Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_sinking_objects_collision

This commit is contained in:
enricoturri1966 2021-10-04 15:04:34 +02:00
commit a9ca63d344
4 changed files with 40 additions and 33 deletions

View File

@ -1563,14 +1563,16 @@ namespace rotcalip {
using int256_t = boost::multiprecision::int256_t; using int256_t = boost::multiprecision::int256_t;
using int128_t = boost::multiprecision::int128_t; using int128_t = boost::multiprecision::int128_t;
inline int128_t magnsq(const Point &p) template<class Scalar = int64_t>
inline Scalar magnsq(const Point &p)
{ {
return int128_t(p.x()) * p.x() + int64_t(p.y()) * p.y(); return Scalar(p.x()) * p.x() + Scalar(p.y()) * p.y();
} }
inline int128_t dot(const Point &a, const Point &b) template<class Scalar = int64_t>
inline Scalar dot(const Point &a, const Point &b)
{ {
return int128_t(a.x()) * b.x() + int64_t(a.y()) * b.y(); return Scalar(a.x()) * b.x() + Scalar(a.y()) * b.y();
} }
template<class Scalar = int64_t> template<class Scalar = int64_t>
@ -1676,7 +1678,6 @@ bool intersects(const Polygon &A, const Polygon &B)
// Establish starting antipodals as extremes in XY plane. Use the // Establish starting antipodals as extremes in XY plane. Use the
// easily obtainable bounding boxes to check if A and B is disjoint // easily obtainable bounding boxes to check if A and B is disjoint
// and return false if the are. // and return false if the are.
struct BB struct BB
{ {
size_t xmin = 0, xmax = 0, ymin = 0, ymax = 0; size_t xmin = 0, xmax = 0, ymin = 0, ymax = 0;
@ -1733,24 +1734,18 @@ bool intersects(const Polygon &A, const Polygon &B)
bool is_left_a = dotperp( dir, ref_a - A[ia]) > 0; bool is_left_a = dotperp( dir, ref_a - A[ia]) > 0;
bool is_left_b = dotperp(-dir, ref_b - B[ib]) > 0; bool is_left_b = dotperp(-dir, ref_b - B[ib]) > 0;
// If both reference points are on the left (or right) of the // If both reference points are on the left (or right) of their
// support line and the opposite support line is to the righ (or // respective support lines and the opposite support line is to
// left), the divisor line is found. We only test the reference // the right (or left), the divisor line is found. We only test
// point, as by definition, if that is on one side, all the other // the reference point, as by definition, if that is on one side,
// points must be on the same side of a support line. // all the other points must be on the same side of a support
// line. If the support lines are collinear, the polygons must be
// on the same side of their respective support lines.
auto d = dotperp(dir, B[ib] - A[ia]); auto d = dotperp(dir, B[ib] - A[ia]);
if (d == 0 && ((is_left_a && is_left_b) || (!is_left_a && !is_left_b))) { if (d == 0) {
// The caliper lines are collinear, not just parallel // The caliper lines are collinear, not just parallel
found_divisor = (is_left_a && is_left_b) || (!is_left_a && !is_left_b);
// Check if the lines are overlapping and if they do ignore the divisor
Point a = A[ia], b = A[(ia + 1) % A.size()];
if (b < a) std::swap(a, b);
Point c = B[ib], d = B[(ib + 1) % B.size()];
if (d < c) std::swap(c, d);
found_divisor = b < c;
} else if (d > 0) { // B is to the left of (A, A+1) } else if (d > 0) { // B is to the left of (A, A+1)
found_divisor = !is_left_a && !is_left_b; found_divisor = !is_left_a && !is_left_b;
} else { // B is to the right of (A, A+1) } else { // B is to the right of (A, A+1)

View File

@ -561,7 +561,9 @@ inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z()); return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
} }
bool intersects(const Polygon &convex_poly1, const Polygon &convex_poly2); // Returns true if the intersection of the two convex polygons A and B
// is not an empty set.
bool intersects(const Polygon &A, const Polygon &B);
} } // namespace Slicer::Geometry } } // namespace Slicer::Geometry

