Merge branch 'master' into time_estimate

This commit is contained in:
bubnikv 2018-08-03 23:04:44 +02:00
commit ac2b20b54b
60 changed files with 2959 additions and 1548 deletions

View File

@ -145,6 +145,11 @@ sub new {
$self->rotate(rad2deg($angle_z), Z, 'absolute');
};
# callback to call schedule_background_process
my $on_request_update = sub {
$self->schedule_background_process;
};
# callback to update object's geometry info while using gizmos
my $on_update_geometry_info = sub {
my ($size_x, $size_y, $size_z, $scale_factor) = @_;
@ -203,6 +208,8 @@ sub new {
Slic3r::GUI::_3DScene::register_on_viewport_changed_callback($self->{canvas3D}, sub { Slic3r::GUI::_3DScene::set_viewport_from_scene($self->{preview3D}->canvas, $self->{canvas3D}); });
}
Slic3r::_GUI::register_on_request_update_callback($on_request_update);
# # Initialize 2D preview canvas
# $self->{canvas} = Slic3r::GUI::Plater::2D->new($self->{preview_notebook}, wxDefaultSize, $self->{objects}, $self->{model}, $self->{config});
# $self->{preview_notebook}->AddPage($self->{canvas}, L('2D'));
@ -1286,6 +1293,11 @@ sub async_apply_config {
$self->{gcode_preview_data}->reset;
$self->{toolpaths2D}->reload_print if $self->{toolpaths2D};
$self->{preview3D}->reload_print if $self->{preview3D};
# We also need to reload 3D scene because of the wipe tower preview box
if ($self->{config}->wipe_tower) {
Slic3r::GUI::_3DScene::reload_scene($self->{canvas3D}, 1) if $self->{canvas3D}
}
}
}
@ -1499,6 +1511,9 @@ sub on_process_completed {
$self->{toolpaths2D}->reload_print if $self->{toolpaths2D};
$self->{preview3D}->reload_print if $self->{preview3D};
# in case this was MM print, wipe tower bounding box on 3D tab might need redrawing with exact depth:
Slic3r::GUI::_3DScene::reload_scene($self->{canvas3D}, 1);
# if we have an export filename, start a new thread for exporting G-code
if ($self->{export_gcode_output_file}) {
@_ = ();
@ -1600,7 +1615,7 @@ sub print_info_box_show {
my ($self, $show) = @_;
my $scrolled_window_panel = $self->{scrolled_window_panel};
my $scrolled_window_sizer = $self->{scrolled_window_sizer};
return if $scrolled_window_sizer->IsShown(2) == $show;
return if (!$show && ($scrolled_window_sizer->IsShown(2) == $show));
if ($show) {
my $print_info_sizer = $self->{print_info_sizer};
@ -1836,6 +1851,8 @@ sub update {
$self->resume_background_process;
}
$self->print_info_box_show(0);
# $self->{canvas}->reload_scene if $self->{canvas};
my $selections = $self->collect_selections;
Slic3r::GUI::_3DScene::set_objects_selections($self->{canvas3D}, \@$selections);

View File

@ -1,5 +1,9 @@
min_slic3r_version = 1.41.0-alpha
0.2.0-alpha3 Adjusted machine limits for time estimates, added filament density and cost,
0.2.0-alpha7 Fixed the *MK3* references
0.2.0-alpha6
0.2.0-alpha5 Bumped up firmware versions for MK2.5/MK3 to 3.3.1, disabled priming areas for MK3MMU2
0.2.0-alpha4 Extended the custom start/end G-codes of the MMU2.0 printers for no priming towers.
0.2.0-alpha3 Adjusted machine limits for time estimates, added filament density and cost
0.2.0-alpha2 Renamed the key MK3SMMU to MK3MMU2, added a generic PLA MMU2 material
0.2.0-alpha1 added initial profiles for the i3 MK3 Multi Material Upgrade 2.0
0.2.0-alpha moved machine limits from the start G-code to the new print profile parameters

View File

@ -5,7 +5,7 @@
name = Prusa Research
# Configuration version of this file. Config file will only be installed, if the config_version differs.
# This means, the server may force the Slic3r configuration to be downgraded.
config_version = 0.2.0-alpha3
config_version = 0.2.0-alpha7
# Where to get the updates from?
config_update_url = https://raw.githubusercontent.com/prusa3d/Slic3r-settings/master/live/PrusaResearch/
@ -95,6 +95,7 @@ print_settings_id =
raft_layers = 0
resolution = 0
seam_position = nearest
single_extruder_multi_material_priming = 1
skirts = 1
skirt_distance = 2
skirt_height = 3
@ -136,6 +137,10 @@ wipe_tower_x = 200
wipe_tower_y = 155
xy_size_compensation = 0
[print:*MK3*]
fill_pattern = grid
single_extruder_multi_material_priming = 0
# Print parameters common to a 0.25mm diameter nozzle.
[print:*0.25nozzle*]
external_perimeter_extrusion_width = 0.25
@ -211,9 +216,8 @@ compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and
infill_extrusion_width = 0.5
[print:0.05mm ULTRADETAIL MK3]
inherits = *0.05mm*
inherits = *0.05mm*; *MK3*
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.4 and ! single_extruder_multi_material
fill_pattern = grid
top_infill_extrusion_width = 0.4
[print:0.05mm ULTRADETAIL 0.25 nozzle]
@ -228,9 +232,8 @@ solid_infill_speed = 20
support_material_speed = 20
[print:0.05mm ULTRADETAIL 0.25 nozzle MK3]
inherits = *0.05mm*; *0.25nozzle*
inherits = *0.05mm*; *0.25nozzle*; *MK3*
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.25 and num_extruders==1
fill_pattern = grid
# XXXXXXXXXXXXXXXXXXXX
# XXX--- 0.10mm ---XXX
@ -255,11 +258,10 @@ perimeter_speed = 50
solid_infill_speed = 50
[print:0.10mm DETAIL MK3]
inherits = *0.10mm*
inherits = *0.10mm*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.4 and ! single_extruder_multi_material
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -282,11 +284,10 @@ solid_infill_speed = 40
top_solid_infill_speed = 30
[print:0.10mm DETAIL 0.25 nozzle MK3]
inherits = *0.10mm*; *0.25nozzle*
inherits = *0.10mm*; *0.25nozzle*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.25
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -295,11 +296,10 @@ solid_infill_speed = 200
top_solid_infill_speed = 50
[print:0.10mm DETAIL 0.6 nozzle MK3]
inherits = *0.10mm*; *0.6nozzle*
inherits = *0.10mm*; *0.6nozzle*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.6
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -361,11 +361,10 @@ inherits = *0.15mm*; *0.6nozzle*
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK2.*/ and nozzle_diameter[0]==0.6
[print:0.15mm OPTIMAL MK3]
inherits = *0.15mm*
inherits = *0.15mm*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.4
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -393,11 +392,10 @@ support_material_with_sheath = 0
support_material_xy_spacing = 80%
[print:0.15mm OPTIMAL 0.25 nozzle MK3]
inherits = *0.15mm*; *0.25nozzle*
inherits = *0.15mm*; *0.25nozzle*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.25
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -419,11 +417,10 @@ top_infill_extrusion_width = 0.4
top_solid_layers = 5
[print:0.15mm OPTIMAL 0.6 nozzle MK3]
inherits = *0.15mm*; *0.6nozzle*
inherits = *0.15mm*; *0.6nozzle*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.6
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -448,11 +445,10 @@ support_material_speed = 60
top_solid_infill_speed = 70
[print:0.20mm FAST MK3]
inherits = *0.20mm*
inherits = *0.20mm*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.4
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -486,11 +482,10 @@ support_material_with_sheath = 0
support_material_xy_spacing = 80%
[print:0.20mm FAST 0.6 nozzle MK3]
inherits = *0.20mm*; *0.6nozzle*
inherits = *0.20mm*; *0.6nozzle*; *MK3*
bridge_speed = 30
compatible_printers_condition = printer_notes=~/.*PRINTER_VENDOR_PRUSA3D.*/ and printer_notes=~/.*PRINTER_MODEL_MK3.*/ and nozzle_diameter[0]==0.6
external_perimeter_speed = 35
fill_pattern = grid
infill_acceleration = 1250
infill_speed = 200
max_print_speed = 200
@ -1069,7 +1064,7 @@ end_gcode = {if not has_wipe_tower}\n; Pull the filament into the cooling tubes.
extruder_colour = #FFAA55;#5182DB;#4ECDD3;#FB7259
nozzle_diameter = 0.4,0.4,0.4,0.4
printer_notes = Don't remove the following keywords! These keywords are used in the "compatible printer" condition of the print and filament profiles to link the particular print and filament profiles to this printer profile.\nPRINTER_VENDOR_PRUSA3D\nPRINTER_MODEL_MK2\nPRINTER_HAS_BOWDEN
start_gcode = M115 U3.1.0 ; tell printer latest fw version\n; Start G-Code sequence START\nT[initial_tool]\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG21 ; set units to millimeters\nG90 ; use absolute coordinates\nM83 ; use relative distances for extrusion\nG28 W\nG80\nG92 E0.0\nM203 E100 ; set max feedrate\nM92 E140 ; E-steps per filament milimeter\n{if not has_wipe_tower}\nG1 Z0.250 F7200.000\nG1 X50.0 E80.0 F1000.0\nG1 X160.0 E20.0 F1000.0\nG1 Z0.200 F7200.000\nG1 X220.0 E13 F1000.0\nG1 X240.0 E0 F1000.0\nG1 E-4 F1000.0\n{endif}\nG92 E0.0
start_gcode = M115 U3.1.0 ; tell printer latest fw version\n; Start G-Code sequence START\nT[initial_tool]\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG21 ; set units to millimeters\nG90 ; use absolute coordinates\nM83 ; use relative distances for extrusion\nG28 W\nG80\nG92 E0.0\nM203 E100 ; set max feedrate\nM92 E140 ; E-steps per filament milimeter\n{if not has_single_extruder_multi_material_priming}\nG1 Z0.250 F7200.000\nG1 X50.0 E80.0 F1000.0\nG1 X160.0 E20.0 F1000.0\nG1 Z0.200 F7200.000\nG1 X220.0 E13 F1000.0\nG1 X240.0 E0 F1000.0\nG1 E-4 F1000.0\n{endif}\nG92 E0.0
variable_layer_height = 0
default_print_profile = 0.15mm OPTIMAL
@ -1129,17 +1124,17 @@ default_print_profile = 0.20mm NORMAL 0.6 nozzle
[printer:Original Prusa i3 MK2.5]
inherits = Original Prusa i3 MK2
printer_model = MK2.5
start_gcode = M115 U3.2.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0
start_gcode = M115 U3.3.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0
[printer:Original Prusa i3 MK2.5 0.25 nozzle]
inherits = Original Prusa i3 MK2 0.25 nozzle
printer_model = MK2.5
start_gcode = M115 U3.2.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0
start_gcode = M115 U3.3.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0
[printer:Original Prusa i3 MK2.5 0.6 nozzle]
inherits = Original Prusa i3 MK2 0.6 nozzle
printer_model = MK2.5
start_gcode = M115 U3.2.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0
start_gcode = M115 U3.3.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0
# XXXXXXXXXXXXXXXXX
# XXX--- MK3 ---XXX
@ -1168,7 +1163,7 @@ silent_mode = 1
printer_notes = Don't remove the following keywords! These keywords are used in the "compatible printer" condition of the print and filament profiles to link the particular print and filament profiles to this printer profile.\nPRINTER_VENDOR_PRUSA3D\nPRINTER_MODEL_MK3\n
retract_lift_below = 209
max_print_height = 210
start_gcode = M115 U3.3.0 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0\nM221 S{if layer_height==0.05}100{else}95{endif}
start_gcode = M115 U3.3.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG1 Y-3.0 F1000.0 ; go outside print area\nG92 E0.0\nG1 X60.0 E9.0 F1000.0 ; intro line\nG1 X100.0 E12.5 F1000.0 ; intro line\nG92 E0.0\nM221 S{if layer_height==0.05}100{else}95{endif}
printer_model = MK3
default_print_profile = 0.15mm OPTIMAL MK3
@ -1203,7 +1198,7 @@ default_filament_profile = Prusa PLA MMU2
[printer:Original Prusa i3 MK3 MMU2 Single]
inherits = *mm2*
start_gcode = M107\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\n\nG21 ; set units to millimeters\n\n ; go outside print area\nG1 Y-3.0 F1000.0 \nG1 Z0.4 F1000\n; select extruder\nT?\n; initial load\nG1 X50 E15 F1073\nG1 X100 E10 F2000\nG1 Z0.3 F1000\n\nG92 E0.0\nG1 X240.0 E15.0 F2400.0 \nG1 Y-2.0 F1000.0\nG1 X100.0 E10 F1400.0 \nG1 Z0.20 F1000\nG1 X0.0 E4 F1000.0\n\nG92 E0.0\nM221 S{if layer_height<0.075}100{else}95{endif}\nG90 ; use absolute coordinates\nM83 ; use relative distances for extrusion\nG92 E0.0\n
start_gcode = M107\nM115 U3.3.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\n\nG21 ; set units to millimeters\n\n;go outside print area\nG1 Y-3.0 F1000.0\nG1 Z0.4 F1000.0\n; select extruder\nT?\n; initial load\nG1 X55.0 E32.0 F1073.0\nG1 X5.0 E32.0 F1800.0\nG1 X55.0 E8.0 F2000.0\nG1 Z0.3 F1000.0\nG92 E0.0\nG1 X240.0 E25.0 F2200.0\nG1 Y-2.0 F1000.0\nG1 X55.0 E25 F1400.0\nG1 Z0.20 F1000.0\nG1 X5.0 E4.0 F1000.0\n\nM221 S{if layer_height<0.075}100{else}95{endif}\nG90 ; use absolute coordinates\nM83 ; use relative distances for extrusion\nG92 E0.0\n
end_gcode = G1 X0 Y210 F7200\nG1 E2 F5000\nG1 E2 F5500\nG1 E2 F6000\nG1 E-15.0000 F5800\nG1 E-20.0000 F5500\nG1 E10.0000 F3000\nG1 E-10.0000 F3100\nG1 E10.0000 F3150\nG1 E-10.0000 F3250\nG1 E10.0000 F3300\n\nM702 C\n\nG4 ; wait\nM104 S0 ; turn off temperature\nM140 S0 ; turn off heatbed\nM107 ; turn off fan\nG1 X0 Y200; home X axis\nM84 ; disable motors
[printer:Original Prusa i3 MK3 MMU2]
@ -1213,8 +1208,8 @@ inherits = *mm2*
# to be defined explicitely.
nozzle_diameter = 0.4,0.4,0.4,0.4,0.4
extruder_colour = #FF8000;#0080FF;#00FFFF;#FF4F4F;#9FFF9F
start_gcode = M107\n\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\n\nG21 ; set units to millimeters\nG90 ; use absolute coordinates\nM83 ; use relative distances for extrusion\nG92 E0.0\n
end_gcode = G1 E-15.0000 F3000\n\nM702 C\n\nG4 ; wait\nM104 S0 ; turn off temperature\nM140 S0 ; turn off heatbed\nM107 ; turn off fan\nG1 X0 Y200; home X axis\nM84 ; disable motors
start_gcode = M107\nM115 U3.3.1 ; tell printer latest fw version\nM83 ; extruder relative mode\nM104 S[first_layer_temperature] ; set extruder temp\nM140 S[first_layer_bed_temperature] ; set bed temp\nM190 S[first_layer_bed_temperature] ; wait for bed temp\nM109 S[first_layer_temperature] ; wait for extruder temp\nG28 W ; home all without mesh bed level\nG80 ; mesh bed leveling\nG21 ; set units to millimeters\n\n; Send the filament type to the MMU2.0 unit.\n; E stands for extruder number, F stands for filament type (0: default; 1:flex; 2: PVA)\nM403 E0 F{"" + ((filament_type[0]=="FLEX") ? 1 : ((filament_type[0]=="PVA") ? 2 : 0))}\nM403 E1 F{"" + ((filament_type[1]=="FLEX") ? 1 : ((filament_type[1]=="PVA") ? 2 : 0))}\nM403 E2 F{"" + ((filament_type[2]=="FLEX") ? 1 : ((filament_type[2]=="PVA") ? 2 : 0))}\nM403 E3 F{"" + ((filament_type[3]=="FLEX") ? 1 : ((filament_type[3]=="PVA") ? 2 : 0))}\nM403 E4 F{"" + ((filament_type[4]=="FLEX") ? 1 : ((filament_type[4]=="PVA") ? 2 : 0))}\n\n{if not has_single_extruder_multi_material_priming}\n;go outside print area\nG1 Y-3.0 F1000.0\nG1 Z0.4 F1000.0\n; select extruder\nT[initial_tool]\n; initial load\nG1 X55.0 E32.0 F1073.0\nG1 X5.0 E32.0 F1800.0\nG1 X55.0 E8.0 F2000.0\nG1 Z0.3 F1000.0\nG92 E0.0\nG1 X240.0 E25.0 F2200.0\nG1 Y-2.0 F1000.0\nG1 X55.0 E25 F1400.0\nG1 Z0.20 F1000.0\nG1 X5.0 E4.0 F1000.0\nG92 E0.0\n{endif}\n\n;M221 S{if layer_height<0.075}100{else}95{endif}\nG90 ; use absolute coordinates\nM83 ; use relative distances for extrusion\nG92 E0.0\n
end_gcode = {if has_wipe_tower}\nG1 E-15.0000 F3000\n{else}\nG1 X0 Y210 F7200\nG1 E2 F5000\nG1 E2 F5500\nG1 E2 F6000\nG1 E-15.0000 F5800\nG1 E-20.0000 F5500\nG1 E10.0000 F3000\nG1 E-10.0000 F3100\nG1 E10.0000 F3150\nG1 E-10.0000 F3250\nG1 E10.0000 F3300\n{endif}\n\n; Unload filament\nM702 C\n\nG4 ; wait\nM104 S0 ; turn off temperature\nM140 S0 ; turn off heatbed\nM107 ; turn off fan\n; Lift print head a bit\n{if layer_z < max_print_height}G1 Z{z_offset+min(layer_z+30, max_print_height)}{endif} ; Move print head up\nG1 X0 Y200; home X axis\nM84 ; disable motors\n
# The obsolete presets will be removed when upgrading from the legacy configuration structure (up to Slic3r 1.39.2) to 1.40.0 and newer.
[obsolete_presets]

