AABB: Some further polishing and a reference to an SSE implementation
of the 3D Box vs. ray intersection implementation.
This commit is contained in:
parent
925bf1af70
commit
ac1f24e5c9
@ -16,7 +16,6 @@
|
|||||||
#include <igl/ray_mesh_intersect.h>
|
#include <igl/ray_mesh_intersect.h>
|
||||||
#include <igl/point_mesh_squared_distance.h>
|
#include <igl/point_mesh_squared_distance.h>
|
||||||
#include <igl/remove_duplicate_vertices.h>
|
#include <igl/remove_duplicate_vertices.h>
|
||||||
#include <igl/collapse_small_triangles.h>
|
|
||||||
#include <igl/signed_distance.h>
|
#include <igl/signed_distance.h>
|
||||||
#include <igl/random_dir.h>
|
#include <igl/random_dir.h>
|
||||||
#ifdef _MSC_VER
|
#ifdef _MSC_VER
|
||||||
|
@ -236,26 +236,29 @@ namespace detail {
|
|||||||
std::vector<igl::Hit> hits;
|
std::vector<igl::Hit> hits;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//FIXME implement SSE for float AABB trees with float ray queries.
|
||||||
|
// SSE/SSE2 is supported by any Intel/AMD x64 processor.
|
||||||
|
// SSE support requires 16 byte alignment of the AABB nodes, representing the bounding boxes with 4+4 floats,
|
||||||
|
// storing the node index as the 4th element of the bounding box min value etc.
|
||||||
|
// https://www.flipcode.com/archives/SSE_RayBox_Intersection_Test.shtml
|
||||||
template <typename Derivedsource, typename Deriveddir, typename Scalar>
|
template <typename Derivedsource, typename Deriveddir, typename Scalar>
|
||||||
inline bool ray_box_intersect_invdir(
|
inline bool ray_box_intersect_invdir(
|
||||||
const Eigen::MatrixBase<Derivedsource> &origin,
|
const Eigen::MatrixBase<Derivedsource> &origin,
|
||||||
const Eigen::MatrixBase<Deriveddir> &inv_dir,
|
const Eigen::MatrixBase<Deriveddir> &inv_dir,
|
||||||
Eigen::AlignedBox<Scalar,3> box,
|
Eigen::AlignedBox<Scalar,3> box,
|
||||||
const Scalar &t0,
|
const Scalar &t0,
|
||||||
const Scalar &t1,
|
const Scalar &t1) {
|
||||||
Scalar &tmin,
|
|
||||||
Scalar &tmax) {
|
|
||||||
// http://people.csail.mit.edu/amy/papers/box-jgt.pdf
|
// http://people.csail.mit.edu/amy/papers/box-jgt.pdf
|
||||||
// "An Efficient and Robust Ray–Box Intersection Algorithm"
|
// "An Efficient and Robust Ray–Box Intersection Algorithm"
|
||||||
if (inv_dir.x() < 0)
|
if (inv_dir.x() < 0)
|
||||||
std::swap(box.min().x(), box.max().x());
|
std::swap(box.min().x(), box.max().x());
|
||||||
if (inv_dir.y() < 0)
|
if (inv_dir.y() < 0)
|
||||||
std::swap(box.min().y(), box.max().y());
|
std::swap(box.min().y(), box.max().y());
|
||||||
tmin = (box.min().x() - origin.x()) * inv_dir.x();
|
Scalar tmin = (box.min().x() - origin.x()) * inv_dir.x();
|
||||||
Scalar tymax = (box.max().y() - origin.y()) * inv_dir.y();
|
Scalar tymax = (box.max().y() - origin.y()) * inv_dir.y();
|
||||||
if (tmin > tymax)
|
if (tmin > tymax)
|
||||||
return false;
|
return false;
|
||||||
tmax = (box.max().x() - origin.x()) * inv_dir.x();
|
Scalar tmax = (box.max().x() - origin.x()) * inv_dir.x();
|
||||||
Scalar tymin = (box.min().y() - origin.y()) * inv_dir.y();
|
Scalar tymin = (box.min().y() - origin.y()) * inv_dir.y();
|
||||||
if (tymin > tmax)
|
if (tymin > tmax)
|
||||||
return false;
|
return false;
|
||||||
@ -328,11 +331,8 @@ namespace detail {
|
|||||||