View File

@ -4179,12 +4179,14 @@ void Plater::priv::on_right_click(RBtnEvent& evt)
if (printer_technology == ptSLA) if (printer_technology == ptSLA)
menu = menus.sla_object_menu(); menu = menus.sla_object_menu();
else { else {
const Selection& selection = get_selection();
// show "Object menu" for each one or several FullInstance instead of FullObject // show "Object menu" for each one or several FullInstance instead of FullObject
const bool is_some_full_instances = get_selection().is_single_full_instance() || const bool is_some_full_instances = selection.is_single_full_instance() ||
get_selection().is_single_full_object() || selection.is_single_full_object() ||
get_selection().is_multiple_full_instance(); selection.is_multiple_full_instance();
menu = is_some_full_instances ? menus.object_menu() : const bool is_part = selection.is_single_volume() || selection.is_single_modifier();
get_selection().is_single_volume() ? menus.part_menu() : menus.multi_selection_menu(); menu = is_some_full_instances ? menus.object_menu() :
is_part ? menus.part_menu() : menus.multi_selection_menu();
} }
} }

View File

@ -470,7 +470,7 @@ TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rot
bool is_inters = Geometry::intersects(A, B); bool is_inters = Geometry::intersects(A, B);
REQUIRE(is_inters != true); REQUIRE(is_inters == false);
} }
TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") { TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") {
@ -494,7 +494,7 @@ TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geom
bool is_inters = Geometry::intersects(A, B); bool is_inters = Geometry::intersects(A, B);
REQUIRE(is_inters == true); REQUIRE(is_inters == false);
} }
TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") { TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") {
@ -502,11 +502,16 @@ TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Ge
A.scale(1. / SCALING_FACTOR); A.scale(1. / SCALING_FACTOR);
Polygon B = A; Polygon B = A;
B.translate(10 / SCALING_FACTOR, 10); B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR);
SVG svg{std::string("one_vertex_touch") + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
bool is_inters = Geometry::intersects(A, B); bool is_inters = Geometry::intersects(A, B);
REQUIRE(is_inters == true); REQUIRE(is_inters == false);
} }
TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") { TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") {
@ -520,7 +525,7 @@ TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][
REQUIRE(is_inters == true); REQUIRE(is_inters == true);
} }
// Only for benchmarking //// Only for benchmarking
//static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt) //static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt)
//{ //{
// std::uniform_int_distribution<coord_t> dist(0, 100); // std::uniform_int_distribution<coord_t> dist(0, 100);
@ -540,7 +545,9 @@ TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][
// constexpr size_t TEST_CNT = 1000; // constexpr size_t TEST_CNT = 1000;
// constexpr size_t POINT_CNT = 1000; // constexpr size_t POINT_CNT = 1000;
// std::mt19937_64 rg{std::random_device{}()}; // auto seed = std::random_device{}();
//// unsigned long seed = 2525634386;
// std::mt19937_64 rg{seed};
// Benchmark bench; // Benchmark bench;
// auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT); // auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT);
@ -567,11 +574,12 @@ TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][
// REQUIRE(results.size() == expects.size()); // REQUIRE(results.size() == expects.size());
// auto seedstr = std::to_string(seed);
// for (size_t i = 0; i < results.size(); ++i) { // for (size_t i = 0; i < results.size(); ++i) {
// // std::cout << expects[i] << " "; // // std::cout << expects[i] << " ";
// if (results[i] != expects[i]) { // if (results[i] != expects[i]) {
// SVG svg{std::string("fail") + std::to_string(i) + ".svg"}; // SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"};
// svg.draw(tests[i].first, "blue"); // svg.draw(tests[i].first, "blue");
// svg.draw(tests[i].second, "green"); // svg.draw(tests[i].second, "green");
// svg.Close(); // svg.Close();