View File

@ -136,6 +136,7 @@ add_library(libslic3r STATIC
${LIBDIR}/libslic3r/Line.hpp
${LIBDIR}/libslic3r/Model.cpp
${LIBDIR}/libslic3r/Model.hpp
${LIBDIR}/libslic3r/ModelArrange.hpp
${LIBDIR}/libslic3r/MotionPlanner.cpp
${LIBDIR}/libslic3r/MotionPlanner.hpp
${LIBDIR}/libslic3r/MultiPoint.cpp
@ -729,6 +730,7 @@ set(LIBNEST2D_UNITTESTS ON CACHE BOOL "Force generating unittests for libnest2d"
add_subdirectory(${LIBDIR}/libnest2d)
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
target_include_directories(libslic3r_gui PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
message(STATUS "Libnest2D Libraries: ${LIBNEST2D_LIBRARIES}")
target_link_libraries(libslic3r ${LIBNEST2D_LIBRARIES})

View File

@ -35,8 +35,9 @@ struct AvrDude::priv
{
std::string sys_config;
std::deque<std::vector<std::string>> args;
size_t current_args_set = 0;
bool cancelled = false;
int exit_code = 0;
size_t current_args_set = 0;
RunFn run_fn;
MessageFn message_fn;
ProgressFn progress_fn;
@ -146,15 +147,15 @@ AvrDude::Ptr AvrDude::run()
int res = -1;
if (self->p->run_fn) {
self->p->run_fn(*self);
self->p->run_fn();
}
if (! self->p->cancelled) {
res = self->p->run();
self->p->exit_code = self->p->run();
}
if (self->p->complete_fn) {
self->p->complete_fn(res, self->p->current_args_set);
self->p->complete_fn();
}
});
@ -179,5 +180,20 @@ void AvrDude::join()
}
}
bool AvrDude::cancelled()
{
return p ? p->cancelled : false;
}
int AvrDude::exit_code()
{
return p ? p->exit_code : 0;
}
size_t AvrDude::last_args_set()
{
return p ? p->current_args_set : 0;
}
}

View File

@ -12,10 +12,10 @@ class AvrDude
{
public:
typedef std::shared_ptr<AvrDude> Ptr;
typedef std::function<void(AvrDude&)> RunFn;
typedef std::function<void()> RunFn;
typedef std::function<void(const char * /* msg */, unsigned /* size */)> MessageFn;
typedef std::function<void(const char * /* task */, unsigned /* progress */)> ProgressFn;
typedef std::function<void(int /* exit status */, size_t /* args_id */)> CompleteFn;
typedef std::function<void()> CompleteFn;
// Main c-tor, sys_config is the location of avrdude's main configuration file
AvrDude(std::string sys_config);
@ -54,6 +54,10 @@ public:
void cancel();
void join();
bool cancelled(); // Whether avrdude run was cancelled
int exit_code(); // The exit code of the last invocation
size_t last_args_set(); // Index of the last argument set that was processsed
private:
struct priv;
std::unique_ptr<priv> p;

View File

@ -2,8 +2,6 @@ cmake_minimum_required(VERSION 2.8)
project(Libnest2D)
enable_testing()
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
# Update if necessary
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long ")
@ -32,6 +30,7 @@ set(LIBNEST2D_SRCFILES
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/geometry_traits.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/common.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/metaloop.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/placers/placer_boilerplate.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/placers/bottomleftplacer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/placers/nfpplacer.hpp
@ -60,8 +59,7 @@ if(LIBNEST2D_GEOMETRIES_BACKEND STREQUAL "clipper")
include_directories(BEFORE ${CLIPPER_INCLUDE_DIRS})
include_directories(${Boost_INCLUDE_DIRS})
list(APPEND LIBNEST2D_SRCFILES ${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/clipper_backend/clipper_backend.cpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/clipper_backend/clipper_backend.hpp
list(APPEND LIBNEST2D_SRCFILES ${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/clipper_backend/clipper_backend.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/boost_alg.hpp)
list(APPEND LIBNEST2D_LIBRARIES ${CLIPPER_LIBRARIES})
list(APPEND LIBNEST2D_HEADERS ${CLIPPER_INCLUDE_DIRS}
@ -81,22 +79,12 @@ if(LIBNEST2D_OPTIMIZER_BACKEND STREQUAL "nlopt")
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/subplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/genetic.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/nlopt_boilerplate.hpp)
list(APPEND LIBNEST2D_LIBRARIES ${NLopt_LIBS}
# Threads::Threads
)
list(APPEND LIBNEST2D_LIBRARIES ${NLopt_LIBS})
list(APPEND LIBNEST2D_HEADERS ${NLopt_INCLUDE_DIR})
endif()
# Currently we are outsourcing the non-convex NFP implementation from
# libnfporb and it needs libgmp to work
#find_package(GMP)
#if(GMP_FOUND)
# list(APPEND LIBNEST2D_LIBRARIES ${GMP_LIBRARIES})
# list(APPEND LIBNEST2D_HEADERS ${GMP_INCLUDE_DIR})
# add_definitions(-DLIBNFP_USE_RATIONAL)
#endif()
if(LIBNEST2D_UNITTESTS)
enable_testing()
add_subdirectory(tests)
endif()

View File

@ -27,5 +27,6 @@ set(NLOPT_LINK_PYTHON OFF CACHE BOOL "" FORCE)
add_subdirectory(${nlopt_SOURCE_DIR} ${nlopt_BINARY_DIR})
set(NLopt_LIBS nlopt)
set(NLopt_INCLUDE_DIR ${nlopt_BINARY_DIR})
set(NLopt_INCLUDE_DIR ${nlopt_BINARY_DIR}
${nlopt_BINARY_DIR}/src/api)
set(SHARED_LIBS_STATE ${SHARED_STATE})

View File

@ -1,35 +0,0 @@
# Try to find the GMP libraries:
# GMP_FOUND - System has GMP lib
# GMP_INCLUDE_DIR - The GMP include directory
# GMP_LIBRARIES - Libraries needed to use GMP
if (GMP_INCLUDE_DIR AND GMP_LIBRARIES)
# Force search at every time, in case configuration changes
unset(GMP_INCLUDE_DIR CACHE)
unset(GMP_LIBRARIES CACHE)
endif (GMP_INCLUDE_DIR AND GMP_LIBRARIES)
find_path(GMP_INCLUDE_DIR NAMES gmp.h)
if(WIN32)
find_library(GMP_LIBRARIES NAMES libgmp.a gmp gmp.lib mpir mpir.lib)
else(WIN32)
if(STBIN)
message(STATUS "STBIN: ${STBIN}")
find_library(GMP_LIBRARIES NAMES libgmp.a gmp)
else(STBIN)
find_library(GMP_LIBRARIES NAMES libgmp.so gmp)
endif(STBIN)
endif(WIN32)
if(GMP_INCLUDE_DIR AND GMP_LIBRARIES)
set(GMP_FOUND TRUE)
endif(GMP_INCLUDE_DIR AND GMP_LIBRARIES)
if(GMP_FOUND)
message(STATUS "Configured GMP: ${GMP_LIBRARIES}")
else(GMP_FOUND)
message(STATUS "Could NOT find GMP")
endif(GMP_FOUND)
mark_as_advanced(GMP_INCLUDE_DIR GMP_LIBRARIES)

