layer_id/thickness_layers) % 2) + 1);
|
||||
|
||||
// move pattern in place
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
|
||||
@ -186,15 +189,11 @@ Polylines Fill3DHoneycomb::fill_surface(const Surface *surface, const FillParams
|
||||
polylines,
|
||||
#endif
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
assert(polylines.empty());
|
||||
#else
|
||||
polylines.clear();
|
||||
#endif
|
||||
bool first = true;
|
||||
for (Polylines::iterator it_polyline = chained.begin(); it_polyline != chained.end(); ++ it_polyline) {
|
||||
if (! polylines.empty()) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines.back().points;
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = it_polyline->points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
@ -208,16 +207,14 @@ Polylines Fill3DHoneycomb::fill_surface(const Surface *surface, const FillParams
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
polylines.push_back(std::move(*it_polyline));
|
||||
polylines_out.push_back(std::move(*it_polyline));
|
||||
#else
|
||||
polylines.push_back(Polyline());
|
||||
std::swap(polylines.back(), *it_polyline);
|
||||
polylines_out.push_back(Polyline());
|
||||
std::swap(polylines_out.back(), *it_polyline);
|
||||
#endif
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: return ExtrusionLoop objects to get better chained paths
|
||||
return polylines;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -9,14 +9,21 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Fill3DHoneycomb : public FillWithDirection
|
||||
class Fill3DHoneycomb : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~Fill3DHoneycomb() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
|
||||
// require bridge flow since most of this pattern hangs in air
|
||||
virtual bool use_bridge_flow() const { return true; }
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -1,3 +1,6 @@
|
||||
#include <stdio.h>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
@ -24,7 +27,8 @@ Fill* Fill::new_from_type(const std::string &type)
|
||||
if (type == "line")
|
||||
return new FillLine();
|
||||
if (type == "grid")
|
||||
return new FillGrid();
|
||||
// return new FillGrid();
|
||||
return new FillGrid2();
|
||||
if (type == "archimedeanchords")
|
||||
return new FillArchimedeanChords();
|
||||
if (type == "hilbertcurve")
|
||||
@ -35,16 +39,39 @@ Fill* Fill::new_from_type(const std::string &type)
|
||||
return NULL;
|
||||
}
|
||||
|
||||
coord_t Fill::adjust_solid_spacing(const coord_t width, const coord_t distance)
|
||||
Polylines Fill::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
coord_t number_of_lines = coord_t(coordf_t(width) / coordf_t(distance)) + 1;
|
||||
coord_t extra_space = width % distance;
|
||||
return (number_of_lines <= 1) ?
|
||||
distance :
|
||||
distance + extra_space / (number_of_lines - 1);
|
||||
// Perform offset.
|
||||
Slic3r::ExPolygons expp;
|
||||
offset(surface->expolygon, &expp, -0.5*scale_(this->spacing));
|
||||
// Create the infills for each of the regions.
|
||||
Polylines polylines_out;
|
||||
for (size_t i = 0; i < expp.size(); ++ i)
|
||||
_fill_surface_single(
|
||||
params,
|
||||
surface->thickness_layers,
|
||||
_infill_direction(surface),
|
||||
expp[i],
|
||||
polylines_out);
|
||||
return polylines_out;
|
||||
}
|
||||
|
||||
std::pair<float, Point> FillWithDirection::infill_direction(const Surface *surface) const
|
||||
// Calculate a new spacing to fill width with possibly integer number of lines,
|
||||
// the first and last line being centered at the interval ends.
|
||||
//FIXME Vojtech: This
|
||||
// This function possibly increases the spacing, never decreases,
|
||||
// and for a narrow width the increase in spacing may become severe!
|
||||
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
|
||||
{
|
||||
coord_t number_of_intervals = coord_t(coordf_t(width) / coordf_t(distance));
|
||||
return (number_of_intervals == 0) ?
|
||||
distance :
|
||||
(width / number_of_intervals);
|
||||
}
|
||||
|
||||
// Returns orientation of the infill and the reference point of the infill pattern.
|
||||
// For a normal print, the reference point is the center of a bounding box of the STL.
|
||||
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
|
||||
{
|
||||
// set infill angle
|
||||
float out_angle = this->angle;
|
||||
@ -55,10 +82,20 @@ std::pair<float, Point> FillWithDirection::infill_direction(const Surface *surfa
|
||||
out_angle = 0.f;
|
||||
}
|
||||
|
||||
// Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
|
||||
// The bounding box is only undefined in unit tests.
|
||||
Point out_shift = empty(this->bounding_box) ?
|
||||
surface->expolygon.contour.bounding_box().center() :
|
||||
this->bounding_box.center();
|
||||
|
||||
#if 0
|
||||
if (empty(this->bounding_box)) {
|
||||
printf("Fill::_infill_direction: empty bounding box!");
|
||||
} else {
|
||||
printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (surface->bridge_angle >= 0) {
|
||||
// use bridge angle
|
||||
//FIXME Vojtech: Add a debugf?
|
||||
@ -71,7 +108,7 @@ std::pair<float, Point> FillWithDirection::infill_direction(const Surface *surfa
|
||||
// alternate fill direction
|
||||
out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
|
||||
} else {
|
||||
printf("Layer_ID undefined!\n");
|
||||
// printf("Layer_ID undefined!\n");
|
||||
}
|
||||
|
||||
out_angle += float(M_PI/2.);
|
||||
|
@ -1,7 +1,9 @@
|
||||
#ifndef slic3r_FillBase_hpp_
|
||||
#define slic3r_FillBase_hpp_
|
||||
|
||||
#include <memory.h>
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../BoundingBox.hpp"
|
||||
@ -61,7 +63,7 @@ public:
|
||||
virtual bool no_sort() const { return false; }
|
||||
|
||||
// Perform the fill.
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms) = 0;
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
Fill() :
|
||||
@ -75,7 +77,41 @@ protected:
|
||||
bounding_box(Point(0, 0), Point(-1, -1))
|
||||
{}
|
||||
|
||||
static coord_t adjust_solid_spacing(const coord_t width, const coord_t distance);
|
||||
// The expolygon may be modified by the method to avoid a copy.
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out) {}
|
||||
|
||||
static coord_t _adjust_solid_spacing(const coord_t width, const coord_t distance);
|
||||
|
||||
virtual float _layer_angle(size_t idx) const {
|
||||
bool odd = idx & 1;
|
||||
return (idx & 1) ? float(M_PI/2.) : 0;
|
||||
}
|
||||
|
||||
virtual std::pair<float, Point> _infill_direction(const Surface *surface) const;
|
||||
|
||||
// Align a coordinate to a grid. The coordinate may be negative,
|
||||
// the aligned value will never be bigger than the original one.
|
||||
static coord_t _align_to_grid(const coord_t coord, const coord_t spacing) {
|
||||
// Current C++ standard defines the result of integer division to be rounded to zero,
|
||||
// for both positive and negative numbers. Here we want to round down for negative
|
||||
// numbers as well.
|
||||
coord_t aligned = (coord < 0) ?
|
||||
((coord - spacing + 1) / spacing) * spacing :
|
||||
(coord / spacing) * spacing;
|
||||
assert(aligned <= coord);
|
||||
return aligned;
|
||||
}
|
||||
static Point _align_to_grid(Point coord, Point spacing)
|
||||
{ return Point(_align_to_grid(coord.x, spacing.x), _align_to_grid(coord.y, spacing.y)); }
|
||||
static coord_t _align_to_grid(coord_t coord, coord_t spacing, coord_t base)
|
||||
{ return base + _align_to_grid(coord - base, spacing); }
|
||||
static Point _align_to_grid(Point coord, Point spacing, Point base)
|
||||
{ return Point(_align_to_grid(coord.x, spacing.x, base.x), _align_to_grid(coord.y, spacing.y, base.y)); }
|
||||
};
|
||||
|
||||
// An interface class to Perl, aggregating an instance of a Fill and a FillData.
