From a8b10525e408c8e3c1c178b2f1060489e998a20b Mon Sep 17 00:00:00 2001 From: tamasmeszaros Date: Fri, 29 Jul 2022 11:17:25 +0200 Subject: [PATCH] libnest2d: remove unused code and fix some warnings --- .../include/libnest2d/geometry_traits_nfp.hpp | 459 +----------------- .../libnest2d/placers/bottomleftplacer.hpp | 5 +- 2 files changed, 4 insertions(+), 460 deletions(-) diff --git a/src/libnest2d/include/libnest2d/geometry_traits_nfp.hpp b/src/libnest2d/include/libnest2d/geometry_traits_nfp.hpp index d9f947802..cce1fdc39 100644 --- a/src/libnest2d/include/libnest2d/geometry_traits_nfp.hpp +++ b/src/libnest2d/include/libnest2d/geometry_traits_nfp.hpp @@ -315,460 +315,6 @@ inline NfpResult nfpConvexOnly(const RawShape& sh, return {rsh, top_nfp}; } -template -NfpResult nfpSimpleSimple(const RawShape& cstationary, - const RawShape& cother) -{ - - // Algorithms are from the original algorithm proposed in paper: - // https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf - - // ///////////////////////////////////////////////////////////////////////// - // Algorithm 1: Obtaining the minkowski sum - // ///////////////////////////////////////////////////////////////////////// - - // I guess this is not a full minkowski sum of the two input polygons by - // definition. This yields a subset that is compatible with the next 2 - // algorithms. - - using Result = NfpResult; - using Vertex = TPoint; - using Coord = TCoord; - using Edge = _Segment; - namespace sl = shapelike; - using std::signbit; - using std::sort; - using std::vector; - using std::ref; - using std::reference_wrapper; - - // TODO The original algorithms expects the stationary polygon in - // counter clockwise and the orbiter in clockwise order. - // So for preventing any further complication, I will make the input - // the way it should be, than make my way around the orientations. - - // Reverse the stationary contour to counter clockwise - auto stcont = sl::contour(cstationary); - { - std::reverse(sl::begin(stcont), sl::end(stcont)); - stcont.pop_back(); - auto it = std::min_element(sl::begin(stcont), sl::end(stcont), - [](const Vertex& v1, const Vertex& v2) { - return getY(v1) < getY(v2); - }); - std::rotate(sl::begin(stcont), it, sl::end(stcont)); - sl::addVertex(stcont, sl::front(stcont)); - } - RawShape stationary; - sl::contour(stationary) = stcont; - - // Reverse the orbiter contour to counter clockwise - auto orbcont = sl::contour(cother); - { - std::reverse(orbcont.begin(), orbcont.end()); - - // Step 1: Make the orbiter reverse oriented - - orbcont.pop_back(); - auto it = std::min_element(orbcont.begin(), orbcont.end(), - [](const Vertex& v1, const Vertex& v2) { - return getY(v1) < getY(v2); - }); - - std::rotate(orbcont.begin(), it, orbcont.end()); - orbcont.emplace_back(orbcont.front()); - - for(auto &v : orbcont) v = -v; - - } - - // Copy the orbiter (contour only), we will have to work on it - RawShape orbiter; - sl::contour(orbiter) = orbcont; - - // An edge with additional data for marking it - struct MarkedEdge { - Edge e; Radians turn_angle = 0; bool is_turning_point = false; - MarkedEdge() = default; - MarkedEdge(const Edge& ed, Radians ta, bool tp): - e(ed), turn_angle(ta), is_turning_point(tp) {} - - // debug - std::string label; - }; - - // Container for marked edges - using EdgeList = vector; - - EdgeList A, B; - - // This is how an edge list is created from the polygons - auto fillEdgeList = [](EdgeList& L, const RawShape& ppoly, int dir) { - auto& poly = sl::contour(ppoly); - - L.reserve(sl::contourVertexCount(poly)); - - if(dir > 0) { - auto it = poly.begin(); - auto nextit = std::next(it); - - double turn_angle = 0; - bool is_turn_point = false; - - while(nextit != poly.end()) { - L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point); - it++; nextit++; - } - } else { - auto it = sl::rbegin(poly); - auto nextit = std::next(it); - - double turn_angle = 0; - bool is_turn_point = false; - - while(nextit != sl::rend(poly)) { - L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point); - it++; nextit++; - } - } - - auto getTurnAngle = [](const Edge& e1, const Edge& e2) { - auto phi = e1.angleToXaxis(); - auto phi_prev = e2.angleToXaxis(); - auto turn_angle = phi-phi_prev; - if(turn_angle > Pi) turn_angle -= TwoPi; - if(turn_angle < -Pi) turn_angle += TwoPi; - return turn_angle; - }; - - auto eit = L.begin(); - auto enext = std::next(eit); - - eit->turn_angle = getTurnAngle(L.front().e, L.back().e); - - while(enext != L.end()) { - enext->turn_angle = getTurnAngle( enext->e, eit->e); - eit->is_turning_point = - signbit(enext->turn_angle) != signbit(eit->turn_angle); - ++eit; ++enext; - } - - L.back().is_turning_point = signbit(L.back().turn_angle) != - signbit(L.front().turn_angle); - - }; - - // Step 2: Fill the edgelists - fillEdgeList(A, stationary, 1); - fillEdgeList(B, orbiter, 1); - - int i = 1; - for(MarkedEdge& me : A) { - std::cout << "a" << i << ":\n\t" - << getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t" - << getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t" - << "Turning point: " << (me.is_turning_point ? "yes" : "no") - << std::endl; - - me.label = "a"; me.label += std::to_string(i); - i++; - } - - i = 1; - for(MarkedEdge& me : B) { - std::cout << "b" << i << ":\n\t" - << getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t" - << getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t" - << "Turning point: " << (me.is_turning_point ? "yes" : "no") - << std::endl; - me.label = "b"; me.label += std::to_string(i); - i++; - } - - // A reference to a marked edge that also knows its container - struct MarkedEdgeRef { - reference_wrapper eref; - reference_wrapper> container; - Coord dir = 1; // Direction modifier - - inline Radians angleX() const { return eref.get().e.angleToXaxis(); } - inline const Edge& edge() const { return eref.get().e; } - inline Edge& edge() { return eref.get().e; } - inline bool isTurningPoint() const { - return eref.get().is_turning_point; - } - inline bool isFrom(const vector& cont ) { - return &(container.get()) == &cont; - } - inline bool eq(const MarkedEdgeRef& mr) { - return &(eref.get()) == &(mr.eref.get()); - } - - MarkedEdgeRef(reference_wrapper er, - reference_wrapper> ec): - eref(er), container(ec), dir(1) {} - - MarkedEdgeRef(reference_wrapper er, - reference_wrapper> ec, - Coord d): - eref(er), container(ec), dir(d) {} - }; - - using EdgeRefList = vector; - - // Comparing two marked edges - auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) { - return e1.angleX() < e2.angleX(); - }; - - EdgeRefList Aref, Bref; // We create containers for the references - Aref.reserve(A.size()); Bref.reserve(B.size()); - - // Fill reference container for the stationary polygon - std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) { - Aref.emplace_back( ref(me), ref(Aref) ); - }); - - // Fill reference container for the orbiting polygon - std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) { - Bref.emplace_back( ref(me), ref(Bref) ); - }); - - auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure - (const EdgeRefList& Q, const