View File

@ -535,19 +535,34 @@ void arrangeRectangles() {
proba[0].rotate(Pi/3);
proba[1].rotate(Pi-Pi/3);
// std::vector<Item> input(25, Rectangle(70*SCALE, 10*SCALE));
std::vector<Item> input;
input.insert(input.end(), prusaParts().begin(), prusaParts().end());
// input.insert(input.end(), prusaExParts().begin(), prusaExParts().end());
input.insert(input.end(), stegoParts().begin(), stegoParts().end());
// input.insert(input.end(), stegoParts().begin(), stegoParts().end());
// input.insert(input.end(), rects.begin(), rects.end());
input.insert(input.end(), proba.begin(), proba.end());
// input.insert(input.end(), proba.begin(), proba.end());
// input.insert(input.end(), crasher.begin(), crasher.end());
Box bin(250*SCALE, 210*SCALE);
// PolygonImpl bin = {
// {
// {25*SCALE, 0},
// {0, 25*SCALE},
// {0, 225*SCALE},
// {25*SCALE, 250*SCALE},
// {225*SCALE, 250*SCALE},
// {250*SCALE, 225*SCALE},
// {250*SCALE, 25*SCALE},
// {225*SCALE, 0},
// {25*SCALE, 0}
// },
// {}
// };
Coord min_obj_distance = 6*SCALE;
auto min_obj_distance = static_cast<Coord>(0*SCALE);
using Placer = NfpPlacer;
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, Box>;
using Packer = Arranger<Placer, FirstFitSelection>;
Packer arrange(bin, min_obj_distance);
@ -556,28 +571,107 @@ void arrangeRectangles() {
pconf.alignment = Placer::Config::Alignment::CENTER;
pconf.starting_point = Placer::Config::Alignment::CENTER;
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
pconf.object_function = [&bin](Placer::Pile pile, double area,
double norm, double penality) {
pconf.accuracy = 0.5f;
auto bb = ShapeLike::boundingBox(pile);
// auto bincenter = ShapeLike::boundingBox(bin).center();
// pconf.object_function = [&bin, bincenter](
// Placer::Pile pile, const Item& item,
// double /*area*/, double norm, double penality) {
auto& sh = pile.back();
auto rv = Nfp::referenceVertex(sh);
auto c = bin.center();
auto d = PointLike::distance(rv, c);
double score = double(d)/norm;
// using pl = PointLike;
// If it does not fit into the print bed we will beat it
// with a large penality
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
// static const double BIG_ITEM_TRESHOLD = 0.2;
// static const double GRAVITY_RATIO = 0.5;
// static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
return score;
};
// // We will treat big items (compared to the print bed) differently
// NfpPlacer::Pile bigs;
// bigs.reserve(pile.size());
// for(auto& p : pile) {
// auto pbb = ShapeLike::boundingBox(p);
// auto na = std::sqrt(pbb.width()*pbb.height())/norm;
// if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
// }
// // Candidate item bounding box
// auto ibb = item.boundingBox();
// // Calculate the full bounding box of the pile with the candidate item
// pile.emplace_back(item.transformedShape());
// auto fullbb = ShapeLike::boundingBox(pile);
// pile.pop_back();
// // The bounding box of the big items (they will accumulate in the center
// // of the pile
// auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
// // The size indicator of the candidate item. This is not the area,
// // but almost...
// auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
// // Will hold the resulting score
// double score = 0;
// if(itemnormarea > BIG_ITEM_TRESHOLD) {
// // This branch is for the bigger items..
// // Here we will use the closest point of the item bounding box to
// // the already arranged pile. So not the bb center nor the a choosen
// // corner but whichever is the closest to the center. This will
// // prevent unwanted strange arrangements.
// auto minc = ibb.minCorner(); // bottom left corner
// auto maxc = ibb.maxCorner(); // top right corner
// // top left and bottom right corners
// auto top_left = PointImpl{getX(minc), getY(maxc)};
// auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// auto cc = fullbb.center(); // The gravity center
// // Now the distnce of the gravity center will be calculated to the
// // five anchor points and the smallest will be chosen.
// std::array<double, 5> dists;
// dists[0] = pl::distance(minc, cc);
// dists[1] = pl::distance(maxc, cc);
// dists[2] = pl::distance(ibb.center(), cc);
// dists[3] = pl::distance(top_left, cc);
// dists[4] = pl::distance(bottom_right, cc);
// auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
// // Density is the pack density: how big is the arranged pile
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
// // The score is a weighted sum of the distance from pile center
// // and the pile size
// score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
// } else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
// // If there are no big items, only small, we should consider the
// // density here as well to not get silly results
// auto bindist = pl::distance(ibb.center(), bincenter) / norm;
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
// score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
// } else {
// // Here there are the small items that should be placed around the
// // already processed bigger items.
// // No need to play around with the anchor points, the center will be
// // just fine for small items
// score = pl::distance(ibb.center(), bigbb.center()) / norm;
// }
// // If it does not fit into the print bed we will beat it
// // with a large penality. If we would not do this, there would be only
// // one big pile that doesn't care whether it fits onto the print bed.
// if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
// return score;
// };
Packer::SelectionConfig sconf;
// sconf.allow_parallel = false;
// sconf.force_parallel = false;
// sconf.try_triplets = false;
// sconf.try_triplets = true;
// sconf.try_reverse_order = true;
// sconf.waste_increment = 0.005;
@ -613,7 +707,7 @@ void arrangeRectangles() {
std::vector<double> eff;
eff.reserve(result.size());
auto bin_area = double(bin.height()*bin.width());
auto bin_area = ShapeLike::area<PolygonImpl>(bin);
for(auto& r : result) {
double a = 0;
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
@ -630,7 +724,7 @@ void arrangeRectangles() {
<< " %" << std::endl;
std::cout << "Bin usage: (";
unsigned total = 0;
size_t total = 0;
for(auto& r : result) { std::cout << r.size() << " "; total += r.size(); }
std::cout << ") Total: " << total << std::endl;
@ -643,10 +737,12 @@ void arrangeRectangles() {
<< input.size() - total << " elements!"
<< std::endl;
svg::SVGWriter::Config conf;
using SVGWriter = svg::SVGWriter<PolygonImpl>;
SVGWriter::Config conf;
conf.mm_in_coord_units = SCALE;
svg::SVGWriter svgw(conf);
svgw.setSize(bin);
SVGWriter svgw(conf);
svgw.setSize(Box(250*SCALE, 210*SCALE));
svgw.writePackGroup(result);
// std::for_each(input.begin(), input.end(), [&svgw](Item& item){ svgw.writeItem(item);});
svgw.save("out");

View File

@ -6,7 +6,7 @@
#include <libnest2d/clipper_backend/clipper_backend.hpp>
// We include the stock optimizers for local and global optimization
#include <libnest2d/optimizers/simplex.hpp> // Local subplex for NfpPlacer
#include <libnest2d/optimizers/subplex.hpp> // Local subplex for NfpPlacer
#include <libnest2d/optimizers/genetic.hpp> // Genetic for min. bounding box
#include <libnest2d/libnest2d.hpp>

View File

@ -8,8 +8,16 @@
#ifdef __clang__
#undef _MSC_EXTENSIONS
#endif
#include <boost/geometry.hpp>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <boost/geometry.hpp>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// this should be removed to not confuse the compiler
// #include <libnest2d.h>
@ -350,7 +358,7 @@ inline double ShapeLike::area(const PolygonImpl& shape)
#endif
template<>
inline bool ShapeLike::isInside(const PointImpl& point,
inline bool ShapeLike::isInside<PolygonImpl>(const PointImpl& point,
const PolygonImpl& shape)
{
return boost::geometry::within(point, shape);
@ -461,15 +469,6 @@ inline bp2d::Shapes Nfp::merge(const bp2d::Shapes& shapes,
}
#endif
//#ifndef DISABLE_BOOST_MINKOWSKI_ADD
//template<>
//inline PolygonImpl& Nfp::minkowskiAdd(PolygonImpl& sh,
// const PolygonImpl& /*other*/)
//{
// return sh;
//}
//#endif
#ifndef DISABLE_BOOST_SERIALIZE
template<> inline std::string ShapeLike::serialize<libnest2d::Formats::SVG>(
const PolygonImpl& sh, double scale)

View File

@ -1,58 +0,0 @@
//#include "clipper_backend.hpp"
//#include <atomic>
//namespace libnest2d {
//namespace {
//class SpinLock {
// std::atomic_flag& lck_;
//public:
// inline SpinLock(std::atomic_flag& flg): lck_(flg) {}
// inline void lock() {
// while(lck_.test_and_set(std::memory_order_acquire)) {}
// }
// inline void unlock() { lck_.clear(std::memory_order_release); }
//};
//class HoleCache {
// friend struct libnest2d::ShapeLike;
// std::unordered_map< const PolygonImpl*, ClipperLib::Paths> map;
// ClipperLib::Paths& _getHoles(const PolygonImpl* p) {
// static std::atomic_flag flg = ATOMIC_FLAG_INIT;
// SpinLock lock(flg);
// lock.lock();
// ClipperLib::Paths& paths = map[p];
// lock.unlock();
// if(paths.size() != p->Childs.size()) {
// paths.reserve(p->Childs.size());
// for(auto np : p->Childs) {
// paths.emplace_back(np->Contour);
// }
// }
// return paths;
// }
// ClipperLib::Paths& getHoles(PolygonImpl& p) {
// return _getHoles(&p);
// }
// const ClipperLib::Paths& getHoles(const PolygonImpl& p) {
// return _getHoles(&p);
// }
//};
//}
//HoleCache holeCache;
//}

View File

@ -21,7 +21,7 @@ struct PolygonImpl {
PathImpl Contour;
HoleStore Holes;
inline PolygonImpl() {}
inline PolygonImpl() = default;
inline explicit PolygonImpl(const PathImpl& cont): Contour(cont) {}
inline explicit PolygonImpl(const HoleStore& holes):
@ -66,6 +66,19 @@ inline PointImpl operator-(const PointImpl& p1, const PointImpl& p2) {
ret -= p2;
return ret;
}
inline PointImpl& operator *=(PointImpl& p, const PointImpl& pa ) {
p.X *= pa.X;
p.Y *= pa.Y;
return p;
}
inline PointImpl operator*(const PointImpl& p1, const PointImpl& p2) {
PointImpl ret = p1;
ret *= p2;
return ret;
}
}
namespace libnest2d {
@ -135,7 +148,7 @@ inline void ShapeLike::reserve(PolygonImpl& sh, size_t vertex_capacity)
namespace _smartarea {
template<Orientation o>
inline double area(const PolygonImpl& sh) {
inline double area(const PolygonImpl& /*sh*/) {
return std::nan("");
}
@ -220,22 +233,6 @@ inline void ShapeLike::offset(PolygonImpl& sh, TCoord<PointImpl> distance) {
}
}
//template<> // TODO make it support holes if this method will ever be needed.
//inline PolygonImpl Nfp::minkowskiDiff(const PolygonImpl& sh,
// const PolygonImpl& other)
//{
// #define DISABLE_BOOST_MINKOWSKI_ADD
// ClipperLib::Paths solution;
// ClipperLib::MinkowskiDiff(sh.Contour, other.Contour, solution);
// PolygonImpl ret;
// ret.Contour = solution.front();
// return sh;
//}
// Tell libnest2d how to make string out of a ClipperPolygon object
template<> inline std::string ShapeLike::toString(const PolygonImpl& sh) {
std::stringstream ss;
@ -406,35 +403,12 @@ inline void ShapeLike::rotate(PolygonImpl& sh, const Radians& rads)
}
#define DISABLE_BOOST_NFP_MERGE
template<> inline Nfp::Shapes<PolygonImpl>
Nfp::merge(const Nfp::Shapes<PolygonImpl>& shapes, const PolygonImpl& sh)
{
inline Nfp::Shapes<PolygonImpl> _merge(ClipperLib::Clipper& clipper) {
Nfp::Shapes<PolygonImpl> retv;
ClipperLib::Clipper clipper(ClipperLib::ioReverseSolution);
bool closed = true;
bool valid = false;
valid = clipper.AddPath(sh.Contour, ClipperLib::ptSubject, closed);
for(auto& hole : sh.Holes) {
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
}
for(auto& path : shapes) {
valid &= clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
for(auto& hole : path.Holes) {
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
}
}
if(!valid) throw GeometryException(GeomErr::MERGE);
ClipperLib::PolyTree result;
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);
retv.reserve(result.Total());
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNegative);
retv.reserve(static_cast<size_t>(result.Total()));
std::function<void(ClipperLib::PolyNode*, PolygonImpl&)> processHole;
@ -445,7 +419,8 @@ Nfp::merge(const Nfp::Shapes<PolygonImpl>& shapes, const PolygonImpl& sh)
retv.push_back(poly);
};
processHole = [&processPoly](ClipperLib::PolyNode *pptr, PolygonImpl& poly) {
processHole = [&processPoly](ClipperLib::PolyNode *pptr, PolygonImpl& poly)
{
poly.Holes.push_back(pptr->Contour);
poly.Holes.back().push_back(poly.Holes.back().front());
for(auto c : pptr->Childs) processPoly(c);
@ -463,6 +438,27 @@ Nfp::merge(const Nfp::Shapes<PolygonImpl>& shapes, const PolygonImpl& sh)
return retv;
}
template<> inline Nfp::Shapes<PolygonImpl>
Nfp::merge(const Nfp::Shapes<PolygonImpl>& shapes)
{
ClipperLib::Clipper clipper(ClipperLib::ioReverseSolution);
bool closed = true;
bool valid = true;
for(auto& path : shapes) {
valid &= clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
for(auto& hole : path.Holes) {
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
}
}
if(!valid) throw GeometryException(GeomErr::MERGE);
return _merge(clipper);
}
}
//#define DISABLE_BOOST_SERIALIZE

View File

@ -13,6 +13,7 @@
#if defined(_MSC_VER) && _MSC_VER <= 1800 || __cplusplus < 201103L
#define BP2D_NOEXCEPT
#define BP2D_CONSTEXPR
#define BP2D_COMPILER_MSVC12
#elif __cplusplus >= 201103L
#define BP2D_NOEXCEPT noexcept
#define BP2D_CONSTEXPR constexpr
@ -84,44 +85,6 @@ struct invoke_result {
template<class F, class...Args>
using invoke_result_t = typename invoke_result<F, Args...>::type;
/* ************************************************************************** */
/* C++14 std::index_sequence implementation: */
/* ************************************************************************** */
/**
* \brief C++11 conformant implementation of the index_sequence type from C++14
*/
template<size_t...Ints> struct index_sequence {
using value_type = size_t;
BP2D_CONSTEXPR value_type size() const { return sizeof...(Ints); }
};
// A Help structure to generate the integer list
template<size_t...Nseq> struct genSeq;
// Recursive template to generate the list
template<size_t I, size_t...Nseq> struct genSeq<I, Nseq...> {
// Type will contain a genSeq with Nseq appended by one element
using Type = typename genSeq< I - 1, I - 1, Nseq...>::Type;
};
// Terminating recursion
template <size_t ... Nseq> struct genSeq<0, Nseq...> {
// If I is zero, Type will contain index_sequence with the fuly generated
// integer list.
using Type = index_sequence<Nseq...>;
};
/// Helper alias to make an index sequence from 0 to N
template<size_t N> using make_index_sequence = typename genSeq<N>::Type;
/// Helper alias to make an index sequence for a parameter pack
template<class...Args>
using index_sequence_for = make_index_sequence<sizeof...(Args)>;
/* ************************************************************************** */
/**
* A useful little tool for triggering static_assert error messages e.g. when
* a mandatory template specialization (implementation) is missing.
@ -229,7 +192,7 @@ public:
GeomErr errcode() const { return errcode_; }
virtual const char * what() const BP2D_NOEXCEPT override {
const char * what() const BP2D_NOEXCEPT override {
return errorstr(errcode_).c_str();
}
};