|
||||
@ -83,21 +119,14 @@ class Filler
|
||||
{
|
||||
public:
|
||||
Filler() : fill(NULL) {}
|
||||
~Filler() { delete fill; fill = NULL; }
|
||||
~Filler() {
|
||||
delete fill;
|
||||
fill = NULL;
|
||||
}
|
||||
Fill *fill;
|
||||
FillParams params;
|
||||
};
|
||||
|
||||
class FillWithDirection : public Fill
|
||||
{
|
||||
public:
|
||||
virtual float _layer_angle(size_t idx) const {
|
||||
bool odd = idx & 1;
|
||||
return (idx & 1) ? float(M_PI/2.) : 0;
|
||||
}
|
||||
virtual std::pair<float, Point> infill_direction(const Surface *surface) const ;
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillBase_hpp_
|
||||
|
@ -6,17 +6,21 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Polylines FillConcentric::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
void FillConcentric::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// no rotation is supported for this infill pattern
|
||||
ExPolygon expolygon = surface->expolygon;
|
||||
BoundingBox bounding_box = expolygon.contour.bounding_box();
|
||||
|
||||
coord_t min_spacing = scale_(this->spacing);
|
||||
coord_t distance = coord_t(min_spacing / params.density);
|
||||
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
distance = this->adjust_solid_spacing(bounding_box.size().x, distance);
|
||||
distance = this->_adjust_solid_spacing(bounding_box.size().x, distance);
|
||||
this->spacing = unscale(distance);
|
||||
}
|
||||
|
||||
@ -32,29 +36,27 @@ Polylines FillConcentric::fill_surface(const Surface *surface, const FillParams
|
||||
union_pt_chained(loops, &loops, false);
|
||||
|
||||
// split paths using a nearest neighbor search
|
||||
Polylines paths;
|
||||
size_t iPathFirst = polylines_out.size();
|
||||
Point last_pos(0, 0);
|
||||
for (Polygons::const_iterator it_loop = loops.begin(); it_loop != loops.end(); ++ it_loop) {
|
||||
paths.push_back(it_loop->split_at_index(last_pos.nearest_point_index(*it_loop)));
|
||||
last_pos = paths.back().last_point();
|
||||
polylines_out.push_back(it_loop->split_at_index(last_pos.nearest_point_index(*it_loop)));
|
||||
last_pos = polylines_out.back().last_point();
|
||||
}
|
||||
|
||||
// clip the paths to prevent the extruder from getting exactly on the first point of the loop
|
||||
// Keep valid paths only.
|
||||
size_t j = 0;
|
||||
for (size_t i = 0; i < paths.size(); ++ i) {
|
||||
paths[i].clip_end(this->loop_clipping);
|
||||
if (paths[i].is_valid()) {
|
||||
size_t j = iPathFirst;
|
||||
for (size_t i = iPathFirst; i < polylines_out.size(); ++ i) {
|
||||
polylines_out[i].clip_end(this->loop_clipping);
|
||||
if (polylines_out[i].is_valid()) {
|
||||
if (j < i)
|
||||
std::swap(paths[j], paths[i]);
|
||||
std::swap(polylines_out[j], polylines_out[i]);
|
||||
++ j;
|
||||
}
|
||||
}
|
||||
if (j < paths.size())
|
||||
paths.erase(paths.begin() + j, paths.end());
|
||||
|
||||
if (j < polylines_out.size())
|
||||
polylines_out.erase(polylines_out.begin() + j, polylines_out.end());
|
||||
// TODO: return ExtrusionLoop objects to get better chained paths
|
||||
return paths;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -9,9 +9,15 @@ class FillConcentric : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillConcentric() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
virtual bool no_sort() const { return true; }
|
||||
};
|
||||
|
||||
|
@ -6,10 +6,13 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Polylines FillHoneycomb::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
void FillHoneycomb::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
std::pair<float, Point> rotate_vector = this->infill_direction(surface);
|
||||
|
||||
// cache hexagons math
|
||||
CacheID cache_id(params.density, this->spacing);
|
||||
Cache::iterator it_m = this->cache.find(cache_id);
|
||||
@ -38,20 +41,19 @@ Polylines FillHoneycomb::fill_surface(const Surface *surface, const FillParams &
|
||||
// adjust actual bounding box to the nearest multiple of our hex pattern
|
||||
// and align it so that it matches across layers
|
||||
|
||||
BoundingBox bounding_box = surface->expolygon.contour.bounding_box();
|
||||
BoundingBox bounding_box = expolygon.contour.bounding_box();
|
||||
{
|
||||
// rotate bounding box according to infill direction
|
||||
Polygon bb_polygon = bounding_box.polygon();
|
||||
bb_polygon.rotate(rotate_vector.first, m.hex_center);
|
||||
bb_polygon.rotate(direction.first, m.hex_center);
|
||||
bounding_box = bb_polygon.bounding_box();
|
||||
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// $bounding_box->[X1] and [Y1] represent the displacement between new bounding box offset and old one
|
||||
bounding_box.merge(Point(
|
||||
bounding_box.min.x - (bounding_box.min.x % m.hex_width),
|
||||
bounding_box.min.y - (bounding_box.min.y % m.pattern_height)));
|
||||
// The infill is not aligned to the object bounding box, but to a world coordinate system. Supposedly good enough.
|
||||
bounding_box.merge(_align_to_grid(bounding_box.min, Point(m.hex_width, m.pattern_height)));
|
||||
}
|
||||
|
||||
|
||||
coord_t x = bounding_box.min.x;
|
||||
while (x <= bounding_box.max.x) {
|
||||
Polygon p;
|
||||
@ -70,27 +72,27 @@ Polylines FillHoneycomb::fill_surface(const Surface *surface, const FillParams &
|
||||
std::swap(ax[0], ax[1]); // draw symmetrical pattern
|
||||
x += m.distance;
|
||||
}
|
||||
p.rotate(-rotate_vector.first, m.hex_center);
|
||||
p.rotate(-direction.first, m.hex_center);
|
||||
polygons.push_back(p);
|
||||
}
|
||||
}
|
||||
|
||||
Polylines paths;
|
||||
if (params.complete || true) {
|
||||
// we were requested to complete each loop;
|
||||
// in this case we don't try to make more continuous paths
|
||||
Polygons polygons_trimmed = intersection((Polygons)*surface, polygons);
|
||||
Polygons polygons_trimmed = intersection((Polygons)expolygon, polygons);
|
||||
for (Polygons::iterator it = polygons_trimmed.begin(); it != polygons_trimmed.end(); ++ it)
|
||||
paths.push_back(it->split_at_first_point());
|
||||
polylines_out.push_back(it->split_at_first_point());
|
||||
} else {
|
||||
// consider polygons as polylines without re-appending the initial point:
|
||||
// this cuts the last segment on purpose, so that the jump to the next
|
||||
// path is more straight
|
||||
Polylines paths;
|
||||
{
|
||||
Polylines p;
|
||||
for (Polygons::iterator it = polygons.begin(); it != polygons.end(); ++ it)
|
||||
p.push_back((Polyline)(*it));
|
||||
paths = intersection(p, (Polygons)*surface);
|
||||
intersection(p, (Polygons)expolygon, &paths);
|
||||
}
|
||||
|
||||
// connect paths
|
||||
@ -119,15 +121,13 @@ Polylines FillHoneycomb::fill_surface(const Surface *surface, const FillParams &
|
||||
}
|
||||
|
||||
// clip paths again to prevent connection segments from crossing the expolygon boundaries
|
||||
Polylines paths_trimmed = intersection(paths, to_polygons(offset_ex(surface->expolygon, SCALED_EPSILON)));
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
paths = std::move(paths_trimmed);
|
||||
#else
|
||||
std::swap(paths, paths_trimmed);
|
||||
#endif
|
||||
intersection(paths, to_polygons(offset_ex(expolygon, SCALED_EPSILON)), &paths);
|
||||
// Move the polylines to the output, avoid a deep copy.