const auto &node = ray_intersector.tree.node(node_idx);
|
const auto &node = ray_intersector.tree.node(node_idx);
|
||||||
assert(node.is_valid());
|
assert(node.is_valid());
|
||||||
|
|
||||||
{
|
if (! ray_box_intersect_invdir(ray_intersector.origin, ray_intersector.invdir, node.bbox.template cast<Scalar>(), Scalar(0), min_t))
|
||||||
Scalar t_start, t_end;
|
|
||||||
if (! ray_box_intersect_invdir(ray_intersector.origin, ray_intersector.invdir, node.bbox.template cast<Scalar>(), Scalar(0), min_t, t_start, t_end))
|
|
||||||
return false;
|
return false;
|
||||||
}
|
|
||||||
|
|
||||||
if (node.is_leaf()) {
|
if (node.is_leaf()) {
|
||||||
// shoot ray, record hit
|
// shoot ray, record hit
|
||||||
@ -345,10 +345,9 @@ namespace detail {
|
|||||||
&& t > 0.) {
|
&& t > 0.) {
|
||||||
hit = igl::Hit { int(node.idx), -1, float(u), float(v), float(t) };
|
hit = igl::Hit { int(node.idx), -1, float(u), float(v), float(t) };
|
||||||
return true;
|
return true;
|
||||||
}
|
} else
|
||||||
return false;
|
return false;
|
||||||
}
|
} else {
|
||||||
|
|
||||||
// Left / right child node index.
|
// Left / right child node index.
|
||||||
size_t left = node_idx * 2 + 1;
|
size_t left = node_idx * 2 + 1;
|
||||||
size_t right = left + 1;
|
size_t right = left + 1;
|
||||||
@ -367,6 +366,7 @@ namespace detail {
|
|||||||
right_ret = false;
|
right_ret = false;
|
||||||
return left_ret || right_ret;
|
return left_ret || right_ret;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template<typename RayIntersectorType>
|
template<typename RayIntersectorType>
|
||||||
static inline void intersect_ray_recursive_all_hits(RayIntersectorType &ray_intersector, size_t node_idx)
|
static inline void intersect_ray_recursive_all_hits(RayIntersectorType &ray_intersector, size_t node_idx)
|
||||||
@ -376,34 +376,28 @@ namespace detail {
|
|||||||
const auto &node = ray_intersector.tree.node(node_idx);
|
const auto &node = ray_intersector.tree.node(node_idx);
|
||||||
assert(node.is_valid());
|
assert(node.is_valid());
|
||||||
|
|
||||||
{
|
|
||||||
Scalar t_start, t_end;
|
|
||||||
if (! ray_box_intersect_invdir(ray_intersector.origin, ray_intersector.invdir, node.bbox.template cast<Scalar>(),
|
if (! ray_box_intersect_invdir(ray_intersector.origin, ray_intersector.invdir, node.bbox.template cast<Scalar>(),
|
||||||
Scalar(0), std::numeric_limits<Scalar>::infinity(), t_start, t_end))
|
Scalar(0), std::numeric_limits<Scalar>::infinity()))
|
||||||
return;
|
return;
|
||||||
}
|
|
||||||
|
|
||||||
if (node.is_leaf()) {
|
if (node.is_leaf()) {
|
||||||
using Vector = Eigen::Matrix<double, 3, 1>;
|
|
||||||
Vector origin_d = ray_intersector.origin.template cast<double>();
|
|
||||||
Vector dir_d = ray_intersector.dir .template cast<double>();
|
|
||||||
auto face = ray_intersector.faces[node.idx];
|
auto face = ray_intersector.faces[node.idx];
|
||||||
Vector v0 = ray_intersector.vertices[face(0)].template cast<double>();
|
|
||||||
Vector v1 = ray_intersector.vertices[face(1)].template cast<double>();
|
|
||||||
Vector v2 = ray_intersector.vertices[face(2)].template cast<double>();
|
|
||||||
// shoot ray, record hit
|
|
||||||
double t, u, v;
|
double t, u, v;
|
||||||
if (intersect_triangle1(origin_d.data(), dir_d.data(), v0.data(), v1.data(), v2.data(), &t, &u, &v) && t > 0.)