View File

@ -3,6 +3,7 @@
#include <string>
#include <type_traits>
#include <algorithm>
#include <array>
#include <vector>
#include <numeric>
@ -68,7 +69,7 @@ class _Box: PointPair<RawPoint> {
using PointPair<RawPoint>::p2;
public:
inline _Box() {}
inline _Box() = default;
inline _Box(const RawPoint& p, const RawPoint& pp):
PointPair<RawPoint>({p, pp}) {}
@ -85,6 +86,31 @@ public:
inline TCoord<RawPoint> height() const BP2D_NOEXCEPT;
inline RawPoint center() const BP2D_NOEXCEPT;
inline double area() const BP2D_NOEXCEPT {
return double(width()*height());
}
};
template<class RawPoint>
class _Circle {
RawPoint center_;
double radius_ = 0;
public:
_Circle() = default;
_Circle(const RawPoint& center, double r): center_(center), radius_(r) {}
inline const RawPoint& center() const BP2D_NOEXCEPT { return center_; }
inline const void center(const RawPoint& c) { center_ = c; }
inline double radius() const BP2D_NOEXCEPT { return radius_; }
inline void radius(double r) { radius_ = r; }
inline double area() const BP2D_NOEXCEPT {
return 2.0*Pi*radius_;
}
};
/**
@ -97,7 +123,7 @@ class _Segment: PointPair<RawPoint> {
mutable Radians angletox_ = std::nan("");
public:
inline _Segment() {}
inline _Segment() = default;
inline _Segment(const RawPoint& p, const RawPoint& pp):
PointPair<RawPoint>({p, pp}) {}
@ -188,7 +214,7 @@ struct PointLike {
if( (y < y1 && y < y2) || (y > y1 && y > y2) )
return {0, false};
else if ((y == y1 && y == y2) && (x > x1 && x > x2))
if ((y == y1 && y == y2) && (x > x1 && x > x2))
ret = std::min( x-x1, x -x2);
else if( (y == y1 && y == y2) && (x < x1 && x < x2))
ret = -std::min(x1 - x, x2 - x);
@ -214,7 +240,7 @@ struct PointLike {
if( (x < x1 && x < x2) || (x > x1 && x > x2) )
return {0, false};
else if ((x == x1 && x == x2) && (y > y1 && y > y2))
if ((x == x1 && x == x2) && (y > y1 && y > y2))
ret = std::min( y-y1, y -y2);
else if( (x == x1 && x == x2) && (y < y1 && y < y2))
ret = -std::min(y1 - y, y2 - y);
@ -329,7 +355,7 @@ enum class Formats {
};
// This struct serves as a namespace. The only difference is that it can be
// used in friend declarations.
// used in friend declarations and can be aliased at class scope.
struct ShapeLike {
template<class RawShape>
@ -361,6 +387,51 @@ struct ShapeLike {
return create<RawShape>(contour, {});
}
template<class RawShape>
static THolesContainer<RawShape>& holes(RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static const THolesContainer<RawShape>& holes(const RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static TContour<RawShape>& getHole(RawShape& sh, unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static const TContour<RawShape>& getHole(const RawShape& sh,
unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static size_t holeCount(const RawShape& sh)
{
return holes(sh).size();
}
template<class RawShape>
static TContour<RawShape>& getContour(RawShape& sh)
{
return sh;
}
template<class RawShape>
static const TContour<RawShape>& getContour(const RawShape& sh)
{
return sh;
}
// Optional, does nothing by default
template<class RawShape>
static void reserve(RawShape& /*sh*/, size_t /*vertex_capacity*/) {}
@ -402,7 +473,7 @@ struct ShapeLike {
}
template<Formats, class RawShape>
static std::string serialize(const RawShape& /*sh*/, double scale=1)
static std::string serialize(const RawShape& /*sh*/, double /*scale*/=1)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::serialize() unimplemented!");
@ -498,51 +569,6 @@ struct ShapeLike {
return RawShape();
}
template<class RawShape>
static THolesContainer<RawShape>& holes(RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static const THolesContainer<RawShape>& holes(const RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static TContour<RawShape>& getHole(RawShape& sh, unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static const TContour<RawShape>& getHole(const RawShape& sh,
unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static size_t holeCount(const RawShape& sh)
{
return holes(sh).size();
}
template<class RawShape>
static TContour<RawShape>& getContour(RawShape& sh)
{
return sh;
}
template<class RawShape>
static const TContour<RawShape>& getContour(const RawShape& sh)
{
return sh;
}
template<class RawShape>
static void rotate(RawShape& /*sh*/, const Radians& /*rads*/)
{
@ -614,6 +640,22 @@ struct ShapeLike {
return box;
}
template<class RawShape>
static inline _Box<TPoint<RawShape>> boundingBox(
const _Circle<TPoint<RawShape>>& circ)
{
using Coord = TCoord<TPoint<RawShape>>;
TPoint<RawShape> pmin = {
static_cast<Coord>(getX(circ.center()) - circ.radius()),
static_cast<Coord>(getY(circ.center()) - circ.radius()) };
TPoint<RawShape> pmax = {
static_cast<Coord>(getX(circ.center()) + circ.radius()),
static_cast<Coord>(getY(circ.center()) + circ.radius()) };
return {pmin, pmax};
}
template<class RawShape>
static inline double area(const _Box<TPoint<RawShape>>& box)
{
@ -621,14 +663,74 @@ struct ShapeLike {
}
template<class RawShape>
static double area(const Shapes<RawShape>& shapes)
static inline double area(const _Circle<TPoint<RawShape>>& circ)
{
double ret = 0;
std::accumulate(shapes.first(), shapes.end(),
[](const RawShape& a, const RawShape& b) {
return area(a) + area(b);
return circ.area();
}
template<class RawShape>
static inline double area(const Shapes<RawShape>& shapes)
{
return std::accumulate(shapes.begin(), shapes.end(), 0.0,
[](double a, const RawShape& b) {
return a += area(b);
});
return ret;
}
template<class RawShape>
static bool isInside(const TPoint<RawShape>& point,
const _Circle<TPoint<RawShape>>& circ)
{
return PointLike::distance(point, circ.center()) < circ.radius();
}
template<class RawShape>
static bool isInside(const TPoint<RawShape>& point,
const _Box<TPoint<RawShape>>& box)
{
auto px = getX(point);
auto py = getY(point);
auto minx = getX(box.minCorner());
auto miny = getY(box.minCorner());
auto maxx = getX(box.maxCorner());
auto maxy = getY(box.maxCorner());
return px > minx && px < maxx && py > miny && py < maxy;
}
template<class RawShape>
static bool isInside(const RawShape& sh,
const _Circle<TPoint<RawShape>>& circ)
{
return std::all_of(cbegin(sh), cend(sh),
[&circ](const TPoint<RawShape>& p){
return isInside<RawShape>(p, circ);
});
}
template<class RawShape>
static bool isInside(const _Box<TPoint<RawShape>>& box,
const _Circle<TPoint<RawShape>>& circ)
{
return isInside<RawShape>(box.minCorner(), circ) &&
isInside<RawShape>(box.maxCorner(), circ);
}
template<class RawShape>
static bool isInside(const _Box<TPoint<RawShape>>& ibb,
const _Box<TPoint<RawShape>>& box)
{
auto iminX = getX(ibb.minCorner());
auto imaxX = getX(ibb.maxCorner());
auto iminY = getY(ibb.minCorner());
auto imaxY = getY(ibb.maxCorner());
auto minX = getX(box.minCorner());
auto maxX = getX(box.maxCorner());
auto minY = getY(box.minCorner());
auto maxY = getY(box.maxCorner());
return iminX > minX && imaxX < maxX && iminY > minY && imaxY < maxY;
}
template<class RawShape> // Potential O(1) implementation may exist