|
||||
size_t j = polylines_out.size();
|
||||
polylines_out.resize(j + paths.size(), Polyline());
|
||||
for (size_t i = 0; i < paths.size(); ++ i)
|
||||
std::swap(polylines_out[j ++], paths[i]);
|
||||
}
|
||||
|
||||
return paths;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -9,13 +9,19 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class FillHoneycomb : public FillWithDirection
|
||||
class FillHoneycomb : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillHoneycomb() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
// Caching the
|
||||
struct CacheID
|
||||
{
|
||||
@ -42,7 +48,7 @@ protected:
|
||||
typedef std::map<CacheID, CacheData> Cache;
|
||||
Cache cache;
|
||||
|
||||
virtual float _layer_angle(size_t idx) const { return 0.5f * float(M_PI) * (idx % 3); }
|
||||
virtual float _layer_angle(size_t idx) const { return float(M_PI/3.) * (idx % 3); }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -6,18 +6,20 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Polylines FillPlanePath::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
void FillPlanePath::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
ExPolygon expolygon = surface->expolygon;
|
||||
std::pair<float, Point> rotate_vector = this->infill_direction(surface);
|
||||
expolygon.rotate(- rotate_vector.first);
|
||||
expolygon.rotate(- direction.first);
|
||||
|
||||
coord_t distance_between_lines = scale_(this->spacing) / params.density;
|
||||
|
||||
// align infill across layers using the object's bounding box
|
||||
Polygon bb_polygon = this->bounding_box.polygon();
|
||||
bb_polygon.rotate(- rotate_vector.first);
|
||||
BoundingBox bounding_box = bb_polygon.bounding_box();
|
||||
// Rotated bounding box of the whole object.
|
||||
BoundingBox bounding_box = this->bounding_box.rotated(- direction.first);
|
||||
|
||||
Point shift = this->_centered() ?
|
||||
bounding_box.center() :
|
||||
@ -61,11 +63,15 @@ Polylines FillPlanePath::fill_surface(const Surface *surface, const FillParams &
|
||||
// paths must be repositioned and rotated back
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
|
||||
it->translate(shift.x, shift.y);
|
||||
it->rotate(rotate_vector.first);
|
||||
it->rotate(direction.first);
|
||||
}
|
||||
}
|
||||
|
||||
return polylines;
|
||||
|
||||
// Move the polylines to the output, avoid a deep copy.
|
||||
size_t j = polylines_out.size();
|
||||
polylines_out.resize(j + polylines.size(), Polyline());
|
||||
for (size_t i = 0; i < polylines.size(); ++ i)
|
||||
std::swap(polylines_out[j ++], polylines[i]);
|
||||
}
|
||||
|
||||
// Follow an Archimedean spiral, in polar coordinates: r=a+b\theta
|
||||
|
@ -13,13 +13,19 @@ namespace Slic3r {
|
||||
// http://user42.tuxfamily.org/math-planepath/
|
||||
// http://user42.tuxfamily.org/math-planepath/gallery.html
|
||||
|
||||
class FillPlanePath : public FillWithDirection
|
||||
class FillPlanePath : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillPlanePath() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
virtual bool _centered() const = 0;
|
||||
virtual Pointfs _generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y) = 0;
|
||||
|
@ -7,15 +7,15 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
void FillRectilinear::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// rotate polygons so that we can work with vertical lines here
|
||||
ExPolygon expolygon = surface->expolygon;
|
||||
std::pair<float, Point> rotate_vector = this->infill_direction(surface);
|
||||
expolygon.rotate(- rotate_vector.first);
|
||||
// No need to translate the polygon anyhow for the infill.
|
||||
// The infill will be performed inside a bounding box of the expolygon and its absolute position does not matter.
|
||||
// expolygon.translate(rotate_vector.second.x, rotate_vector.second.y);
|
||||
expolygon.rotate(- direction.first);
|
||||
|
||||
this->_min_spacing = scale_(this->spacing);
|
||||
assert(params.density > 0.0001f && params.density <= 1.f);
|
||||
@ -26,13 +26,15 @@ Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams
|
||||
|
||||
// define flow spacing according to requested density
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
this->_line_spacing = this->adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
|
||||
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
|
||||
this->spacing = unscale(this->_line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
bounding_box.merge(Point(
|
||||
bounding_box.min.x - (bounding_box.min.x % this->_line_spacing),
|
||||
bounding_box.min.y - (bounding_box.min.y % this->_line_spacing)));
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
bounding_box.merge(_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(this->_line_spacing, this->_line_spacing),
|
||||
direction.second.rotated(- direction.first)));
|
||||
}
|
||||
|
||||
// generate the basic pattern
|
||||
@ -65,6 +67,7 @@ Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams
|
||||
|
||||
// FIXME Vojtech: This is only performed for horizontal lines, not for the vertical lines!
|
||||
const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
|
||||
// How much to extend an infill path from expolygon outside?
|
||||
coord_t extra = coord_t(floor(this->_min_spacing * INFILL_OVERLAP_OVER_SPACING + 0.5f));
|
||||
for (Polylines::iterator it_polyline = polylines.begin(); it_polyline != polylines.end(); ++ it_polyline) {
|
||||
Point *first_point = &it_polyline->points.front();
|
||||
@ -75,6 +78,8 @@ Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams
|
||||
last_point->y += extra;
|
||||
}
|
||||
|
||||
size_t n_polylines_out_old = polylines_out.size();
|
||||
|
||||
// connect lines
|
||||
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
// offset the expolygon by max(min_spacing/2, extra)
|
||||
@ -94,15 +99,11 @@ Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams
|
||||
polylines,
|
||||
#endif
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
assert(polylines.empty());
|
||||
#else
|
||||
polylines.clear();
|
||||
#endif
|
||||
bool first = true;
|
||||
for (Polylines::iterator it_polyline = chained.begin(); it_polyline != chained.end(); ++ it_polyline) {
|
||||
if (! polylines.empty()) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines.back().points;
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = it_polyline->points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// Distance in X, Y.
|
||||
@ -118,21 +119,21 @@ Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
#if SLIC3R_CPPVER >= 11
|
||||
polylines.push_back(std::move(*it_polyline));
|
||||
polylines_out.push_back(std::move(*it_polyline));
|
||||
#else
|
||||
polylines.push_back(Polyline());
|
||||
std::swap(polylines.back(), *it_polyline);
|
||||
polylines_out.push_back(Polyline());
|
||||
std::swap(polylines_out.back(), *it_polyline);
|
||||
#endif
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
|
||||
// paths must be rotated back
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
|
||||
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_old; it != polylines_out.end(); ++ it) {
|
||||
// No need to translate, the absolute position is irrelevant.
|
||||
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
|
||||
it->rotate(rotate_vector.first);
|
||||
// it->translate(- direction.second.x, - direction.second.y);
|
||||
it->rotate(direction.first);
|
||||
}
|
||||
return polylines;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -9,13 +9,19 @@ namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
class FillRectilinear : public FillWithDirection
|
||||
class FillRectilinear : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillRectilinear() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
coord_t _min_spacing;
|
||||
coord_t _line_spacing;
|
||||
// distance threshold for allowing the horizontal infill lines to be connected into a continuous path
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <algorithm>
|
||||
@ -13,28 +14,14 @@
|
||||
|
||||
#include "FillRectilinear2.hpp"
|
||||
|
||||
#define SLIC3R_DEBUG
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
#include "SVG.hpp"
|
||||
#endif
|
||||
|
||||
#if defined(SLIC3R_DEBUG) && defined(_WIN32)
|
||||
#include <Windows.h>
|
||||
#pragma comment(lib, "user32.lib")
|
||||
static inline void assert_fail(const char *assertion, const char *file, unsigned line, const char *function)
|
||||
{
|
||||
printf("Assert: %s in function %s\nfile %s:%d\n", assertion, function, file, line);
|
||||
if (IsDebuggerPresent()) {
|
||||
DebugBreak();
|
||||
} else {
|
||||
ExitProcess(-1);
|
||||
}
|
||||
}
|
||||
#undef assert
|
||||
#define assert(expr) \
|
||||
((expr) \
|
||||
? static_cast<void>(0) \
|
||||
: assert_fail (#expr, __FILE__, __LINE__, __FUNCTION__))
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
// We want our version of assert.