|
if (intersect_triangle(
|
||||||
|
ray_intersector.origin, ray_intersector.dir,
|
||||||
|
ray_intersector.vertices[face(0)], ray_intersector.vertices[face(1)], ray_intersector.vertices[face(2)],
|
||||||
|
t, u, v)
|
||||||
|
&& t > 0.) {
|
||||||
ray_intersector.hits.emplace_back(igl::Hit{ int(node.idx), -1, float(u), float(v), float(t) });
|
ray_intersector.hits.emplace_back(igl::Hit{ int(node.idx), -1, float(u), float(v), float(t) });
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
} else {
|
||||||
// Left / right child node index.
|
// Left / right child node index.
|
||||||
size_t left = node_idx * 2 + 1;
|
size_t left = node_idx * 2 + 1;
|
||||||
size_t right = left + 1;
|
size_t right = left + 1;
|
||||||
intersect_ray_recursive_all_hits(ray_intersector, left);
|
intersect_ray_recursive_all_hits(ray_intersector, left);
|
||||||
intersect_ray_recursive_all_hits(ray_intersector, right);
|
intersect_ray_recursive_all_hits(ray_intersector, right);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Nothing to do with COVID-19 social distancing.
|
// Nothing to do with COVID-19 social distancing.
|
||||||
template<typename AVertexType, typename AIndexedFaceType, typename ATreeType, typename AVectorType>
|
template<typename AVertexType, typename AIndexedFaceType, typename ATreeType, typename AVectorType>
|
||||||
@ -431,17 +425,17 @@ namespace detail {
|
|||||||
Vector ap = p - a;
|
Vector ap = p - a;
|
||||||
Scalar d1 = ab.dot(ap);
|
Scalar d1 = ab.dot(ap);
|
||||||
Scalar d2 = ac.dot(ap);
|
Scalar d2 = ac.dot(ap);
|
||||||
if (d1 <= Scalar(0) && d2 <= Scalar(0))
|
if (d1 <= 0 && d2 <= 0)
|
||||||
return a;
|
return a;
|
||||||
// Check if P in vertex region outside B
|
// Check if P in vertex region outside B
|
||||||
Vector bp = p - b;
|
Vector bp = p - b;
|
||||||
Scalar d3 = ab.dot(bp);
|
Scalar d3 = ab.dot(bp);
|
||||||
Scalar d4 = ac.dot(bp);
|
Scalar d4 = ac.dot(bp);
|
||||||
if (d3 >= Scalar(0) && d4 <= d3)
|
if (d3 >= 0 && d4 <= d3)
|
||||||
return b;
|
return b;
|
||||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||||
Scalar vc = d1*d4 - d3*d2;
|
Scalar vc = d1*d4 - d3*d2;
|
||||||
if (a != b && vc <= Scalar(0) && d1 >= Scalar(0) && d3 <= Scalar(0)) {
|
if (a != b && vc <= 0 && d1 >= 0 && d3 <= 0) {
|
||||||
Scalar v = d1 / (d1 - d3);
|
Scalar v = d1 / (d1 - d3);
|
||||||
return a + v * ab;
|
return a + v * ab;
|
||||||
}
|
}
|
||||||
@ -449,17 +443,17 @@ namespace detail {
|
|||||||
Vector cp = p - c;
|
Vector cp = p - c;
|
||||||
Scalar d5 = ab.dot(cp);
|
Scalar d5 = ab.dot(cp);
|
||||||
Scalar d6 = ac.dot(cp);
|
Scalar d6 = ac.dot(cp);
|
||||||
if (d6 >= Scalar(0) && d5 <= d6)
|
if (d6 >= 0 && d5 <= d6)
|
||||||
return c;
|
return c;
|
||||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||||
Scalar vb = d5*d2 - d1*d6;
|
Scalar vb = d5*d2 - d1*d6;
|
||||||
if (vb <= Scalar(0) && d2 >= Scalar(0) && d6 <= Scalar(0)) {
|
if (vb <= 0 && d2 >= 0 && d6 <= 0) {
|
||||||
Scalar w = d2 / (d2 - d6);
|
Scalar w = d2 / (d2 - d6);
|
||||||
return a + w * ac;
|
return a + w * ac;
|
||||||
}
|
}
|
||||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||||
Scalar va = d3*d6 - d5*d4;
|
Scalar va = d3*d6 - d5*d4;
|
||||||
if (va <= Scalar(0) && (d4 - d3) >= Scalar(0) && (d5 - d6) >= Scalar(0)) {
|
if (va <= 0 && (d4 - d3) >= 0 && (d5 - d6) >= 0) {
|
||||||
Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||||
return b + w * (c - b);
|
return b + w * (c - b);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user