View File

@ -3,7 +3,9 @@
#include "geometry_traits.hpp"
#include <algorithm>
#include <functional>
#include <vector>
#include <iterator>
namespace libnest2d {
@ -23,64 +25,22 @@ struct Nfp {
template<class RawShape>
using Shapes = typename ShapeLike::Shapes<RawShape>;
/// Minkowski addition (not used yet)
/**
* Merge a bunch of polygons with the specified additional polygon.
*
* \tparam RawShape the Polygon data type.
* \param shc The pile of polygons that will be unified with sh.
* \param sh A single polygon to unify with shc.
*
* \return A set of polygons that is the union of the input polygons. Note that
* mostly it will be a set containing only one big polygon but if the input
* polygons are disjuct than the resulting set will contain more polygons.
*/
template<class RawShape>
static RawShape minkowskiDiff(const RawShape& sh, const RawShape& cother)
static Shapes<RawShape> merge(const Shapes<RawShape>& /*shc*/)
{
using Vertex = TPoint<RawShape>;
//using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
using sl = ShapeLike;
using std::signbit;
// Copy the orbiter (controur only), we will have to work on it
RawShape orbiter = sl::create(sl::getContour(cother));
// Make the orbiter reverse oriented
for(auto &v : sl::getContour(orbiter)) v = -v;
// An egde with additional data for marking it
struct MarkedEdge { Edge e; Radians turn_angle; bool is_turning_point; };
// Container for marked edges
using EdgeList = std::vector<MarkedEdge>;
EdgeList A, B;
auto fillEdgeList = [](EdgeList& L, const RawShape& poly) {
L.reserve(sl::contourVertexCount(poly));
auto it = sl::cbegin(poly);
auto nextit = std::next(it);
L.emplace_back({Edge(*it, *nextit), 0, false});
it++; nextit++;
while(nextit != sl::cend(poly)) {
Edge e(*it, *nextit);
auto& L_prev = L.back();
auto phi = L_prev.e.angleToXaxis();
auto phi_prev = e.angleToXaxis();
auto turn_angle = phi-phi_prev;
if(turn_angle > Pi) turn_angle -= 2*Pi;
L.emplace_back({
e,
turn_angle,
signbit(turn_angle) != signbit(L_prev.turn_angle)
});
it++; nextit++;
}
L.front().turn_angle = L.front().e.angleToXaxis() -
L.back().e.angleToXaxis();
if(L.front().turn_angle > Pi) L.front().turn_angle -= 2*Pi;
};
fillEdgeList(A, sh);
fillEdgeList(B, orbiter);
return sh;
static_assert(always_false<RawShape>::value,
"Nfp::merge(shapes, shape) unimplemented!");
}
/**
@ -95,10 +55,12 @@ static RawShape minkowskiDiff(const RawShape& sh, const RawShape& cother)
* polygons are disjuct than the resulting set will contain more polygons.
*/
template<class RawShape>
static Shapes<RawShape> merge(const Shapes<RawShape>& shc, const RawShape& sh)
static Shapes<RawShape> merge(const Shapes<RawShape>& shc,
const RawShape& sh)
{
static_assert(always_false<RawShape>::value,
"Nfp::merge(shapes, shape) unimplemented!");
auto m = merge(shc);
m.push_back(sh);
return merge(m);
}
/**
@ -139,16 +101,20 @@ template<class RawShape>
static TPoint<RawShape> rightmostUpVertex(const RawShape& sh)
{
// find min x and min y vertex
// find max x and max y vertex
auto it = std::max_element(ShapeLike::cbegin(sh), ShapeLike::cend(sh),
_vsort<RawShape>);
return *it;
}
template<class RawShape>
using NfpResult = std::pair<RawShape, TPoint<RawShape>>;
/// Helper function to get the NFP
template<NfpLevel nfptype, class RawShape>
static RawShape noFitPolygon(const RawShape& sh, const RawShape& other)
static NfpResult<RawShape> noFitPolygon(const RawShape& sh,
const RawShape& other)
{
NfpImpl<RawShape, nfptype> nfp;
return nfp(sh, other);
@ -167,44 +133,46 @@ static RawShape noFitPolygon(const RawShape& sh, const RawShape& other)
* \tparam RawShape the Polygon data type.
* \param sh The stationary polygon
* \param cother The orbiting polygon
* \return Returns the NFP of the two input polygons which have to be strictly
* convex. The resulting NFP is proven to be convex as well in this case.
* \return Returns a pair of the NFP and its reference vertex of the two input
* polygons which have to be strictly convex. The resulting NFP is proven to be
* convex as well in this case.
*
*/
template<class RawShape>
static RawShape nfpConvexOnly(const RawShape& sh, const RawShape& cother)
static NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
const RawShape& other)
{
using Vertex = TPoint<RawShape>; using Edge = _Segment<Vertex>;
RawShape other = cother;
// Make the other polygon counter-clockwise
std::reverse(ShapeLike::begin(other), ShapeLike::end(other));
using sl = ShapeLike;
RawShape rsh; // Final nfp placeholder
Vertex top_nfp;
std::vector<Edge> edgelist;
auto cap = ShapeLike::contourVertexCount(sh) +
ShapeLike::contourVertexCount(other);
auto cap = sl::contourVertexCount(sh) + sl::contourVertexCount(other);
// Reserve the needed memory
edgelist.reserve(cap);
ShapeLike::reserve(rsh, static_cast<unsigned long>(cap));
sl::reserve(rsh, static_cast<unsigned long>(cap));
{ // place all edges from sh into edgelist
auto first = ShapeLike::cbegin(sh);
auto next = first + 1;
auto endit = ShapeLike::cend(sh);
auto first = sl::cbegin(sh);
auto next = std::next(first);
while(next != endit) edgelist.emplace_back(*(first++), *(next++));
while(next != sl::cend(sh)) {
edgelist.emplace_back(*(first), *(next));
++first; ++next;
}
}
{ // place all edges from other into edgelist
auto first = ShapeLike::cbegin(other);
auto next = first + 1;
auto endit = ShapeLike::cend(other);
auto first = sl::cbegin(other);
auto next = std::next(first);
while(next != endit) edgelist.emplace_back(*(first++), *(next++));
while(next != sl::cend(other)) {
edgelist.emplace_back(*(next), *(first));
++first; ++next;
}
}
// Sort the edges by angle to X axis.
@ -215,10 +183,16 @@ static RawShape nfpConvexOnly(const RawShape& sh, const RawShape& cother)
});
// Add the two vertices from the first edge into the final polygon.
ShapeLike::addVertex(rsh, edgelist.front().first());
ShapeLike::addVertex(rsh, edgelist.front().second());
sl::addVertex(rsh, edgelist.front().first());
sl::addVertex(rsh, edgelist.front().second());
auto tmp = std::next(ShapeLike::begin(rsh));
// Sorting function for the nfp reference vertex search
auto& cmp = _vsort<RawShape>;
// the reference (rightmost top) vertex so far
top_nfp = *std::max_element(sl::cbegin(rsh), sl::cend(rsh), cmp );
auto tmp = std::next(sl::begin(rsh));
// Construct final nfp by placing each edge to the end of the previous
for(auto eit = std::next(edgelist.begin());
@ -226,56 +200,325 @@ static RawShape nfpConvexOnly(const RawShape& sh, const RawShape& cother)
++eit)
{
auto d = *tmp - eit->first();
auto p = eit->second() + d;
Vertex p = eit->second() + d;
ShapeLike::addVertex(rsh, p);
sl::addVertex(rsh, p);
// Set the new reference vertex
if(cmp(top_nfp, p)) top_nfp = p;
tmp = std::next(tmp);
}
// Now we have an nfp somewhere in the dark. We need to get it
// to the right position around the stationary shape.
// This is done by choosing the leftmost lowest vertex of the
// orbiting polygon to be touched with the rightmost upper
// vertex of the stationary polygon. In this configuration, the
// reference vertex of the orbiting polygon (which can be dragged around
// the nfp) will be its rightmost upper vertex that coincides with the
// rightmost upper vertex of the nfp. No proof provided other than Jonas
// Lindmark's reasoning about the reference vertex of nfp in his thesis
// ("No fit polygon problem" - section 2.1.9)
return {rsh, top_nfp};
}
// TODO: dont do this here. Cache the rmu and lmd in Item and get translate
// the nfp after this call
template<class RawShape>
static NfpResult<RawShape> nfpSimpleSimple(const RawShape& cstationary,
const RawShape& cother)
{
auto csh = sh; // Copy sh, we will sort the verices in the copy
auto& cmp = _vsort<RawShape>;
std::sort(ShapeLike::begin(csh), ShapeLike::end(csh), cmp);
std::sort(ShapeLike::begin(other), ShapeLike::end(other), cmp);
// Algorithms are from the original algorithm proposed in paper:
// https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
// leftmost lower vertex of the stationary polygon
auto& touch_sh = *(std::prev(ShapeLike::end(csh)));
// rightmost upper vertex of the orbiting polygon
auto& touch_other = *(ShapeLike::begin(other));
// /////////////////////////////////////////////////////////////////////////
// Algorithm 1: Obtaining the minkowski sum
// /////////////////////////////////////////////////////////////////////////
// Calculate the difference and move the orbiter to the touch position.
auto dtouch = touch_sh - touch_other;
auto top_other = *(std::prev(ShapeLike::end(other))) + dtouch;
// I guess this is not a full minkowski sum of the two input polygons by
// definition. This yields a subset that is compatible with the next 2
// algorithms.
// Get the righmost upper vertex of the nfp and move it to the RMU of
// the orbiter because they should coincide.
auto&& top_nfp = rightmostUpVertex(rsh);
auto dnfp = top_other - top_nfp;
std::for_each(ShapeLike::begin(rsh), ShapeLike::end(rsh),
[&dnfp](Vertex& v) { v+= dnfp; } );
using Result = NfpResult<RawShape>;
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
using sl = ShapeLike;
using std::signbit;
using std::sort;
using std::vector;
using std::ref;
using std::reference_wrapper;
return rsh;
// TODO The original algorithms expects the stationary polygon in
// counter clockwise and the orbiter in clockwise order.
// So for preventing any further complication, I will make the input
// the way it should be, than make my way around the orientations.
// Reverse the stationary contour to counter clockwise
auto stcont = sl::getContour(cstationary);
std::reverse(stcont.begin(), stcont.end());
RawShape stationary;
sl::getContour(stationary) = stcont;
// Reverse the orbiter contour to counter clockwise
auto orbcont = sl::getContour(cother);
std::reverse(orbcont.begin(), orbcont.end());
// Copy the orbiter (contour only), we will have to work on it
RawShape orbiter;
sl::getContour(orbiter) = orbcont;
// Step 1: Make the orbiter reverse oriented
for(auto &v : sl::getContour(orbiter)) v = -v;
// An egde with additional data for marking it
struct MarkedEdge {
Edge e; Radians turn_angle = 0; bool is_turning_point = false;
MarkedEdge() = default;
MarkedEdge(const Edge& ed, Radians ta, bool tp):
e(ed), turn_angle(ta), is_turning_point(tp) {}
};
// Container for marked edges
using EdgeList = vector<MarkedEdge>;
EdgeList A, B;
// This is how an edge list is created from the polygons
auto fillEdgeList = [](EdgeList& L, const RawShape& poly, int dir) {
L.reserve(sl::contourVertexCount(poly));
auto it = sl::cbegin(poly);
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != sl::cend(poly)) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
auto getTurnAngle = [](const Edge& e1, const Edge& e2) {
auto phi = e1.angleToXaxis();
auto phi_prev = e2.angleToXaxis();
auto TwoPi = 2.0*Pi;
if(phi > Pi) phi -= TwoPi;
if(phi_prev > Pi) phi_prev -= TwoPi;
auto turn_angle = phi-phi_prev;
if(turn_angle > Pi) turn_angle -= TwoPi;
return phi-phi_prev;
};
if(dir > 0) {
auto eit = L.begin();
auto enext = std::next(eit);
eit->turn_angle = getTurnAngle(L.front().e, L.back().e);
while(enext != L.end()) {
enext->turn_angle = getTurnAngle( enext->e, eit->e);
enext->is_turning_point =
signbit(enext->turn_angle) != signbit(eit->turn_angle);
++eit; ++enext;
}
L.front().is_turning_point = signbit(L.front().turn_angle) !=
signbit(L.back().turn_angle);
} else {
std::cout << L.size() << std::endl;
auto eit = L.rbegin();
auto enext = std::next(eit);
eit->turn_angle = getTurnAngle(L.back().e, L.front().e);
while(enext != L.rend()) {
enext->turn_angle = getTurnAngle(enext->e, eit->e);
enext->is_turning_point =
signbit(enext->turn_angle) != signbit(eit->turn_angle);
std::cout << enext->is_turning_point << " " << enext->turn_angle << std::endl;
++eit; ++enext;
}
L.back().is_turning_point = signbit(L.back().turn_angle) !=
signbit(L.front().turn_angle);
}
};
// Step 2: Fill the edgelists
fillEdgeList(A, stationary, 1);
fillEdgeList(B, orbiter, -1);
// A reference to a marked edge that also knows its container
struct MarkedEdgeRef {
reference_wrapper<MarkedEdge> eref;
reference_wrapper<vector<MarkedEdgeRef>> container;
Coord dir = 1; // Direction modifier
inline Radians angleX() const { return eref.get().e.angleToXaxis(); }
inline const Edge& edge() const { return eref.get().e; }
inline Edge& edge() { return eref.get().e; }
inline bool isTurningPoint() const {
return eref.get().is_turning_point;
}
inline bool isFrom(const vector<MarkedEdgeRef>& cont ) {
return &(container.get()) == &cont;
}
inline bool eq(const MarkedEdgeRef& mr) {
return &(eref.get()) == &(mr.eref.get());
}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec):
eref(er), container(ec), dir(1) {}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec,
Coord d):
eref(er), container(ec), dir(d) {}
};
using EdgeRefList = vector<MarkedEdgeRef>;
// Comparing two marked edges
auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) {
return e1.angleX() < e2.angleX();
};
EdgeRefList Aref, Bref; // We create containers for the references
Aref.reserve(A.size()); Bref.reserve(B.size());
// Fill reference container for the stationary polygon
std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) {
Aref.emplace_back( ref(me), ref(Aref) );
});
// Fill reference container for the orbiting polygon
std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) {
Bref.emplace_back( ref(me), ref(Bref) );
});
struct EdgeGroup { typename EdgeRefList::const_iterator first, last; };
auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure
(const EdgeGroup& Q, const EdgeGroup& R, bool positive)
{
// Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)"
// Sort the containers of edge references and merge them.
// Q could be sorted only once and be reused here but we would still
// need to merge it with sorted(R).
EdgeRefList merged;
EdgeRefList S, seq;
merged.reserve((Q.last - Q.first) + (R.last - R.first));
merged.insert(merged.end(), Q.first, Q.last);
merged.insert(merged.end(), R.first, R.last);
sort(merged.begin(), merged.end(), sortfn);
// Step 2 "set i = 1, k = 1, direction = 1, s1 = q1"
// we dont use i, instead, q is an iterator into Q. k would be an index
// into the merged sequence but we use "it" as an iterator for that
// here we obtain references for the containers for later comparisons
const auto& Rcont = R.first->container.get();
const auto& Qcont = Q.first->container.get();
// Set the intial direction
Coord dir = positive? 1 : -1;
// roughly i = 1 (so q = Q.first) and s1 = q1 so S[0] = q;
auto q = Q.first;
S.push_back(*q++);
// Roughly step 3
while(q != Q.last) {
auto it = merged.begin();
while(it != merged.end() && !(it->eq(*(Q.first))) ) {
if(it->isFrom(Rcont)) {
auto s = *it;
s.dir = dir;
S.push_back(s);
}
if(it->eq(*q)) {
S.push_back(*q);
if(it->isTurningPoint()) dir = -dir;
if(q != Q.first) it += dir;
}
else it += dir;
}
++q; // "Set i = i + 1"
}
// Step 4:
// "Let starting edge r1 be in position si in sequence"
// whaaat? I guess this means the following:
S[0] = *R.first;
auto it = S.begin();
// "Set j = 1, next = 2, direction = 1, seq1 = si"
// we dont use j, seq is expanded dynamically.
dir = 1; auto next = std::next(R.first);
// Step 5:
// "If all si edges have been allocated to seqj" should mean that
// we loop until seq has equal size with S
while(seq.size() < S.size()) {
++it; if(it == S.end()) it = S.begin();
if(it->isFrom(Qcont)) {
seq.push_back(*it); // "If si is from Q, j = j + 1, seqj = si"
// "If si is a turning point in Q,
// direction = - direction, next = next + direction"
if(it->isTurningPoint()) { dir = -dir; next += dir; }
}
if(it->eq(*next) && dir == next->dir) { // "If si = direction.rnext"
// "j = j + 1, seqj = si, next = next + direction"
seq.push_back(*it); next += dir;
}
}
return seq;
};
EdgeGroup R{ Bref.begin(), Bref.begin() }, Q{ Aref.begin(), Aref.end() };
auto it = Bref.begin();
bool orientation = true;
EdgeRefList seqlist;
seqlist.reserve(3*(Aref.size() + Bref.size()));
while(it != Bref.end()) // This is step 3 and step 4 in one loop
if(it->isTurningPoint()) {
R = {R.last, it++};
auto seq = mink(Q, R, orientation);
// TODO step 6 (should be 5 shouldn't it?): linking edges from A
// I don't get this step
seqlist.insert(seqlist.end(), seq.begin(), seq.end());
orientation = !orientation;
} else ++it;
if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true);
// /////////////////////////////////////////////////////////////////////////
// Algorithm 2: breaking Minkowski sums into track line trips
// /////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////
// Algorithm 3: finding the boundary of the NFP from track line trips
// /////////////////////////////////////////////////////////////////////////
return Result(stationary, Vertex());
}
// Specializable NFP implementation class. Specialize it if you have a faster
// or better NFP implementation
template<class RawShape, NfpLevel nfptype>
struct NfpImpl {
RawShape operator()(const RawShape& sh, const RawShape& other) {
NfpResult<RawShape> operator()(const RawShape& sh, const RawShape& other)
{
static_assert(nfptype == NfpLevel::CONVEX_ONLY,
"Nfp::noFitPolygon() unimplemented!");