|
||||
#include "../libslic3r.h"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
@ -81,7 +68,7 @@ enum Orientation
|
||||
// which means, the coord_t types must not have some of the topmost bits utilized.
|
||||
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
{
|
||||
BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
||||
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
||||
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
|
||||
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
|
||||
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
|
||||
@ -94,7 +81,7 @@ static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
static inline bool is_ccw(const Polygon &poly)
|
||||
{
|
||||
// The polygon shall be at least a triangle.
|
||||
assert(poly.points.size() >= 3);
|
||||
myassert(poly.points.size() >= 3);
|
||||
if (poly.points.size() < 3)
|
||||
return true;
|
||||
|
||||
@ -113,7 +100,7 @@ static inline bool is_ccw(const Polygon &poly)
|
||||
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
|
||||
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
|
||||
// or overlapping segments.
|
||||
assert(o != ORIENTATION_COLINEAR);
|
||||
myassert(o != ORIENTATION_COLINEAR);
|
||||
return o == ORIENTATION_CCW;
|
||||
}
|
||||
|
||||
@ -134,8 +121,8 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po
|
||||
std::swap(pa.x, pb.x);
|
||||
if (pa.y > pb.y)
|
||||
std::swap(pa.y, pb.y);
|
||||
assert(px.x >= pa.x && px.x <= pb.x);
|
||||
assert(px.y >= pa.y && px.y <= pb.y);
|
||||
myassert(px.x >= pa.x && px.x <= pb.x);
|
||||
myassert(px.y >= pa.y && px.y <= pb.y);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
const Point *pPrev = &p1;
|
||||
@ -262,45 +249,65 @@ public:
|
||||
struct ExPolygonWithOffset
|
||||
{
|
||||
public:
|
||||
ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon)
|
||||
ExPolygonWithOffset(
|
||||
const ExPolygon &expolygon,
|
||||
float angle,
|
||||
coord_t aoffset1,
|
||||
coord_t aoffset2)
|
||||
{
|
||||
polygons_inner = offset((Polygons)expolygon, aoffset,
|
||||
CLIPPER_OFFSET_SCALE,
|
||||
ClipperLib::jtMiter,
|
||||
// for the infill pattern, don't cut the corners.
|
||||
// default miterLimt = 3
|
||||
10.);
|
||||
n_contours_outer = 1 + expolygon.holes.size();
|
||||
// Copy and rotate the source polygons.
|
||||
polygons_src = (Polygons)expolygon;
|
||||
for (Polygons::iterator it = polygons_src.begin(); it != polygons_src.end(); ++ it)
|
||||
it->rotate(angle);
|
||||
|
||||
double mitterLimit = 3.;
|
||||
// for the infill pattern, don't cut the corners.
|
||||
// default miterLimt = 3
|
||||
//double mitterLimit = 10.;
|
||||
myassert(aoffset1 < 0);
|
||||
myassert(aoffset2 < 0);
|
||||
myassert(aoffset2 < aoffset1);
|
||||
polygons_outer = offset(polygons_src, aoffset1,
|
||||
CLIPPER_OFFSET_SCALE,
|
||||
ClipperLib::jtMiter,
|
||||
mitterLimit);
|
||||
polygons_inner = offset(polygons_src, aoffset2,
|
||||
CLIPPER_OFFSET_SCALE,
|
||||
ClipperLib::jtMiter,
|
||||
mitterLimit);
|
||||
n_contours_outer = polygons_outer.size();
|
||||
n_contours_inner = polygons_inner.size();
|
||||
n_contours = n_contours_outer + n_contours_inner;
|
||||
polygons_inner_ccw.assign(polygons_inner.size(), false);
|
||||
for (size_t i = 0; i < polygons_inner.size(); ++ i)
|
||||
polygons_inner_ccw[i] = is_ccw(polygons_inner[i]);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
// Verify orientation of the expolygon.
|
||||
assert(is_ccw(expolygon.contour));
|
||||
for (size_t i = 0; i < expolygon.holes.size(); ++ i)
|
||||
assert(is_ccw(expolygon.holes[i]));
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
polygons_ccw.assign(n_contours, false);
|
||||
for (size_t i = 0; i < n_contours; ++ i) {
|
||||
contour(i).remove_duplicate_points();
|
||||
myassert(! contour(i).has_duplicate_points());
|
||||
polygons_ccw[i] = is_ccw(contour(i));
|
||||
}
|
||||
}
|
||||
|
||||
// Outer contour of the expolygon.
|
||||
bool is_contour_external(size_t idx) const { return idx == 0; }
|
||||
// Any contour of the expolygon.
|
||||
bool is_contour_outer(size_t idx) const { return idx < n_contours_inner; }
|
||||
// Contour of the shrunk expolygon.
|
||||
bool is_contour_inner(size_t idx) const { return idx >= n_contours_inner; }
|
||||
// Any contour with offset1
|
||||
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
|
||||
// Any contour with offset2
|
||||
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
|
||||
|
||||
const Polygon& contour(size_t idx) const {
|
||||
return is_contour_external(idx) ? expolygon.contour :
|
||||
(is_contour_outer(idx) ? expolygon.holes[idx - 1] : polygons_inner[idx - n_contours_inner]);
|
||||
}
|
||||
const Polygon& contour(size_t idx) const
|
||||
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
|
||||
|
||||
bool is_contour_ccw(size_t idx) const {
|
||||
return is_contour_external(idx) || (is_contour_inner(idx) && polygons_inner_ccw[idx - n_contours_inner]);
|
||||
}
|
||||
Polygon& contour(size_t idx)
|
||||
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
|
||||
|
||||
const ExPolygon &expolygon;
|
||||
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
|
||||
|
||||
BoundingBox bounding_box_src() const
|
||||
{ return _bounding_box_polygons(polygons_src); }
|
||||
BoundingBox bounding_box_outer() const
|
||||
{ return _bounding_box_polygons(polygons_outer); }
|
||||
BoundingBox bounding_box_inner() const
|
||||
{ return _bounding_box_polygons(polygons_inner); }
|
||||
|
||||
Polygons polygons_src;
|
||||
Polygons polygons_outer;
|
||||
Polygons polygons_inner;
|
||||
|
||||
size_t n_contours_outer;
|
||||
@ -308,11 +315,30 @@ public:
|
||||
size_t n_contours;
|
||||
|
||||
protected:
|
||||
|
||||
// For each polygon of polygons_inner, remember its orientation.
|
||||
std::vector<unsigned char> polygons_inner_ccw;
|
||||
std::vector<unsigned char> polygons_ccw;
|
||||
|
||||
static BoundingBox _bounding_box_polygons(const Polygons &poly) {
|
||||
BoundingBox bbox;
|
||||
if (! poly.empty()) {
|
||||
bbox = poly.front().bounding_box();
|
||||
for (size_t i = 1; i < poly.size(); ++ i)
|
||||
bbox.merge(poly[i]);
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
};
|
||||
|
||||
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
|
||||
{
|
||||
int d = int(seg2) - int(seg1);
|
||||
if (! forward)
|
||||
d = - d;
|
||||
if (d < 0)
|
||||
d += int(poly.points.size());
|
||||
return d;
|
||||
}
|
||||
|
||||
// For a vertical line, an inner contour and an intersection point,
|
||||
// find an intersection point on the previous resp. next vertical line.
|
||||
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
|
||||
@ -339,7 +365,8 @@ static inline int intersection_on_prev_next_vertical_line(
|
||||
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
||||
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
||||
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
||||
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
const bool forward = itsct.is_low() == dir_is_next;
|
||||
// Resulting index of an intersection point on il2.
