create cradle around small parts, break tiny connections in the model graph, fix PETG support

This commit is contained in:
PavelMikus 2022-09-07 17:11:58 +02:00
parent 8a1a31992a
commit a6a723928c
3 changed files with 44 additions and 46 deletions

View file

@ -435,7 +435,7 @@ void PrintObject::generate_support_spots()
Vec3f point = Vec3f(inv_transform.cast<float>() * support_point.position);
Vec3f origin = Vec3f(
inv_transform.cast<float>() * Vec3f(support_point.position.x(), support_point.position.y(), 0.0f));
selector.enforce_spot(point, origin, 1.5f);
selector.enforce_spot(point, origin, support_point.spot_radius);
}
model_volume->supported_facets.set(selector.selector);

View file

@ -16,8 +16,8 @@
#include "libslic3r/ClipperUtils.hpp"
#include "Geometry/ConvexHull.hpp"
//#define DETAILED_DEBUG_LOGS
//#define DEBUG_FILES
// #define DETAILED_DEBUG_LOGS
// #define DEBUG_FILES
#ifdef DEBUG_FILES
#include <boost/nowide/cstdio.hpp>
@ -66,8 +66,8 @@ auto get_b(ExtrusionLine &&l) {
namespace SupportSpotsGenerator {
SupportPoint::SupportPoint(const Vec3f &position, float force, const Vec3f &direction) :
position(position), force(force), direction(direction) {
SupportPoint::SupportPoint(const Vec3f &position, float force, float spot_radius, const Vec3f &direction) :
position(position), force(force), spot_radius(spot_radius), direction(direction) {
}
class LinesDistancer {
@ -405,16 +405,9 @@ void check_extrusion_entity_stability(const ExtrusionEntity *entity,
float max_malformation_dist = tan(params.malformation_angle_span_deg.second * PI / 180.0f)
* layer_region->layer()->height;
Points points { };
entity->collect_points(points);
std::vector<ExtrusionLine> lines = to_short_lines(entity, params.bridge_distance);
if (lines.empty()) return;
if (entity->total_volume() < params.supportable_volume_threshold) {
checked_lines_out.insert(checked_lines_out.end(), lines.begin(), lines.end());
return;
}
ExtrusionPropertiesAccumulator bridging_acc { };
ExtrusionPropertiesAccumulator malformation_acc { };
bridging_acc.add_distance(params.bridge_distance + 1.0f);
@ -429,6 +422,7 @@ void check_extrusion_entity_stability(const ExtrusionEntity *entity,
curr_angle = angle(v1, v2);
}
bridging_acc.add_angle(curr_angle);
// malformation in concave angles does not happen
malformation_acc.add_angle(std::max(0.0f, curr_angle));
size_t nearest_line_idx;
@ -444,11 +438,11 @@ void check_extrusion_entity_stability(const ExtrusionEntity *entity,
bool in_layer_dist_condition = bridging_acc.distance
> params.bridge_distance / (1.0f + (bridging_acc.max_curvature
* params.bridge_distance_decrease_by_curvature_factor / PI));
bool between_layers_condition = fabs(dist_from_prev_layer) > 3.0f * flow_width ||
bool between_layers_condition = fabs(dist_from_prev_layer) > flow_width ||
prev_layer_lines.get_line(nearest_line_idx).malformation > 3.0f * layer_region->layer()->height;
if (in_layer_dist_condition && between_layers_condition) {
issues.support_points.emplace_back(to_vec3f(current_line.b), 0.0f, Vec3f(0.f, 0.0f, -1.0f));
issues.support_points.emplace_back(to_vec3f(current_line.b), 0.0f, params.support_points_interface_radius, Vec3f(0.f, 0.0f, -1.0f));
current_line.support_point_generated = true;
bridging_acc.reset();
}
@ -562,7 +556,7 @@ std::tuple<LayerIslands, PixelGrid> reckon_islands(
for (size_t lidx = extrusions[extrusion_idx].first; lidx < extrusions[extrusion_idx].second; ++lidx) {
line_to_island_mapping[lidx] = result.islands.size();
const ExtrusionLine &line = layer_lines[lidx];
float volume = line.origin_entity->min_mm3_per_mm() * line.len;
float volume = line.len * layer->height * flow_width * PI / 4.0f;
island.volume += volume;
island.volume_centroid_accumulator += to_3d(Vec2f((line.a + line.b) / 2.0f), float(layer->slice_z))
* volume;
@ -632,6 +626,15 @@ std::tuple<LayerIslands, PixelGrid> reckon_islands(
}
}
// filter out very small connection areas, they brake the graph building
for (Island &island : result.islands) {
std::vector<size_t> conns_to_remove;
for (const auto &conn : island.connected_islands) {
if (conn.second.area < params.connections_min_considerable_area) { conns_to_remove.push_back(conn.first); }
}
for (size_t conn : conns_to_remove) { island.connected_islands.erase(conn); }
}
return {result, current_layer_grid};
}
@ -1039,12 +1042,6 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
const Island &island = islands_graph[layer_idx].islands[island_idx];
ObjectPart &part = active_object_parts.access(prev_island_to_object_part_mapping[island_idx]);
//skip small drops of material - if they grow in size, they will be supported in next layers;
// if they dont grow, they are not worthy
if (part.get_volume() < params.supportable_volume_threshold) {
continue;
}
IslandConnection &weakest_conn = prev_island_weakest_connection[island_idx];
#ifdef DETAILED_DEBUG_LOGS
weakest_conn.print_info("weakest connection info: ");
@ -1068,21 +1065,21 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
auto force = part.is_stable_while_extruding(weakest_conn, line, support_point, layer_z, params);
if (force > 0) {
if (!supports_presence_grid.position_taken(support_point)) {
float area = std::min(float(unscaled(line.origin_entity->length())),
params.support_points_interface_radius * params.support_points_interface_radius
* float(PI));
float altered_area = area * params.get_support_spots_adhesion_strength() / params.get_bed_adhesion_yield_strength();
part.add_support_point(support_point, area);
issues.support_points.emplace_back(support_point, force,
to_3d(Vec2f(line.b - line.a).normalized(), 0.0f));
float orig_area = params.support_points_interface_radius * params.support_points_interface_radius * float(PI);
// artifically lower the area for materials that have strong bed adhesion, as this adhesion does not apply for support points
float altered_area = orig_area * params.get_support_spots_adhesion_strength() / params.get_bed_adhesion_yield_strength();
part.add_support_point(support_point, altered_area);
float radius = part.get_volume() < params.small_parts_threshold ? params.small_parts_support_points_interface_radius : params.support_points_interface_radius;
issues.support_points.emplace_back(support_point, force, radius, to_3d(Vec2f(line.b - line.a).normalized(), 0.0f));
supports_presence_grid.take_position(support_point);
weakest_conn.area += altered_area;
weakest_conn.centroid_accumulator += support_point * altered_area;
weakest_conn.second_moment_of_area_accumulator += altered_area
* support_point.head<2>().cwiseProduct(support_point.head<2>());
weakest_conn.second_moment_of_area_covariance_accumulator += altered_area * support_point.x()
* support_point.y();
weakest_conn.second_moment_of_area_accumulator += altered_area *
support_point.head<2>().cwiseProduct(support_point.head<2>());
weakest_conn.second_moment_of_area_covariance_accumulator += altered_area * support_point.x() *
support_point.y();
}
}
}
@ -1104,7 +1101,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
std::vector<LayerIslands> islands_graph;
std::vector<ExtrusionLine> layer_lines;
float flow_width = get_flow_width(po->layers()[po->layer_count() - 1]->regions()[0], erExternalPerimeter);
PixelGrid prev_layer_grid(po, flow_width);
PixelGrid prev_layer_grid(po, flow_width*2.0f);
// PREPARE BASE LAYER
const Layer *layer = po->layers()[0];