View File

@ -9,6 +9,7 @@
#include <functional>
#include "geometry_traits.hpp"
#include "optimizer.hpp"
namespace libnest2d {
@ -27,6 +28,7 @@ class _Item {
using Coord = TCoord<TPoint<RawShape>>;
using Vertex = TPoint<RawShape>;
using Box = _Box<Vertex>;
using sl = ShapeLike;
// The original shape that gets encapsulated.
RawShape sh_;
@ -51,11 +53,18 @@ class _Item {
enum class Convexity: char {
UNCHECKED,
TRUE,
FALSE
C_TRUE,
C_FALSE
};
mutable Convexity convexity_ = Convexity::UNCHECKED;
mutable TVertexConstIterator<RawShape> rmt_; // rightmost top vertex
mutable TVertexConstIterator<RawShape> lmb_; // leftmost bottom vertex
mutable bool rmt_valid_ = false, lmb_valid_ = false;
mutable struct BBCache {
Box bb; bool valid; Vertex tr;
BBCache(): valid(false), tr(0, 0) {}
} bb_cache_;
public:
@ -104,15 +113,15 @@ public:
* @param il The initializer list of vertices.
*/
inline _Item(const std::initializer_list< Vertex >& il):
sh_(ShapeLike::create<RawShape>(il)) {}
sh_(sl::create<RawShape>(il)) {}
inline _Item(const TContour<RawShape>& contour,
const THolesContainer<RawShape>& holes = {}):
sh_(ShapeLike::create<RawShape>(contour, holes)) {}
sh_(sl::create<RawShape>(contour, holes)) {}
inline _Item(TContour<RawShape>&& contour,
THolesContainer<RawShape>&& holes):
sh_(ShapeLike::create<RawShape>(std::move(contour),
sh_(sl::create<RawShape>(std::move(contour),
std::move(holes))) {}
/**
@ -122,31 +131,31 @@ public:
*/
inline std::string toString() const
{
return ShapeLike::toString(sh_);
return sl::toString(sh_);
}
/// Iterator tho the first contour vertex in the polygon.
inline Iterator begin() const
{
return ShapeLike::cbegin(sh_);
return sl::cbegin(sh_);
}
/// Alias to begin()
inline Iterator cbegin() const
{
return ShapeLike::cbegin(sh_);
return sl::cbegin(sh_);
}
/// Iterator to the last contour vertex.
inline Iterator end() const
{
return ShapeLike::cend(sh_);
return sl::cend(sh_);
}
/// Alias to end()
inline Iterator cend() const
{
return ShapeLike::cend(sh_);
return sl::cend(sh_);
}
/**
@ -161,7 +170,7 @@ public:
*/
inline Vertex vertex(unsigned long idx) const
{
return ShapeLike::vertex(sh_, idx);
return sl::vertex(sh_, idx);
}
/**
@ -176,7 +185,7 @@ public:
inline void setVertex(unsigned long idx, const Vertex& v )
{
invalidateCache();
ShapeLike::vertex(sh_, idx) = v;
sl::vertex(sh_, idx) = v;
}
/**
@ -191,7 +200,7 @@ public:
double ret ;
if(area_cache_valid_) ret = area_cache_;
else {
ret = ShapeLike::area(offsettedShape());
ret = sl::area(offsettedShape());
area_cache_ = ret;
area_cache_valid_ = true;
}
@ -203,17 +212,17 @@ public:
switch(convexity_) {
case Convexity::UNCHECKED:
ret = ShapeLike::isConvex<RawShape>(ShapeLike::getContour(transformedShape()));
convexity_ = ret? Convexity::TRUE : Convexity::FALSE;
ret = sl::isConvex<RawShape>(sl::getContour(transformedShape()));
convexity_ = ret? Convexity::C_TRUE : Convexity::C_FALSE;
break;
case Convexity::TRUE: ret = true; break;
case Convexity::FALSE:;
case Convexity::C_TRUE: ret = true; break;
case Convexity::C_FALSE:;
}
return ret;
}
inline bool isHoleConvex(unsigned holeidx) const {
inline bool isHoleConvex(unsigned /*holeidx*/) const {
return false;
}
@ -223,11 +232,11 @@ public:
/// The number of the outer ring vertices.
inline size_t vertexCount() const {
return ShapeLike::contourVertexCount(sh_);
return sl::contourVertexCount(sh_);
}
inline size_t holeCount() const {
return ShapeLike::holeCount(sh_);
return sl::holeCount(sh_);
}
/**
@ -235,36 +244,39 @@ public:
* @param p
* @return
*/
inline bool isPointInside(const Vertex& p)
inline bool isPointInside(const Vertex& p) const
{
return ShapeLike::isInside(p, sh_);
return sl::isInside(p, transformedShape());
}
inline bool isInside(const _Item& sh) const
{
return ShapeLike::isInside(transformedShape(), sh.transformedShape());
return sl::isInside(transformedShape(), sh.transformedShape());
}
inline bool isInside(const _Box<TPoint<RawShape>>& box);
inline bool isInside(const RawShape& sh) const
{
return sl::isInside(transformedShape(), sh);
}
inline bool isInside(const _Box<TPoint<RawShape>>& box) const;
inline bool isInside(const _Circle<TPoint<RawShape>>& box) const;
inline void translate(const Vertex& d) BP2D_NOEXCEPT
{
translation_ += d; has_translation_ = true;
tr_cache_valid_ = false;
translation(translation() + d);
}
inline void rotate(const Radians& rads) BP2D_NOEXCEPT
{
rotation_ += rads;
has_rotation_ = true;
tr_cache_valid_ = false;
rotation(rotation() + rads);
}
inline void addOffset(Coord distance) BP2D_NOEXCEPT
{
offset_distance_ = distance;
has_offset_ = true;
offset_cache_valid_ = false;
invalidateCache();
}
inline void removeOffset() BP2D_NOEXCEPT {
@ -286,6 +298,8 @@ public:
{
if(rotation_ != rot) {
rotation_ = rot; has_rotation_ = true; tr_cache_valid_ = false;
rmt_valid_ = false; lmb_valid_ = false;
bb_cache_.valid = false;
}
}
@ -293,6 +307,7 @@ public:
{
if(translation_ != tr) {
translation_ = tr; has_translation_ = true; tr_cache_valid_ = false;
bb_cache_.valid = false;
}
}
@ -301,9 +316,10 @@ public:
if(tr_cache_valid_) return tr_cache_;
RawShape cpy = offsettedShape();
if(has_rotation_) ShapeLike::rotate(cpy, rotation_);
if(has_translation_) ShapeLike::translate(cpy, translation_);
if(has_rotation_) sl::rotate(cpy, rotation_);
if(has_translation_) sl::translate(cpy, translation_);
tr_cache_ = cpy; tr_cache_valid_ = true;
rmt_valid_ = false; lmb_valid_ = false;
return tr_cache_;
}
@ -321,23 +337,53 @@ public:
inline void resetTransformation() BP2D_NOEXCEPT
{
has_translation_ = false; has_rotation_ = false; has_offset_ = false;
invalidateCache();
}
inline Box boundingBox() const {
return ShapeLike::boundingBox(transformedShape());
if(!bb_cache_.valid) {
bb_cache_.bb = sl::boundingBox(transformedShape());
bb_cache_.tr = {0, 0};
bb_cache_.valid = true;
}
auto &bb = bb_cache_.bb; auto &tr = bb_cache_.tr;
return {bb.minCorner() + tr, bb.maxCorner() + tr};
}
inline Vertex referenceVertex() const {
return rightmostTopVertex();
}
inline Vertex rightmostTopVertex() const {
if(!rmt_valid_ || !tr_cache_valid_) { // find max x and max y vertex
auto& tsh = transformedShape();
rmt_ = std::max_element(sl::cbegin(tsh), sl::cend(tsh), vsort);
rmt_valid_ = true;
}
return *rmt_;
}
inline Vertex leftmostBottomVertex() const {
if(!lmb_valid_ || !tr_cache_valid_) { // find min x and min y vertex
auto& tsh = transformedShape();
lmb_ = std::min_element(sl::cbegin(tsh), sl::cend(tsh), vsort);
lmb_valid_ = true;
}
return *lmb_;
}
//Static methods:
inline static bool intersects(const _Item& sh1, const _Item& sh2)
{
return ShapeLike::intersects(sh1.transformedShape(),
return sl::intersects(sh1.transformedShape(),
sh2.transformedShape());
}
inline static bool touches(const _Item& sh1, const _Item& sh2)
{
return ShapeLike::touches(sh1.transformedShape(),
return sl::touches(sh1.transformedShape(),
sh2.transformedShape());
}
@ -346,23 +392,35 @@ private:
inline const RawShape& offsettedShape() const {
if(has_offset_ ) {
if(offset_cache_valid_) return offset_cache_;
else {
offset_cache_ = sh_;
ShapeLike::offset(offset_cache_, offset_distance_);
sl::offset(offset_cache_, offset_distance_);
offset_cache_valid_ = true;
return offset_cache_;
}
}
return sh_;
}
inline void invalidateCache() const BP2D_NOEXCEPT
{
tr_cache_valid_ = false;
lmb_valid_ = false; rmt_valid_ = false;
area_cache_valid_ = false;
offset_cache_valid_ = false;
bb_cache_.valid = false;
convexity_ = Convexity::UNCHECKED;
}
static inline bool vsort(const Vertex& v1, const Vertex& v2)
{
Coord &&x1 = getX(v1), &&x2 = getX(v2);
Coord &&y1 = getY(v1), &&y2 = getY(v2);
auto diff = y1 - y2;
if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
return x1 < x2;
return diff < 0;
}
};
/**
@ -370,7 +428,6 @@ private:
*/
template<class RawShape>
class _Rectangle: public _Item<RawShape> {
RawShape sh_;
using _Item<RawShape>::vertex;
using TO = Orientation;
public:
@ -415,9 +472,13 @@ public:
};
template<class RawShape>
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) {
_Rectangle<RawShape> rect(box.width(), box.height());
return _Item<RawShape>::isInside(rect);
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) const {
return ShapeLike::isInside<RawShape>(boundingBox(), box);
}
template<class RawShape> inline bool
_Item<RawShape>::isInside(const _Circle<TPoint<RawShape>>& circ) const {
return ShapeLike::isInside<RawShape>(transformedShape(), circ);
}
/**
@ -874,9 +935,8 @@ private:
Radians findBestRotation(Item& item) {
opt::StopCriteria stopcr;
stopcr.stoplimit = 0.01;
stopcr.absolute_score_difference = 0.01;
stopcr.max_iterations = 10000;
stopcr.type = opt::StopLimitType::RELATIVE;
opt::TOptimizer<opt::Method::G_GENETIC> solver(stopcr);
auto orig_rot = item.rotation();
@ -910,7 +970,6 @@ private:
if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
item.removeOffset();
});
}
};

View File

@ -0,0 +1,227 @@
#ifndef METALOOP_HPP
#define METALOOP_HPP
#include "common.hpp"
#include <tuple>
#include <functional>
namespace libnest2d {
/* ************************************************************************** */
/* C++14 std::index_sequence implementation: */
/* ************************************************************************** */
/**
* \brief C++11 conformant implementation of the index_sequence type from C++14
*/
template<size_t...Ints> struct index_sequence {
using value_type = size_t;
BP2D_CONSTEXPR value_type size() const { return sizeof...(Ints); }
};
// A Help structure to generate the integer list
template<size_t...Nseq> struct genSeq;
// Recursive template to generate the list
template<size_t I, size_t...Nseq> struct genSeq<I, Nseq...> {
// Type will contain a genSeq with Nseq appended by one element
using Type = typename genSeq< I - 1, I - 1, Nseq...>::Type;
};
// Terminating recursion
template <size_t ... Nseq> struct genSeq<0, Nseq...> {
// If I is zero, Type will contain index_sequence with the fuly generated
// integer list.
using Type = index_sequence<Nseq...>;
};
/// Helper alias to make an index sequence from 0 to N
template<size_t N> using make_index_sequence = typename genSeq<N>::Type;
/// Helper alias to make an index sequence for a parameter pack
template<class...Args>
using index_sequence_for = make_index_sequence<sizeof...(Args)>;
/* ************************************************************************** */
namespace opt {
using std::forward;
using std::tuple;
using std::get;
using std::tuple_element;
/**
* @brief Helper class to be able to loop over a parameter pack's elements.
*/
class metaloop {
// The implementation is based on partial struct template specializations.
// Basically we need a template type that is callable and takes an integer
// non-type template parameter which can be used to implement recursive calls.
//
// C++11 will not allow the usage of a plain template function that is why we
// use struct with overloaded call operator. At the same time C++11 prohibits
// partial template specialization with a non type parameter such as int. We
// need to wrap that in a type (see metaloop::Int).
/*
* A helper alias to create integer values wrapped as a type. It is nessecary
* because a non type template parameter (such as int) would be prohibited in
* a partial specialization. Also for the same reason we have to use a class
* _Metaloop instead of a simple function as a functor. A function cannot be
* partially specialized in a way that is neccesary for this trick.
*/
template<int N> using Int = std::integral_constant<int, N>;
/*
* Helper class to implement in-place functors.
*
* We want to be able to use inline functors like a lambda to keep the code
* as clear as possible.
*/
template<int N, class Fn> class MapFn {
Fn&& fn_;
public:
// It takes the real functor that can be specified in-place but only
// with C++14 because the second parameter's type will depend on the
// type of the parameter pack element that is processed. In C++14 we can
// specify this second parameter type as auto in the lamda parameter list.
inline MapFn(Fn&& fn): fn_(forward<Fn>(fn)) {}
template<class T> void operator ()(T&& pack_element) {
// We provide the index as the first parameter and the pack (or tuple)
// element as the second parameter to the functor.
fn_(N, forward<T>(pack_element));
}
};
/*
* Implementation of the template loop trick.
* We create a mechanism for looping over a parameter pack in compile time.
* \tparam Idx is the loop index which will be decremented at each recursion.
* \tparam Args The parameter pack that will be processed.
*
*/
template <typename Idx, class...Args>
class _MetaLoop {};
// Implementation for the first element of Args...
template <class...Args>
class _MetaLoop<Int<0>, Args...> {
public:
const static BP2D_CONSTEXPR int N = 0;
const static BP2D_CONSTEXPR int ARGNUM = sizeof...(Args)-1;
template<class Tup, class Fn>
void run( Tup&& valtup, Fn&& fn) {
MapFn<ARGNUM-N, Fn> {forward<Fn>(fn)} (get<ARGNUM-N>(valtup));
}
};
// Implementation for the N-th element of Args...
template <int N, class...Args>
class _MetaLoop<Int<N>, Args...> {
public:
const static BP2D_CONSTEXPR int ARGNUM = sizeof...(Args)-1;
template<class Tup, class Fn>
void run(Tup&& valtup, Fn&& fn) {
MapFn<ARGNUM-N, Fn> {forward<Fn>(fn)} (std::get<ARGNUM-N>(valtup));
// Recursive call to process the next element of Args
_MetaLoop<Int<N-1>, Args...> ().run(forward<Tup>(valtup),
forward<Fn>(fn));
}
};
/*
* Instantiation: We must instantiate the template with the last index because
* the generalized version calls the decremented instantiations recursively.
* Once the instantiation with the first index is called, the terminating
* version of run is called which does not call itself anymore.
*
* If you are utterly annoyed, at least you have learned a super crazy
* functional metaprogramming pattern.
*/
template<class...Args>
using MetaLoop = _MetaLoop<Int<sizeof...(Args)-1>, Args...>;
public:
/**
* \brief The final usable function template.
*
* This is similar to what varags was on C but in compile time C++11.
* You can call:
* apply(<the mapping function>, <arbitrary number of arguments of any type>);
* For example:
*
* struct mapfunc {
* template<class T> void operator()(int N, T&& element) {
* std::cout << "The value of the parameter "<< N <<": "
* << element << std::endl;
* }
* };
*
* apply(mapfunc(), 'a', 10, 151.545);
*
* C++14:
* apply([](int N, auto&& element){
* std::cout << "The value of the parameter "<< N <<": "
* << element << std::endl;
* }, 'a', 10, 151.545);
*
* This yields the output:
* The value of the parameter 0: a
* The value of the parameter 1: 10
* The value of the parameter 2: 151.545
*
* As an addition, the function can be called with a tuple as the second
* parameter holding the arguments instead of a parameter pack.
*
*/
template<class...Args, class Fn>
inline static void apply(Fn&& fn, Args&&...args) {
MetaLoop<Args...>().run(tuple<Args&&...>(forward<Args>(args)...),
forward<Fn>(fn));
}
/// The version of apply with a tuple rvalue reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, tuple<Args...>&& tup) {
MetaLoop<Args...>().run(std::move(tup), forward<Fn>(fn));
}
/// The version of apply with a tuple lvalue reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, tuple<Args...>& tup) {
MetaLoop<Args...>().run(tup, forward<Fn>(fn));
}
/// The version of apply with a tuple const reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, const tuple<Args...>& tup) {
MetaLoop<Args...>().run(tup, forward<Fn>(fn));
}
/**
* Call a function with its arguments encapsualted in a tuple.
*/
template<class Fn, class Tup, std::size_t...Is>
inline static auto
callFunWithTuple(Fn&& fn, Tup&& tup, index_sequence<Is...>) ->
decltype(fn(std::get<Is>(tup)...))
{
return fn(std::get<Is>(tup)...);
}
};
}
}
#endif // METALOOP_HPP