|
||||
int out = -1;
|
||||
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
|
||||
@ -349,13 +376,30 @@ static inline int intersection_on_prev_next_vertical_line(
|
||||
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
|
||||
const SegmentIntersection &itsct2 = il2.intersections[i];
|
||||
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
|
||||
/*
|
||||
if (itsct.is_low()) {
|
||||
myassert(itsct.type == SegmentIntersection::INNER_LOW);
|
||||
myassert(iIntersection > 0);
|
||||
myassert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
|
||||
myassert(i > 0);
|
||||
if (il2.intersections[i-1].is_inner())
|
||||
// Take only the lowest inner intersection point.
|
||||
continue;
|
||||
myassert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
|
||||
} else {
|
||||
myassert(itsct.type == SegmentIntersection::INNER_HIGH);
|
||||
myassert(iIntersection+1 < il.intersections.size());
|
||||
myassert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
|
||||
myassert(i+1 < il2.intersections.size());
|
||||
if (il2.intersections[i+1].is_inner())
|
||||
// Take only the highest inner intersection point.
|
||||
continue;
|
||||
myassert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
|
||||
}
|
||||
*/
|
||||
// The intersection points lie on the same contour and have the same orientation.
|
||||
// Find the intersection point with a shortest path in the direction of the contour.
|
||||
int d = int(itsct2.iSegment) - int(itsct.iSegment);
|
||||
if (ccw != dir_is_next)
|
||||
d = - d;
|
||||
if (d < 0)
|
||||
d += int(poly.points.size());
|
||||
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
|
||||
if (d < dmin) {
|
||||
out = i;
|
||||
dmin = d;
|
||||
@ -395,17 +439,26 @@ static inline int intersection_unused_on_prev_next_vertical_line(
|
||||
size_t iIntersection,
|
||||
bool dir_is_next)
|
||||
{
|
||||
//FIXME This routine will propose a connecting line even if the connecting perimeter segment intersects
|
||||
// iVertical line multiple times before reaching iIntersectionOther.
|
||||
int iIntersectionOther = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, dir_is_next);
|
||||
if (iIntersectionOther == -1)
|
||||
return -1;
|
||||
//FIXME this routine will propose a connecting line even if the connecting perimeter segment intersects iVertical line multiple times before reaching iIntersectionOther.
|
||||
assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
|
||||
myassert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
|
||||
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
|
||||
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
|
||||
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
|
||||
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
|
||||
assert(itsct_other.is_inner());
|
||||
assert(itsct_other.is_low() || iIntersectionOther > 1);
|
||||
myassert(itsct_other.is_inner());
|
||||
myassert(iIntersectionOther > 0);
|
||||
myassert(iIntersectionOther + 1 < il_other.intersections.size());
|
||||
// Is iIntersectionOther at the boundary of a vertical segment?
|
||||
const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
|
||||
if (itsct_other2.is_inner())
|
||||
// Cannot follow a perimeter segment into the middle of another vertical segment.
|
||||
// Only perimeter segments connecting to the end of a vertical segment are followed.
|
||||
return -1;
|
||||
myassert(itsct_other.is_low() == itsct_other2.is_low());
|
||||
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
|
||||
// This perimeter segment was already consumed.
|
||||
return -1;
|
||||
@ -460,11 +513,11 @@ static inline coordf_t measure_perimeter_prev_next_segment_length(
|
||||
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
||||
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
|
||||
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
||||
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
assert(itsct.type == itsct2.type);
|
||||
assert(itsct.iContour == itsct2.iContour);
|
||||
assert(itsct.is_inner());
|
||||
const bool forward = (itsct.is_low() == ccw) == dir_is_next;
|
||||
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
myassert(itsct.type == itsct2.type);
|
||||
myassert(itsct.iContour == itsct2.iContour);
|
||||
myassert(itsct.is_inner());
|
||||
const bool forward = itsct.is_low() == dir_is_next;
|
||||
|
||||
Point p1(il.pos, itsct.pos);
|
||||
Point p2(il2.pos, itsct2.pos);
|
||||
@ -511,9 +564,9 @@ static inline void emit_perimeter_prev_next_segment(
|
||||
size_t iVerticalLineOther = iVerticalLine;
|
||||
if (dir_is_next) {
|
||||
++ iVerticalLineOther;
|
||||
assert(iVerticalLineOther < segs.size());
|
||||
myassert(iVerticalLineOther < segs.size());
|
||||
} else {
|
||||
assert(iVerticalLineOther > 0);
|
||||
myassert(iVerticalLineOther > 0);
|
||||
-- iVerticalLineOther;
|
||||
}
|
||||
|
||||
@ -522,11 +575,11 @@ static inline void emit_perimeter_prev_next_segment(
|
||||
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
||||
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
|
||||
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
||||
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
assert(itsct.type == itsct2.type);
|
||||
assert(itsct.iContour == itsct2.iContour);
|
||||
assert(itsct.is_inner());
|
||||
const bool forward = (itsct.is_low() == ccw) == dir_is_next;
|
||||
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
myassert(itsct.type == itsct2.type);
|
||||
myassert(itsct.iContour == itsct2.iContour);
|
||||
myassert(itsct.is_inner());
|
||||
const bool forward = itsct.is_low() == dir_is_next;
|
||||
// Do not append the first point.
|
||||
// out.points.push_back(Point(il.pos, itsct.pos));
|
||||
if (forward)
|
||||
@ -537,71 +590,91 @@ static inline void emit_perimeter_prev_next_segment(
|
||||
out.points.push_back(Point(il2.pos, itsct2.pos));
|
||||
}
|
||||
|
||||
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
void FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, Polylines &polylines_out)
|
||||
{
|
||||
// rotate polygons so that we can work with vertical lines here
|
||||
ExPolygon expolygon = surface->expolygon;
|
||||
std::pair<float, Point> rotate_vector = this->infill_direction(surface);
|
||||
expolygon.rotate(- rotate_vector.first);
|
||||
// No need to translate the polygon anyhow for the infill.
|
||||
// The infill will be performed inside a bounding box of the expolygon and its absolute position does not matter.
|
||||
// expolygon.translate(rotate_vector.second.x, rotate_vector.second.y);
|
||||
// At the end, only the new polylines will be rotated back.
|
||||
size_t n_polylines_out_initial = polylines_out.size();
|
||||
|
||||
// Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
|
||||
// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
|
||||
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
|
||||
myassert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
|
||||
|
||||
// Rotate polygons so that we can work with vertical lines here
|
||||
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
|
||||
rotate_vector.first += angleBase;
|
||||
|
||||
this->_min_spacing = scale_(this->spacing);
|
||||
assert(params.density > 0.0001f && params.density <= 1.f);
|
||||
myassert(params.density > 0.0001f && params.density <= 1.f);
|
||||
this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density);
|
||||
this->_diagonal_distance = this->_line_spacing * 2;
|
||||
BoundingBox bounding_box = expolygon.contour.bounding_box();
|
||||
|
||||
|
||||
// On the polygons of poly_with_offset, the infill lines will be connected.
|
||||
ExPolygonWithOffset poly_with_offset(
|
||||
surface->expolygon,
|
||||
- rotate_vector.first,
|
||||
scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
|
||||
scale_(- 0.5 * this->spacing));
|
||||
if (poly_with_offset.n_contours_inner == 0) {
|
||||
//FIXME maybe one shall trigger the gap fill here?
|
||||
return;
|
||||
}
|
||||
|
||||
BoundingBox bounding_box = poly_with_offset.bounding_box_outer();
|
||||
|
||||
// define flow spacing according to requested density
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
this->_line_spacing = this->adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
|
||||
this->spacing = unscale(this->_line_spacing);
|
||||
bool full_infill = params.density > 0.9999f;
|
||||
if (full_infill && !params.dont_adjust) {
|
||||
// this->_min_spacing = this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
|
||||
// this->spacing = unscale(this->_line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
bounding_box.merge(Point(
|
||||
bounding_box.min.x - (bounding_box.min.x % this->_line_spacing),
|
||||
bounding_box.min.y - (bounding_box.min.y % this->_line_spacing)));
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
bounding_box.merge(_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(this->_line_spacing, this->_line_spacing),
|
||||
rotate_vector.second.rotated(- rotate_vector.first)));
|
||||
}
|
||||
|
||||
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
||||
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / this->_line_spacing;
|
||||
coord_t x0 = bounding_box.min.x + this->_line_spacing;
|
||||
// On these polygons the infill lines will be connected.