EdgeRefList& R, bool positive) - { - - // Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)" - // Sort the containers of edge references and merge them. - // Q could be sorted only once and be reused here but we would still - // need to merge it with sorted(R). - - EdgeRefList merged; - EdgeRefList S, seq; - merged.reserve(Q.size() + R.size()); - - merged.insert(merged.end(), R.begin(), R.end()); - std::stable_sort(merged.begin(), merged.end(), sortfn); - merged.insert(merged.end(), Q.begin(), Q.end()); - std::stable_sort(merged.begin(), merged.end(), sortfn); - - // Step 2 "set i = 1, k = 1, direction = 1, s1 = q1" - // we don't use i, instead, q is an iterator into Q. k would be an index - // into the merged sequence but we use "it" as an iterator for that - - // here we obtain references for the containers for later comparisons - const auto& Rcont = R.begin()->container.get(); - const auto& Qcont = Q.begin()->container.get(); - - // Set the initial direction - Coord dir = 1; - - // roughly i = 1 (so q = Q.begin()) and s1 = q1 so S[0] = q; - if(positive) { - auto q = Q.begin(); - S.emplace_back(*q); - - // Roughly step 3 - - std::cout << "merged size: " << merged.size() << std::endl; - auto mit = merged.begin(); - for(bool finish = false; !finish && q != Q.end();) { - ++q; // "Set i = i + 1" - - while(!finish && mit != merged.end()) { - if(mit->isFrom(Rcont)) { - auto s = *mit; - s.dir = dir; - S.emplace_back(s); - } - - if(mit->eq(*q)) { - S.emplace_back(*q); - if(mit->isTurningPoint()) dir = -dir; - if(q == Q.begin()) finish = true; - break; - } - - mit += dir; - // __nfp::advance(mit, merged, dir > 0); - } - } - } else { - auto q = Q.rbegin(); - S.emplace_back(*q); - - // Roughly step 3 - - std::cout << "merged size: " << merged.size() << std::endl; - auto mit = merged.begin(); - for(bool finish = false; !finish && q != Q.rend();) { - ++q; // "Set i = i + 1" - - while(!finish && mit != merged.end()) { - if(mit->isFrom(Rcont)) { - auto s = *mit; - s.dir = dir; - S.emplace_back(s); - } - - if(mit->eq(*q)) { - S.emplace_back(*q); - S.back().dir = -1; - if(mit->isTurningPoint()) dir = -dir; - if(q == Q.rbegin()) finish = true; - break; - } - - mit += dir; - // __nfp::advance(mit, merged, dir > 0); - } - } - } - - - // Step 4: - - // "Let starting edge r1 be in position si in sequence" - // whaaat? I guess this means the following: - auto it = S.begin(); - while(!it->eq(*R.begin())) ++it; - - // "Set j = 1, next = 2, direction = 1, seq1 = si" - // we don't use j, seq is expanded dynamically. - dir = 1; - auto next = std::next(R.begin()); seq.emplace_back(*it); - - // Step 5: - // "If all si edges have been allocated to seqj" should mean that - // we loop until seq has equal size with S - auto send = it; //it == S.begin() ? it : std::prev(it); - while(it != S.end()) { - ++it; if(it == S.end()) it = S.begin(); - if(it == send) break; - - if(it->isFrom(Qcont)) { - seq.emplace_back(*it); // "If si is from Q, j = j + 1, seqj = si" - - // "If si is a turning point in Q, - // direction = - direction, next = next + direction" - if(it->isTurningPoint()) { - dir = -dir; - next += dir; -// __nfp::advance(next, R, dir > 0); - } - } - - if(it->eq(*next) /*&& dir == next->dir*/) { // "If si = direction.rnext" - // "j = j + 1, seqj = si, next = next + direction" - seq.emplace_back(*it); - next += dir; -// __nfp::advance(next, R, dir > 0); - } - } - - return seq; - }; - - std::vector seqlist; - seqlist.reserve(Bref.size()); - - EdgeRefList Bslope = Bref; // copy Bref, we will make a slope diagram - - // make the