View File

@ -10,8 +10,7 @@ namespace libnest2d { namespace opt {
using std::forward;
using std::tuple;
using std::get;
using std::tuple_element;
using std::make_tuple;
/// A Type trait for upper and lower limit of a numeric type.
template<class T, class B = void >
@ -51,176 +50,7 @@ inline Bound<T> bound(const T& min, const T& max) { return Bound<T>(min, max); }
template<class...Args> using Input = tuple<Args...>;
template<class...Args>
inline tuple<Args...> initvals(Args...args) { return std::make_tuple(args...); }
/**
* @brief Helper class to be able to loop over a parameter pack's elements.
*/
class metaloop {
// The implementation is based on partial struct template specializations.
// Basically we need a template type that is callable and takes an integer
// non-type template parameter which can be used to implement recursive calls.
//
// C++11 will not allow the usage of a plain template function that is why we
// use struct with overloaded call operator. At the same time C++11 prohibits
// partial template specialization with a non type parameter such as int. We
// need to wrap that in a type (see metaloop::Int).
/*
* A helper alias to create integer values wrapped as a type. It is nessecary
* because a non type template parameter (such as int) would be prohibited in
* a partial specialization. Also for the same reason we have to use a class
* _Metaloop instead of a simple function as a functor. A function cannot be
* partially specialized in a way that is neccesary for this trick.
*/
template<int N> using Int = std::integral_constant<int, N>;
/*
* Helper class to implement in-place functors.
*
* We want to be able to use inline functors like a lambda to keep the code
* as clear as possible.
*/
template<int N, class Fn> class MapFn {
Fn&& fn_;
public:
// It takes the real functor that can be specified in-place but only
// with C++14 because the second parameter's type will depend on the
// type of the parameter pack element that is processed. In C++14 we can
// specify this second parameter type as auto in the lamda parameter list.
inline MapFn(Fn&& fn): fn_(forward<Fn>(fn)) {}
template<class T> void operator ()(T&& pack_element) {
// We provide the index as the first parameter and the pack (or tuple)
// element as the second parameter to the functor.
fn_(N, forward<T>(pack_element));
}
};
/*
* Implementation of the template loop trick.
* We create a mechanism for looping over a parameter pack in compile time.
* \tparam Idx is the loop index which will be decremented at each recursion.
* \tparam Args The parameter pack that will be processed.
*
*/
template <typename Idx, class...Args>
class _MetaLoop {};
// Implementation for the first element of Args...
template <class...Args>
class _MetaLoop<Int<0>, Args...> {
public:
const static BP2D_CONSTEXPR int N = 0;
const static BP2D_CONSTEXPR int ARGNUM = sizeof...(Args)-1;
template<class Tup, class Fn>
void run( Tup&& valtup, Fn&& fn) {
MapFn<ARGNUM-N, Fn> {forward<Fn>(fn)} (get<ARGNUM-N>(valtup));
}
};
// Implementation for the N-th element of Args...
template <int N, class...Args>
class _MetaLoop<Int<N>, Args...> {
public:
const static BP2D_CONSTEXPR int ARGNUM = sizeof...(Args)-1;
template<class Tup, class Fn>
void run(Tup&& valtup, Fn&& fn) {
MapFn<ARGNUM-N, Fn> {forward<Fn>(fn)} (std::get<ARGNUM-N>(valtup));
// Recursive call to process the next element of Args
_MetaLoop<Int<N-1>, Args...> ().run(forward<Tup>(valtup),
forward<Fn>(fn));
}
};
/*
* Instantiation: We must instantiate the template with the last index because
* the generalized version calls the decremented instantiations recursively.
* Once the instantiation with the first index is called, the terminating
* version of run is called which does not call itself anymore.
*
* If you are utterly annoyed, at least you have learned a super crazy
* functional metaprogramming pattern.
*/
template<class...Args>
using MetaLoop = _MetaLoop<Int<sizeof...(Args)-1>, Args...>;
public:
/**
* \brief The final usable function template.
*
* This is similar to what varags was on C but in compile time C++11.
* You can call:
* apply(<the mapping function>, <arbitrary number of arguments of any type>);
* For example:
*
* struct mapfunc {
* template<class T> void operator()(int N, T&& element) {
* std::cout << "The value of the parameter "<< N <<": "
* << element << std::endl;
* }
* };
*
* apply(mapfunc(), 'a', 10, 151.545);
*
* C++14:
* apply([](int N, auto&& element){
* std::cout << "The value of the parameter "<< N <<": "
* << element << std::endl;
* }, 'a', 10, 151.545);
*
* This yields the output:
* The value of the parameter 0: a
* The value of the parameter 1: 10
* The value of the parameter 2: 151.545
*
* As an addition, the function can be called with a tuple as the second
* parameter holding the arguments instead of a parameter pack.
*
*/
template<class...Args, class Fn>
inline static void apply(Fn&& fn, Args&&...args) {
MetaLoop<Args...>().run(tuple<Args&&...>(forward<Args>(args)...),
forward<Fn>(fn));
}
/// The version of apply with a tuple rvalue reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, tuple<Args...>&& tup) {
MetaLoop<Args...>().run(std::move(tup), forward<Fn>(fn));
}
/// The version of apply with a tuple lvalue reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, tuple<Args...>& tup) {
MetaLoop<Args...>().run(tup, forward<Fn>(fn));
}
/// The version of apply with a tuple const reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, const tuple<Args...>& tup) {
MetaLoop<Args...>().run(tup, forward<Fn>(fn));
}
/**
* Call a function with its arguments encapsualted in a tuple.
*/
template<class Fn, class Tup, std::size_t...Is>
inline static auto
callFunWithTuple(Fn&& fn, Tup&& tup, index_sequence<Is...>) ->
decltype(fn(std::get<Is>(tup)...))
{
return fn(std::get<Is>(tup)...);
}
};
inline tuple<Args...> initvals(Args...args) { return make_tuple(args...); }
/**
* @brief Specific optimization methods for which a default optimizer
@ -257,29 +87,20 @@ enum ResultCodes {
template<class...Args>
struct Result {
ResultCodes resultcode;
std::tuple<Args...> optimum;
tuple<Args...> optimum;
double score;
};
/**
* @brief The stop limit can be specified as the absolute error or as the
* relative error, just like in nlopt.
*/
enum class StopLimitType {
ABSOLUTE,
RELATIVE
};
/**
* @brief A type for specifying the stop criteria.
*/
struct StopCriteria {
/// Relative or absolute termination error
StopLimitType type = StopLimitType::RELATIVE;
/// If the absolute value difference between two scores.
double absolute_score_difference = std::nan("");
/// The error value that is interpredted depending on the type property.
double stoplimit = 0.0001;
/// If the relative value difference between two scores.
double relative_score_difference = std::nan("");
unsigned max_iterations = 0;
};
@ -310,11 +131,11 @@ public:
* \return Returns a Result<Args...> structure.
* An example call would be:
* auto result = opt.optimize_min(
* [](std::tuple<double> x) // object function
* [](tuple<double> x) // object function
* {
* return std::pow(std::get<0>(x), 2);
* },
* std::make_tuple(-0.5), // initial value
* make_tuple(-0.5), // initial value
* {-1.0, 1.0} // search space bounds
* );
*/
@ -390,10 +211,14 @@ public:
static_assert(always_false<T>::value, "Optimizer unimplemented!");
}
DummyOptimizer(const StopCriteria&) {
static_assert(always_false<T>::value, "Optimizer unimplemented!");
}
template<class Func, class...Args>
Result<Args...> optimize(Func&& func,
std::tuple<Args...> initvals,
Bound<Args>... args)
Result<Args...> optimize(Func&& /*func*/,
tuple<Args...> /*initvals*/,
Bound<Args>... /*args*/)
{
return Result<Args...>();
}

View File

@ -1,15 +1,25 @@
#ifndef NLOPT_BOILERPLATE_HPP
#define NLOPT_BOILERPLATE_HPP
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <nlopt.hpp>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <libnest2d/optimizer.hpp>
#include <cassert>
#include "libnest2d/metaloop.hpp"
#include <utility>
namespace libnest2d { namespace opt {
nlopt::algorithm method2nloptAlg(Method m) {
inline nlopt::algorithm method2nloptAlg(Method m) {
switch(m) {
case Method::L_SIMPLEX: return nlopt::LN_NELDERMEAD;
@ -87,7 +97,7 @@ protected:
template<class Fn, class...Args>
static double optfunc(const std::vector<double>& params,
std::vector<double>& grad,
std::vector<double>& /*grad*/,
void *data)
{
auto fnptr = static_cast<remove_ref_t<Fn>*>(data);
@ -132,12 +142,10 @@ protected:
default: ;
}
switch(this->stopcr_.type) {
case StopLimitType::ABSOLUTE:
opt_.set_ftol_abs(stopcr_.stoplimit); break;
case StopLimitType::RELATIVE:
opt_.set_ftol_rel(stopcr_.stoplimit); break;
}
auto abs_diff = stopcr_.absolute_score_difference;
auto rel_diff = stopcr_.relative_score_difference;
if(!std::isnan(abs_diff)) opt_.set_ftol_abs(abs_diff);
if(!std::isnan(rel_diff)) opt_.set_ftol_rel(rel_diff);
if(this->stopcr_.max_iterations > 0)
opt_.set_maxeval(this->stopcr_.max_iterations );