|
||||
ExPolygonWithOffset poly_with_offset(expolygon, - _min_spacing / 2);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
char path[2048];
|
||||
static int iRun = 0;
|
||||
sprintf(path, "out/FillRectilinear2-%d.svg", iRun);
|
||||
BoundingBox bbox_svg = expolygon.contour.bounding_box();
|
||||
bbox_svg.min.x -= coord_t(1. / SCALING_FACTOR);
|
||||
bbox_svg.min.y -= coord_t(1. / SCALING_FACTOR);
|
||||
bbox_svg.max.x += coord_t(1. / SCALING_FACTOR);
|
||||
bbox_svg.max.y += coord_t(1. / SCALING_FACTOR);
|
||||
::Slic3r::SVG svg(path, bbox_svg);
|
||||
svg.draw(expolygon.lines());
|
||||
svg.draw(poly_with_offset.polygons_inner);
|
||||
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
|
||||
::Slic3r::SVG svg(path, bbox_svg); // , scale_(1.));
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_src.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_src[i].lines());
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_outer.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_outer[i].lines(), "green");
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_inner.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_inner[i].lines(), "brown");
|
||||
{
|
||||
char path2[2048];
|
||||
sprintf(path2, "out/FillRectilinear2-initial-%d.svg", iRun);
|
||||
::Slic3r::SVG svg(path2, bbox_svg);
|
||||
svg.draw(expolygon.lines());
|
||||
svg.draw(poly_with_offset.polygons_inner);
|
||||
svg.Close();
|
||||
::Slic3r::SVG svg(path2, bbox_svg); // , scale_(1.));
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_src.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_src[i].lines());
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_outer.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_outer[i].lines(), "green");
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_inner.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_inner[i].lines(), "brown");
|
||||
}
|
||||
iRun ++;
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// For each contour
|
||||
// Allocate the storage for the segments.
|
||||
// Allocate storage for the segments.
|
||||
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
|
||||
for (size_t i = 0; i < n_vlines; ++ i) {
|
||||
segs[i].idx = i;
|
||||
segs[i].pos = x0 + i * this->_line_spacing;
|
||||
}
|
||||
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
|
||||
const Points &contour = poly_with_offset.contour(iContour);
|
||||
const Points &contour = poly_with_offset.contour(iContour).points;
|
||||
if (contour.size() < 2)
|
||||
continue;
|
||||
// For each segment
|
||||
@ -626,10 +699,14 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
if (il > ir)
|
||||
// No vertical line intersects this segment.
|
||||
continue;
|
||||
assert(il >= 0 && il < segs.size());
|
||||
assert(ir >= 0 && ir < segs.size());
|
||||
myassert(il >= 0 && il < segs.size());
|
||||
myassert(ir >= 0 && ir < segs.size());
|
||||
if (l == r) {
|
||||
// The segment is vertical.
|
||||
// Don't insert vertical segments at all.
|
||||
// If the contour is not degenerate, then this vertical line will be crossed
|
||||
// by the non-vertical segments preceding resp. succeeding this vertical segment.
|
||||
/*
|
||||
SegmentIntersection is;
|
||||
is.iContour = iContour;
|
||||
is.iSegment = iSegment;
|
||||
@ -637,24 +714,25 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
segs[il].intersections.push_back(is);
|
||||
is.pos = p2.y;
|
||||
segs[il].intersections.push_back(is);
|
||||
*/
|
||||
continue;
|
||||
}
|
||||
for (int i = il; i <= ir; ++ i) {
|
||||
SegmentIntersection is;
|
||||
is.iContour = iContour;
|
||||
is.iSegment = iSegment;
|
||||
assert(l <= segs[i].pos);
|
||||
assert(r >= segs[i].pos);
|
||||
myassert(l <= segs[i].pos);
|
||||
myassert(r >= segs[i].pos);
|
||||
// Calculate the intersection position in y axis. x is known.
|
||||
double t = double(segs[i].pos - p1.x) / double(p2.x - p1.x);
|
||||
assert(t > -0.000001 && t < 1.000001);
|
||||
myassert(t > -0.000001 && t < 1.000001);
|
||||
t = clamp(0., 1., t);
|
||||
coord_t lo = p1.y;
|
||||
coord_t hi = p2.y;
|
||||
if (lo > hi)
|
||||
std::swap(lo, hi);
|
||||
is.pos = p1.y + coord_t(t * double(p2.y - p1.y));
|
||||
assert(is.pos > lo - 0.000001 && is.pos < hi + 0.000001);
|
||||
myassert(is.pos > lo - 0.000001 && is.pos < hi + 0.000001);
|
||||
is.pos = clamp(lo, hi, is.pos);
|
||||
segs[i].intersections.push_back(is);
|
||||
}
|
||||
@ -674,8 +752,8 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
for (size_t i = 1; i < sil.intersections.size(); ++ i) {
|
||||
size_t iContour1 = sil.intersections[i-1].iContour;
|
||||
size_t iContour2 = sil.intersections[i].iContour;
|
||||
const Points &contour1 = poly_with_offset.contour(iContour1);
|
||||
const Points &contour2 = poly_with_offset.contour(iContour2);
|
||||
const Points &contour1 = poly_with_offset.contour(iContour1).points;
|
||||
const Points &contour2 = poly_with_offset.contour(iContour2).points;
|
||||
size_t iSegment1 = sil.intersections[i-1].iSegment;
|
||||
size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1;
|
||||
size_t iSegment2 = sil.intersections[i].iSegment;
|
||||
@ -683,7 +761,7 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
bool swap = false;
|
||||
if (iContour1 == iContour2 && iSegment1 == iSegment2) {
|
||||
// The same segment, it has to be vertical.
|
||||
assert(iPrev1 == iPrev2);
|
||||
myassert(iPrev1 == iPrev2);
|
||||
swap = contour1[iPrev1].y > contour1[iContour1].y;
|
||||
#ifdef SLIC3R_DEBUG
|
||||
if (swap)
|
||||
@ -706,27 +784,43 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
const Point x2(sil.pos, sil.intersections[i ].pos);
|
||||
bool successive = false;
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
// Sort the points in the two segments by x.
|
||||
if (a->x > b->x)
|
||||
std::swap(a, b);
|
||||
if (c->x > d->x)
|
||||
std::swap(c, d);
|
||||
myassert(a->x <= sil.pos);
|
||||
myassert(c->x <= sil.pos);
|
||||
myassert(b->x >= sil.pos);
|
||||
myassert(d->x >= sil.pos);
|
||||
// Sort the two segments, so the segment <a,b> will be on the left of <c,d>.
|
||||
bool upper_more_left = false;
|
||||
if (a->x > c->x) {
|
||||
upper_more_left = true;
|
||||
std::swap(a, c);
|
||||
std::swap(b, d);
|
||||
}
|
||||
if (a == c || b == c) {
|
||||
assert(iContour1 == iContour2);
|
||||
assert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
|
||||
if (a == c) {
|
||||
// The segments iSegment1 and iSegment2 are directly connected.
|
||||
myassert(iContour1 == iContour2);
|
||||
myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
|
||||
std::swap(c, d);
|
||||
assert(a != c && b != c);
|
||||
myassert(a != c && b != c);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
successive = true;
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
}
|
||||
#ifdef SLIC3R_DEBUG
|
||||
else if (b == d) {
|
||||
// The segments iSegment1 and iSegment2 are directly connected.