slope diagram of B - std::sort(Bslope.begin(), Bslope.end(), sortfn); - - auto slopeit = Bslope.begin(); // search for the first turning point - while(!slopeit->isTurningPoint() && slopeit != Bslope.end()) slopeit++; - - if(slopeit == Bslope.end()) { - // no turning point means convex polygon. - seqlist.emplace_back(mink(Aref, Bref, true)); - } else { - int dir = 1; - - auto firstturn = Bref.begin(); - while(!firstturn->eq(*slopeit)) ++firstturn; - - assert(firstturn != Bref.end()); - - EdgeRefList bgroup; bgroup.reserve(Bref.size()); - bgroup.emplace_back(*slopeit); - - auto b_it = std::next(firstturn); - while(b_it != firstturn) { - if(b_it == Bref.end()) b_it = Bref.begin(); - - while(!slopeit->eq(*b_it)) { - __nfp::advance(slopeit, Bslope, dir > 0); - } - - if(!slopeit->isTurningPoint()) { - bgroup.emplace_back(*slopeit); - } else { - if(!bgroup.empty()) { - if(dir > 0) bgroup.emplace_back(*slopeit); - for(auto& me : bgroup) { - std::cout << me.eref.get().label << ", "; - } - std::cout << std::endl; - seqlist.emplace_back(mink(Aref, bgroup, dir == 1 ? true : false)); - bgroup.clear(); - if(dir < 0) bgroup.emplace_back(*slopeit); - } else { - bgroup.emplace_back(*slopeit); - } - - dir *= -1; - } - ++b_it; - } - } - -// while(it != Bref.end()) // This is step 3 and step 4 in one loop -// if(it->isTurningPoint()) { -// R = {R.last, it++}; -// auto seq = mink(Q, R, orientation); - -// // TODO step 6 (should be 5 shouldn't it?): linking edges from A -// // I don't get this step - -// seqlist.insert(seqlist.end(), seq.begin(), seq.end()); -// orientation = !orientation; -// } else ++it; - -// if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true); - - // ///////////////////////////////////////////////////////////////////////// - // Algorithm 2: breaking Minkowski sums into track line trips - // ///////////////////////////////////////////////////////////////////////// - - - // ///////////////////////////////////////////////////////////////////////// - // Algorithm 3: finding the boundary of the NFP from track line trips - // ///////////////////////////////////////////////////////////////////////// - - - for(auto& seq : seqlist) { - std::cout << "seqlist size: " << seq.size() << std::endl; - for(auto& s : seq) { - std::cout << (s.dir > 0 ? "" : "-") << s.eref.get().label << ", "; - } - std::cout << std::endl; - } - - auto& seq = seqlist.front(); - RawShape rsh; - Vertex top_nfp; - std::vector edgelist; edgelist.reserve(seq.size()); - for(auto& s : seq) { - edgelist.emplace_back(s.eref.get().e); - } - - __nfp::buildPolygon(edgelist, rsh, top_nfp); - - return Result(rsh, top_nfp); -} - // Specializable NFP implementation class. Specialize it if you have a faster // or better NFP implementation template @@ -793,8 +339,7 @@ inline NfpResult noFitPolygon(const RawShape& sh, return nfps(sh, other); } -} - -} +} // namespace nfp +} // namespace libnest2d #endif // GEOMETRIES_NOFITPOLYGON_HPP diff --git a/src/libnest2d/include/libnest2d/placers/bottomleftplacer.hpp b/src/libnest2d/include/libnest2d/placers/bottomleftplacer.hpp index a067194dc..b48466d1d 100644 --- a/src/libnest2d/include/libnest2d/placers/bottomleftplacer.hpp +++ b/src/libnest2d/include/libnest2d/placers/bottomleftplacer.hpp @@ -375,7 +375,7 @@ protected: sl::addVertex(rsh, item.vertex(static_cast(i))); }; - auto addOthers = [&addOthers_, &reverseAddOthers_]() { + auto addOthers = [&]() { if constexpr (!is_clockwise()) addOthers_(); else @@ -415,7 +415,6 @@ protected: }; -} -} +}} // namespace libnest2d::placers #endif //BOTTOMLEFT_HPP