View file

@ -30,40 +30,41 @@ struct Params {
const std::pair<float,float> malformation_angle_span_deg = std::pair<float, float> { 45.0f, 80.0f };
const float min_distance_between_support_points = 3.0f; //mm
const float support_points_interface_radius = 2.0f; // mm
// NOTE: Currently disabled, does not work correctly due to inability of the algorithm to correctly detect islands at each layer
const float supportable_volume_threshold = 0.0f; // mm^3
const float support_points_interface_radius = 1.5f; // mm
const float connections_min_considerable_area = 1.5f; //mm^2
const float small_parts_threshold = 5.0f; //mm^3
const float small_parts_support_points_interface_radius = 3.0f; // mm
std::string filament_type;
const float gravity_constant = 9806.65f; // mm/s^2; gravity acceleration on Earth's surface, algorithm assumes that printer is in upwards position.
const float max_acceleration = 9 * 1000.0f; // mm/s^2 ; max acceleration of object (bed) in XY (NOTE: The max hit is received by the object in the jerk phase, so the usual machine limits are too low)
const float filament_density = 1.25e-3f; // g/mm^3 ; Common filaments are very lightweight, so precise number is not that important
const float material_yield_strength = 33.0f * 1e6f; // (g*mm/s^2)/mm^2; 33 MPa is yield strength of ABS, which has the lowest yield strength from common materials.
const double filament_density = 1.25e-3f; // g/mm^3 ; Common filaments are very lightweight, so precise number is not that important
const double material_yield_strength = 33.0f * 1e6f; // (g*mm/s^2)/mm^2; 33 MPa is yield strength of ABS, which has the lowest yield strength from common materials.
const float standard_extruder_conflict_force = 20.0f * gravity_constant; // force that can occasionally push the model due to various factors (filament leaks, small curling, ... );
const float malformations_additive_conflict_extruder_force = 300.0f * gravity_constant; // for areas with possible high layered curled filaments
// MPa * 1e^6 = (g*mm/s^2)/mm^2 = g/(mm*s^2); yield strength of the bed surface
float get_bed_adhesion_yield_strength() const {
double get_bed_adhesion_yield_strength() const {
if (filament_type == "PLA") {
return 0.018f * 1e6f;
return 0.018 * 1e6;
} else if (filament_type == "PET" || filament_type == "PETG") {
return 0.3f * 1e6f;
return 0.3 * 1e6;
} else { //PLA default value - defensive approach, PLA has quite low adhesion
return 0.018f * 1e6f;
return 0.018 * 1e6;
}
}
//just return PLA adhesion value as value for supports
float get_support_spots_adhesion_strength() const {
return 0.018f * 1e6f;
double get_support_spots_adhesion_strength() const {
return 0.018f * 1e6;
}
};
struct SupportPoint {
SupportPoint(const Vec3f &position, float force, const Vec3f &direction);
SupportPoint(const Vec3f &position, float force, float spot_radius, const Vec3f &direction);
Vec3f position;
float force;
float spot_radius;
Vec3f direction;
};