|
||||
myassert(iContour1 == iContour2);
|
||||
myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
|
||||
myassert(a != c && b != c);
|
||||
successive = true;
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
Orientation o = orient(*a, *b, *c);
|
||||
assert(! ORIENTATION_COLINEAR);
|
||||
myassert(o != ORIENTATION_COLINEAR);
|
||||
swap = upper_more_left != (o == ORIENTATION_CW);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
if (swap)
|
||||
@ -737,7 +831,7 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
}
|
||||
}
|
||||
if (swap) {
|
||||
// Swap the intersection points, but keep the original positions, so they are sorted.
|
||||
// Swap the intersection points, but keep the original positions, so they stay sorted by the y axis.
|
||||
std::swap(sil.intersections[i-1], sil.intersections[i]);
|
||||
std::swap(sil.intersections[i-1].pos, sil.intersections[i].pos);
|
||||
modified = true;
|
||||
@ -745,19 +839,40 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
}
|
||||
} while (modified);
|
||||
// Assign the intersection types.
|
||||
size_t j = 0;
|
||||
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
|
||||
// What is the orientation of the segment at the intersection point?
|
||||
size_t iContour = sil.intersections[i].iContour;
|
||||
const Points &contour = poly_with_offset.contour(iContour);
|
||||
const Points &contour = poly_with_offset.contour(iContour).points;
|
||||
size_t iSegment = sil.intersections[i].iSegment;
|
||||
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
||||
coord_t dir = contour[iSegment].x - contour[iPrev].x;
|
||||
bool ccw = poly_with_offset.is_contour_ccw(iContour);
|
||||
bool low = (dir > 0) == ccw;
|
||||
// bool ccw = poly_with_offset.is_contour_ccw(iContour);
|
||||
// bool low = (dir > 0) == ccw;
|
||||
bool low = dir > 0;
|
||||
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
|
||||
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
|
||||
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
|
||||
if (j > 0 &&
|
||||
sil.intersections[i].pos == sil.intersections[j-1].pos &&
|
||||
sil.intersections[i].type == sil.intersections[j-1].type &&
|
||||
sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
|
||||
// This has to be a corner point crossing the vertical line.
|
||||
// Remove the second intersection point.
|
||||
#ifdef SLIC3R_DEBUG
|
||||
size_t iSegment2 = sil.intersections[j-1].iSegment;
|
||||
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
|
||||
myassert(iSegment == iPrev2 || iSegment2 == iPrev);
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
} else {
|
||||
if (j < i)
|
||||
sil.intersections[j] = sil.intersections[i];
|
||||
++ j;
|
||||
}
|
||||
}
|
||||
// Shrink the list of intersections, if any of the intersection was removed during the classification.
|
||||
if (j < sil.intersections.size())
|
||||
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
@ -765,18 +880,18 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
||||
SegmentedIntersectionLine &sil = segs[i_seg];
|
||||
// The intersection points have to be even.
|
||||
assert((sil.intersections.size() & 1) == 0);
|
||||
myassert((sil.intersections.size() & 1) == 0);
|
||||
for (size_t i = 0; i < sil.intersections.size();) {
|
||||
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
|
||||
assert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
|
||||
myassert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
|
||||
size_t j = i + 1;
|
||||
assert(j < sil.intersections.size());
|
||||
assert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
||||
myassert(j < sil.intersections.size());
|
||||
myassert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
||||
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
|
||||
assert(j < sil.intersections.size());
|
||||
assert((j & 1) == 1);
|
||||
assert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
||||
assert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
|
||||
myassert(j < sil.intersections.size());
|
||||
myassert((j & 1) == 1);
|
||||
myassert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
||||
myassert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
|
||||
if (i + 1 == j) {
|
||||
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos), Point(sil.pos, sil.intersections[j].pos)), "blue");
|
||||
} else {
|
||||
@ -788,6 +903,26 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
}
|
||||
}
|
||||
svg.Close();
|
||||
|
||||
// Verify the segments & paint them.
|
||||
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
||||
SegmentedIntersectionLine &sil = segs[i_seg];
|
||||
// The intersection points have to be even.
|
||||
myassert((sil.intersections.size() & 1) == 0);
|
||||
for (size_t i = 0; i < sil.intersections.size();) {
|
||||
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
|
||||
myassert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
|
||||
size_t j = i + 1;
|
||||
myassert(j < sil.intersections.size());
|
||||
myassert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
||||
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
|
||||
myassert(j < sil.intersections.size());
|
||||
myassert((j & 1) == 1);
|
||||
myassert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
||||
myassert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
|
||||
i = j + 1;
|
||||
}
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// Now construct a graph.
|
||||
@ -798,8 +933,9 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
// Follow the line, connect the lines into a graph.
|
||||
// Until no new line could be added to the output path:
|
||||
Point pointLast;
|
||||
Polylines polylines_out;
|
||||
Polyline *polyline_current = NULL;
|
||||
if (! polylines_out.empty())
|
||||
pointLast = polylines_out.back().points.back();
|
||||
for (;;) {
|
||||
if (i_intersection == size_t(-1)) {
|
||||
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
|
||||
@ -807,14 +943,14 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
|
||||
const SegmentedIntersectionLine &seg = segs[i_vline2];
|
||||
if (! seg.intersections.empty()) {
|
||||
assert(seg.intersections.size() > 1);
|
||||
myassert(seg.intersections.size() > 1);
|
||||
// Even number of intersections with the loops.
|
||||
assert((seg.intersections.size() & 1) == 0);
|
||||
assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
|
||||
myassert((seg.intersections.size() & 1) == 0);
|
||||
myassert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
|
||||
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
|
||||
const SegmentIntersection &intrsctn = seg.intersections[i];
|
||||
if (intrsctn.is_outer()) {
|
||||
assert(intrsctn.is_low() || i > 0);
|
||||
myassert(intrsctn.is_low() || i > 0);
|
||||
bool consumed = intrsctn.is_low() ?
|
||||
intrsctn.consumed_vertical_up :
|
||||
seg.intersections[i-1].consumed_vertical_up;
|
||||
@ -852,11 +988,11 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
bool going_up = intrsctn->is_low();
|
||||
bool try_connect = false;
|
||||
if (going_up) {
|
||||
assert(! intrsctn->consumed_vertical_up);
|
||||
assert(i_intersection + 1 < seg.intersections.size());
|
||||
myassert(! intrsctn->consumed_vertical_up);
|
||||
myassert(i_intersection + 1 < seg.intersections.size());
|
||||
// Step back to the beginning of the vertical segment to mark it as consumed.
|
||||
if (intrsctn->is_inner()) {
|
||||
assert(i_intersection > 0);
|
||||
myassert(i_intersection > 0);
|
||||
-- intrsctn;
|
||||
-- i_intersection;
|
||||
}
|
||||
@ -865,25 +1001,25 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
intrsctn->consumed_vertical_up = true;
|
||||
++ intrsctn;
|
||||
++ i_intersection;
|
||||
assert(i_intersection < seg.intersections.size());
|
||||
myassert(i_intersection < seg.intersections.size());
|
||||
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
|
||||
if ((intrsctn - 1)->is_inner()) {
|
||||
// Step back.
|
||||
-- intrsctn;
|
||||
-- i_intersection;
|
||||
assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
|
||||
myassert(intrsctn->type == SegmentIntersection::INNER_HIGH);
|
||||
try_connect = true;
|
||||
}
|
||||
} else {
|
||||
// Going down.
|
||||
assert(intrsctn->is_high());
|
||||
assert(i_intersection > 0);
|
||||
assert(! (intrsctn - 1)->consumed_vertical_up);
|
||||
myassert(intrsctn->is_high());
|
||||
myassert(i_intersection > 0);
|
||||
myassert(! (intrsctn - 1)->consumed_vertical_up);
|
||||
// Consume the complete vertical segment up to the outer contour.
|
||||
if (intrsctn->is_inner())
|
||||
intrsctn->consumed_vertical_up = true;
|
||||
do {
|
||||
assert(i_intersection > 0);
|
||||
myassert(i_intersection > 0);
|
||||
-- intrsctn;
|
||||
-- i_intersection;
|
||||
intrsctn->consumed_vertical_up = true;
|
||||
@ -892,7 +1028,7 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
// Step back.
|
||||
++ intrsctn;
|
||||
++ i_intersection;
|
||||
assert(intrsctn->type == SegmentIntersection::INNER_LOW);
|
||||
myassert(intrsctn->type == SegmentIntersection::INNER_LOW);
|
||||
try_connect = true;
|
||||
}
|
||||
}
|
||||
@ -901,31 +1037,81 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
int iPrev = intersection_unused_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
|
||||
int iNext = intersection_unused_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
|
||||
if (iPrev != -1 || iNext != -1) {
|
||||
// Zig zag
|
||||
coord_t distPrev = (iPrev == -1) ? std::numeric_limits<coord_t>::max() :
|
||||
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
|
||||
coord_t distNext = (iNext == -1) ? std::numeric_limits<coord_t>::max() :
|
||||
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
|
||||
// Take the shorter path.
|
||||
bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1;
|
||||
assert(intrsctn->is_inner());
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
|
||||
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
|
||||
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
||||
if (iPrev != -1)
|
||||
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
|
||||
if (iNext != -1)
|
||||
intrsctn->consumed_perimeter_right = true;
|
||||
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
|
||||
// Advance to the neighbor line.
|
||||
if (take_next) {
|
||||
++ i_vline;
|
||||
i_intersection = iNext;
|
||||
} else {
|
||||
-- i_vline;
|
||||
i_intersection = iPrev;
|
||||
// Does the perimeter intersect the current vertical line?
|
||||
SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
|
||||
SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
|
||||
// Does the perimeter intersect the current vertical line above intrsctn?
|
||||
int iSegAbove = -1;
|
||||
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
|
||||
if (seg.intersections[i].iContour == intrsctn->iContour &&
|
||||
seg.intersections[i].type == type_crossing) {
|
||||
iSegAbove = seg.intersections[i].iSegment;
|
||||
break;
|
||||
}
|
||||
// Does the perimeter intersect the current vertical line below intrsctn?
|
||||
int iSegBelow = -1;
|
||||
for (size_t i = i_intersection - 1; i > 0; -- i)
|
||||
if (seg.intersections[i].iContour == intrsctn->iContour &&
|
||||
seg.intersections[i].type == type_crossing) {
|
||||
iSegBelow = seg.intersections[i].iSegment;
|
||||
break;
|
||||
}
|
||||
if (iSegBelow != -1 || iSegAbove != -1) {
|
||||
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
|
||||
// The perimeter contour orientation.
|
||||
const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
|
||||
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
|
||||
if (iPrev != -1) {
|
||||
int d1 = distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
|
||||
int d2 = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
|
||||
distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
|
||||
if (iSegAbove != -1)
|
||||
d2 = std::min(d2, distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward));
|
||||
if (d2 < d1)
|
||||
// The vertical crossing comes eralier than the prev crossing.
|
||||
// Disable the perimeter going back.
|
||||
iPrev = -1;
|
||||
}
|
||||
if (iNext != -1) {
|
||||
int d1 = distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
|
||||
int d2 = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
|
||||
distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
|
||||
if (iSegAbove != -1)
|
||||
d2 = std::min(d2, distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward));
|
||||
if (d2 < d1)
|
||||
// The vertical crossing comes eralier than the prev crossing.
|
||||
// Disable the perimeter going forward.
|
||||
iNext = -1;
|
||||
}
|
||||
}
|
||||
if (iPrev != -1 || iNext != -1) {
|
||||
// Zig zag
|
||||
coord_t distPrev = (iPrev == -1) ? std::numeric_limits<coord_t>::max() :
|
||||
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
|
||||
coord_t distNext = (iNext == -1) ? std::numeric_limits<coord_t>::max() :
|
||||
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
|
||||
// Take the shorter path.
|
||||
bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : iNext != -1;
|
||||
myassert(intrsctn->is_inner());
|
||||
pointLast = Point(seg.pos, intrsctn->pos);
|
||||
polyline_current->points.push_back(pointLast);
|
||||
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
|
||||
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
||||
if (iPrev != -1)
|
||||
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
|
||||
if (iNext != -1)
|
||||
intrsctn->consumed_perimeter_right = true;
|
||||
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
|
||||
// Advance to the neighbor line.
|
||||
if (take_next) {
|
||||
++ i_vline;
|
||||
i_intersection = iNext;
|
||||
} else {
|
||||
-- i_vline;
|
||||
i_intersection = iPrev;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
// Take the complete line up to the outer contour.
|
||||
if (going_up)
|
||||
@ -935,21 +1121,69 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
}
|
||||
// Finish the current vertical line,
|
||||
// reset the current vertical line to pick a new starting point in the next round.
|
||||
assert(intrsctn->is_outer());
|
||||
assert(intrsctn->is_high() == going_up);
|
||||
myassert(intrsctn->is_outer());
|
||||
myassert(intrsctn->is_high() == going_up);
|
||||
pointLast = Point(seg.pos, intrsctn->pos);
|
||||
polyline_current->points.push_back(pointLast);
|
||||
// Handle duplicate points and zero length segments.
|
||||
polyline_current->remove_duplicate_points();
|
||||
myassert(! polyline_current->has_duplicate_points());
|
||||
// Handle nearly zero length edges.
|
||||
if (polyline_current->points.size() <= 1 ||
|
||||
(polyline_current->points.size() == 2 &&
|
||||
std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
|
||||
std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
|
||||
polylines_out.pop_back();
|
||||
intrsctn = NULL;
|
||||
i_intersection = -1;
|
||||
polyline_current = NULL;
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
{
|
||||
sprintf(path, "out/FillRectilinear2-final-%d.svg", iRun);
|
||||
::Slic3r::SVG svg(path, bbox_svg); // , scale_(1.));
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_src.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_src[i].lines());
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_outer.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_outer[i].lines(), "green");
|
||||
for (size_t i = 0; i < poly_with_offset.polygons_inner.size(); ++ i)
|
||||
svg.draw(poly_with_offset.polygons_inner[i].lines(), "brown");
|
||||
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
|
||||
svg.draw(polylines_out[i].lines(), "black");
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
|
||||
// paths must be rotated back
|
||||
for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it) {
|
||||
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
|
||||
// No need to translate, the absolute position is irrelevant.
|
||||
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
|
||||
myassert(! it->has_duplicate_points());
|
||||
it->rotate(rotate_vector.first);
|
||||
//FIXME rather simplify the paths to avoid very short edges?
|
||||
//myassert(! it->has_duplicate_points());
|
||||
it->remove_duplicate_points();
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
// Verify, that there are no duplicate points in the sequence.
|
||||
for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it)
|
||||
myassert(! it->has_duplicate_points());
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
}
|
||||
|
||||
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
Polylines polylines_out;
|
||||
fill_surface_by_lines(surface, params, 0.f, polylines_out);
|
||||
return polylines_out;
|
||||
}
|
||||
|
||||
Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
Polylines polylines_out;
|
||||
fill_surface_by_lines(surface, params, 0.f, polylines_out);
|
||||
fill_surface_by_lines(surface, params, float(M_PI / 2.), polylines_out);
|
||||
return polylines_out;
|
||||
}
|
||||
|
||||
|
@ -9,13 +9,15 @@ namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
class FillRectilinear2 : public FillWithDirection
|
||||
class FillRectilinear2 : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillRectilinear2() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
void fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, Polylines &polylines_out);
|
||||
|
||||
coord_t _min_spacing;
|
||||
coord_t _line_spacing;
|
||||
// distance threshold for allowing the horizontal infill lines to be connected into a continuous path
|
||||
@ -26,6 +28,7 @@ class FillGrid2 : public FillRectilinear2
|
||||
{
|
||||
public:
|
||||
virtual ~FillGrid2() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
|
Loading…
Reference in New Issue
Block a user