View File

@ -6,6 +6,10 @@
#endif
#include "placer_boilerplate.hpp"
#include "../geometry_traits_nfp.hpp"
#include "libnest2d/optimizer.hpp"
#include <cassert>
#include "tools/svgtools.hpp"
namespace libnest2d { namespace strategies {
@ -20,15 +24,60 @@ struct NfpPConfig {
TOP_RIGHT,
};
/// Which angles to try out for better results
/// Which angles to try out for better results.
std::vector<Radians> rotations;
/// Where to align the resulting packed pile
/// Where to align the resulting packed pile.
Alignment alignment;
/// Where to start putting objects in the bin.
Alignment starting_point;
std::function<double(const Nfp::Shapes<RawShape>&, double, double, double)>
/**
* @brief A function object representing the fitting function in the
* placement optimization process. (Optional)
*
* This is the most versatile tool to configure the placer. The fitting
* function is evaluated many times when a new item is being placed into the
* bin. The output should be a rated score of the new item's position.
*
* This is not a mandatory option as there is a default fitting function
* that will optimize for the best pack efficiency. With a custom fitting
* function you can e.g. influence the shape of the arranged pile.
*
* \param shapes The first parameter is a container with all the placed
* polygons excluding the current candidate. You can calculate a bounding
* box or convex hull on this pile of polygons without the candidate item
* or push back the candidate item into the container and then calculate
* some features.
*
* \param item The second parameter is the candidate item.
*
* \param occupied_area The third parameter is the sum of areas of the
* items in the first parameter so you don't have to iterate through them
* if you only need their area.
*
* \param norm A norming factor for physical dimensions. E.g. if your score
* is the distance between the item and the bin center, you should divide
* that distance with the norming factor. If the score is an area than
* divide it with the square of the norming factor. Imagine it as a unit of
* distance.
*
* \param penality The fifth parameter is the amount of minimum penality if
* the arranged pile would't fit into the bin. You can use the wouldFit()
* function to check this. Note that the pile can be outside the bin's
* boundaries while the placement algorithm is running. Your job is only to
* check if the pile could be translated into a position in the bin where
* all the items would be inside. For a box shaped bin you can use the
* pile's bounding box to check whether it's width and height is small
* enough. If the pile would not fit, you have to make sure that the
* resulting score will be higher then the penality value. A good solution
* would be to set score = 2*penality-score in case the pile wouldn't fit
* into the bin.
*
*/
std::function<double(Nfp::Shapes<RawShape>&, const _Item<RawShape>&,
double, double, double)>
object_function;
/**
@ -38,11 +87,30 @@ struct NfpPConfig {
*/
float accuracy = 1.0;
/**
* @brief If you want to see items inside other item's holes, you have to
* turn this switch on.
*
* This will only work if a suitable nfp implementation is provided.
* The library has no such implementation right now.
*/
bool explore_holes = false;
NfpPConfig(): rotations({0.0, Pi/2.0, Pi, 3*Pi/2}),
alignment(Alignment::CENTER), starting_point(Alignment::CENTER) {}
};
// A class for getting a point on the circumference of the polygon (in log time)
/**
* A class for getting a point on the circumference of the polygon (in log time)
*
* This is a transformation of the provided polygon to be able to pinpoint
* locations on the circumference. The optimizer will pass a floating point
* value e.g. within <0,1> and we have to transform this value quickly into a
* coordinate on the circumference. By definition 0 should yield the first
* vertex and 1.0 would be the last (which should coincide with first).
*
* We also have to make this work for the holes of the captured polygon.
*/
template<class RawShape> class EdgeCache {
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
@ -57,6 +125,8 @@ template<class RawShape> class EdgeCache {
std::vector<ContourCache> holes_;
double accuracy_ = 1.0;
void createCache(const RawShape& sh) {
{ // For the contour
auto first = ShapeLike::cbegin(sh);
@ -90,21 +160,44 @@ template<class RawShape> class EdgeCache {
}
}
size_t stride(const size_t N) const {
using std::ceil;
using std::round;
using std::pow;
return static_cast<Coord>(
std::round(N/std::pow(N, std::pow(accuracy_, 1.0/3.0)))
);
}
void fetchCorners() const {
if(!contour_.corners.empty()) return;
// TODO Accuracy
contour_.corners = contour_.distances;
for(auto& d : contour_.corners) d /= contour_.full_distance;
const auto N = contour_.distances.size();
const auto S = stride(N);
contour_.corners.reserve(N / S + 1);
auto N_1 = N-1;
contour_.corners.emplace_back(0.0);
for(size_t i = 0; i < N_1; i += S) {
contour_.corners.emplace_back(
contour_.distances.at(i) / contour_.full_distance);
}
}
void fetchHoleCorners(unsigned hidx) const {
auto& hc = holes_[hidx];
if(!hc.corners.empty()) return;
// TODO Accuracy
hc.corners = hc.distances;
for(auto& d : hc.corners) d /= hc.full_distance;
const auto N = hc.distances.size();
const auto S = stride(N);
auto N_1 = N-1;
hc.corners.reserve(N / S + 1);
hc.corners.emplace_back(0.0);
for(size_t i = 0; i < N_1; i += S) {
hc.corners.emplace_back(
hc.distances.at(i) / hc.full_distance);
}
}
inline Vertex coords(const ContourCache& cache, double distance) const {
@ -150,6 +243,9 @@ public:
createCache(sh);
}
/// Resolution of returned corners. The stride is derived from this value.
void accuracy(double a /* within <0.0, 1.0>*/) { accuracy_ = a; }
/**
* @brief Get a point on the circumference of a polygon.
* @param distance A relative distance from the starting point to the end.
@ -176,24 +272,64 @@ public:
return holes_[hidx].full_distance;
}
/// Get the normalized distance values for each vertex
inline const std::vector<double>& corners() const BP2D_NOEXCEPT {
fetchCorners();
return contour_.corners;
}
/// corners for a specific hole
inline const std::vector<double>&
corners(unsigned holeidx) const BP2D_NOEXCEPT {
fetchHoleCorners(holeidx);
return holes_[holeidx].corners;
}
inline unsigned holeCount() const BP2D_NOEXCEPT { return holes_.size(); }
/// The number of holes in the abstracted polygon
inline size_t holeCount() const BP2D_NOEXCEPT { return holes_.size(); }
};
template<NfpLevel lvl>
struct Lvl { static const NfpLevel value = lvl; };
template<class RawShape>
inline void correctNfpPosition(Nfp::NfpResult<RawShape>& nfp,
const _Item<RawShape>& stationary,
const _Item<RawShape>& orbiter)
{
// The provided nfp is somewhere in the dark. We need to get it
// to the right position around the stationary shape.
// This is done by choosing the leftmost lowest vertex of the
// orbiting polygon to be touched with the rightmost upper
// vertex of the stationary polygon. In this configuration, the
// reference vertex of the orbiting polygon (which can be dragged around
// the nfp) will be its rightmost upper vertex that coincides with the
// rightmost upper vertex of the nfp. No proof provided other than Jonas
// Lindmark's reasoning about the reference vertex of nfp in his thesis
// ("No fit polygon problem" - section 2.1.9)
auto touch_sh = stationary.rightmostTopVertex();
auto touch_other = orbiter.leftmostBottomVertex();
auto dtouch = touch_sh - touch_other;
auto top_other = orbiter.rightmostTopVertex() + dtouch;
auto dnfp = top_other - nfp.second; // nfp.second is the nfp reference point
ShapeLike::translate(nfp.first, dnfp);
}
template<class RawShape>
inline void correctNfpPosition(Nfp::NfpResult<RawShape>& nfp,
const RawShape& stationary,
const _Item<RawShape>& orbiter)
{
auto touch_sh = Nfp::rightmostUpVertex(stationary);
auto touch_other = orbiter.leftmostBottomVertex();
auto dtouch = touch_sh - touch_other;
auto top_other = orbiter.rightmostTopVertex() + dtouch;
auto dnfp = top_other - nfp.second;
ShapeLike::translate(nfp.first, dnfp);
}
template<class RawShape, class Container>
Nfp::Shapes<RawShape> nfp( const Container& polygons,
const _Item<RawShape>& trsh,
@ -203,18 +339,35 @@ Nfp::Shapes<RawShape> nfp( const Container& polygons,
Nfp::Shapes<RawShape> nfps;
//int pi = 0;
for(Item& sh : polygons) {
auto subnfp = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(
auto subnfp_r = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(
sh.transformedShape(), trsh.transformedShape());
#ifndef NDEBUG
auto vv = ShapeLike::isValid(sh.transformedShape());
assert(vv.first);
auto vnfp = ShapeLike::isValid(subnfp);
auto vnfp = ShapeLike::isValid(subnfp_r.first);
assert(vnfp.first);
#endif
nfps = Nfp::merge(nfps, subnfp);
correctNfpPosition(subnfp_r, sh, trsh);
nfps = Nfp::merge(nfps, subnfp_r.first);
// double SCALE = 1000000;
// using SVGWriter = svg::SVGWriter<RawShape>;
// SVGWriter::Config conf;
// conf.mm_in_coord_units = SCALE;
// SVGWriter svgw(conf);
// Box bin(250*SCALE, 210*SCALE);
// svgw.setSize(bin);
// for(int i = 0; i <= pi; i++) svgw.writeItem(polygons[i]);
// svgw.writeItem(trsh);
//// svgw.writeItem(Item(subnfp_r.first));
// for(auto& n : nfps) svgw.writeItem(Item(n));
// svgw.save("nfpout");
// pi++;
}
return nfps;
@ -227,50 +380,73 @@ Nfp::Shapes<RawShape> nfp( const Container& polygons,
{
using Item = _Item<RawShape>;
Nfp::Shapes<RawShape> nfps, stationary;
Nfp::Shapes<RawShape> nfps;
auto& orb = trsh.transformedShape();
bool orbconvex = trsh.isContourConvex();
for(Item& sh : polygons) {
stationary = Nfp::merge(stationary, sh.transformedShape());
}
Nfp::NfpResult<RawShape> subnfp;
auto& stat = sh.transformedShape();
std::cout << "pile size: " << stationary.size() << std::endl;
for(RawShape& sh : stationary) {
if(sh.isContourConvex() && orbconvex)
subnfp = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(stat, orb);
else if(orbconvex)
subnfp = Nfp::noFitPolygon<NfpLevel::ONE_CONVEX>(stat, orb);
else
subnfp = Nfp::noFitPolygon<Level::value>(stat, orb);
RawShape subnfp;
// if(sh.isContourConvex() && trsh.isContourConvex()) {
// subnfp = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(
// sh.transformedShape(), trsh.transformedShape());
// } else {
subnfp = Nfp::noFitPolygon<Level::value>( sh/*.transformedShape()*/,
trsh.transformedShape());
// }
correctNfpPosition(subnfp, sh, trsh);
// #ifndef NDEBUG
// auto vv = ShapeLike::isValid(sh.transformedShape());
// assert(vv.first);
// auto vnfp = ShapeLike::isValid(subnfp);
// assert(vnfp.first);
// #endif
// auto vnfp = ShapeLike::isValid(subnfp);
// if(!vnfp.first) {
// std::cout << vnfp.second << std::endl;
// std::cout << ShapeLike::toString(subnfp) << std::endl;
// }
nfps = Nfp::merge(nfps, subnfp);
nfps = Nfp::merge(nfps, subnfp.first);
}
return nfps;
// using Item = _Item<RawShape>;
// using sl = ShapeLike;
// Nfp::Shapes<RawShape> nfps, stationary;
// for(Item& sh : polygons) {
// stationary = Nfp::merge(stationary, sh.transformedShape());
// }
// for(RawShape& sh : stationary) {
//// auto vv = sl::isValid(sh);
//// std::cout << vv.second << std::endl;
// Nfp::NfpResult<RawShape> subnfp;
// bool shconvex = sl::isConvex<RawShape>(sl::getContour(sh));
// if(shconvex && trsh.isContourConvex()) {
// subnfp = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(
// sh, trsh.transformedShape());
// } else if(trsh.isContourConvex()) {
// subnfp = Nfp::noFitPolygon<NfpLevel::ONE_CONVEX>(
// sh, trsh.transformedShape());
// }
// else {
// subnfp = Nfp::noFitPolygon<Level::value>( sh,
// trsh.transformedShape());
// }
// correctNfpPosition(subnfp, sh, trsh);
// nfps = Nfp::merge(nfps, subnfp.first);
// }
// return nfps;
}
template<class RawShape>
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>> {
template<class RawShape, class TBin = _Box<TPoint<RawShape>>>
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin>,
RawShape, TBin, NfpPConfig<RawShape>> {
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>>;
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin>,
RawShape, TBin, NfpPConfig<RawShape>>;
DECLARE_PLACER(Base)
@ -280,28 +456,45 @@ class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
const double penality_;
using MaxNfpLevel = Nfp::MaxNfpLevel<RawShape>;
using sl = ShapeLike;
public:
using Pile = const Nfp::Shapes<RawShape>&;
using Pile = Nfp::Shapes<RawShape>;
inline explicit _NofitPolyPlacer(const BinType& bin):
Base(bin),
norm_(std::sqrt(ShapeLike::area<RawShape>(bin))),
norm_(std::sqrt(sl::area<RawShape>(bin))),
penality_(1e6*norm_) {}
_NofitPolyPlacer(const _NofitPolyPlacer&) = default;
_NofitPolyPlacer& operator=(const _NofitPolyPlacer&) = default;
#ifndef BP2D_COMPILER_MSVC12 // MSVC2013 does not support default move ctors
_NofitPolyPlacer(_NofitPolyPlacer&&) BP2D_NOEXCEPT = default;
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) BP2D_NOEXCEPT = default;
#endif
bool static inline wouldFit(const Box& bb, const RawShape& bin) {
auto bbin = sl::boundingBox<RawShape>(bin);
auto d = bbin.center() - bb.center();
_Rectangle<RawShape> rect(bb.width(), bb.height());
rect.translate(bb.minCorner() + d);
return sl::isInside<RawShape>(rect.transformedShape(), bin);
}
bool static inline wouldFit(const RawShape& chull, const RawShape& bin) {
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
auto bbin = ShapeLike::boundingBox<RawShape>(bin);
auto d = bbin.minCorner() - bbch.minCorner();
auto bbch = sl::boundingBox<RawShape>(chull);
auto bbin = sl::boundingBox<RawShape>(bin);
auto d = bbch.center() - bbin.center();
auto chullcpy = chull;
ShapeLike::translate(chullcpy, d);
return ShapeLike::isInside<RawShape>(chullcpy, bbin);
sl::translate(chullcpy, d);
return sl::isInside<RawShape>(chullcpy, bin);
}
bool static inline wouldFit(const RawShape& chull, const Box& bin)
{
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
auto bbch = sl::boundingBox<RawShape>(chull);
return wouldFit(bbch, bin);
}
@ -310,6 +503,17 @@ public:
return bb.width() <= bin.width() && bb.height() <= bin.height();
}
bool static inline wouldFit(const Box& bb, const _Circle<Vertex>& bin)
{
return sl::isInside<RawShape>(bb, bin);
}
bool static inline wouldFit(const RawShape& chull,
const _Circle<Vertex>& bin)
{
return sl::isInside<RawShape>(chull, bin);
}
PackResult trypack(Item& item) {
PackResult ret;
@ -348,7 +552,10 @@ public:
std::vector<EdgeCache<RawShape>> ecache;
ecache.reserve(nfps.size());
for(auto& nfp : nfps ) ecache.emplace_back(nfp);
for(auto& nfp : nfps ) {
ecache.emplace_back(nfp);
ecache.back().accuracy(config_.accuracy);
}
struct Optimum {
double relpos;
@ -363,7 +570,7 @@ public:
auto getNfpPoint = [&ecache](const Optimum& opt)
{
return opt.hidx < 0? ecache[opt.nfpidx].coords(opt.relpos) :
ecache[opt.nfpidx].coords(opt.nfpidx, opt.relpos);
ecache[opt.nfpidx].coords(opt.hidx, opt.relpos);
};
Nfp::Shapes<RawShape> pile;
@ -374,17 +581,25 @@ public:
pile_area += mitem.area();
}
auto merged_pile = Nfp::merge(pile);
// This is the kernel part of the object function that is
// customizable by the library client
auto _objfunc = config_.object_function?
config_.object_function :
[this](const Nfp::Shapes<RawShape>& pile, double occupied_area,
double /*norm*/, double penality)
[this, &merged_pile](
Nfp::Shapes<RawShape>& /*pile*/,
const Item& item,
double occupied_area,
double norm,
double /*penality*/)
{
auto ch = ShapeLike::convexHull(pile);
merged_pile.emplace_back(item.transformedShape());
auto ch = sl::convexHull(merged_pile);
merged_pile.pop_back();
// The pack ratio -- how much is the convex hull occupied
double pack_rate = occupied_area/ShapeLike::area(ch);
double pack_rate = occupied_area/sl::area(ch);
// ratio of waste
double waste = 1.0 - pack_rate;
@ -394,7 +609,7 @@ public:
// (larger) values.
auto score = std::sqrt(waste);
if(!wouldFit(ch, bin_)) score = 2*penality - score;
if(!wouldFit(ch, bin_)) score += norm;
return score;
};
@ -406,23 +621,31 @@ public:
d += startpos;
item.translation(d);
pile.emplace_back(item.transformedShape());
double occupied_area = pile_area + item.area();
double score = _objfunc(pile, occupied_area,
double score = _objfunc(pile, item, occupied_area,
norm_, penality_);
pile.pop_back();
return score;
};
auto boundaryCheck = [&](const Optimum& o) {
auto v = getNfpPoint(o);
auto d = v - iv;
d += startpos;
item.translation(d);
merged_pile.emplace_back(item.transformedShape());
auto chull = sl::convexHull(merged_pile);
merged_pile.pop_back();
return wouldFit(chull, bin_);
};
opt::StopCriteria stopcr;
stopcr.max_iterations = 1000;
stopcr.stoplimit = 0.001;
stopcr.type = opt::StopLimitType::RELATIVE;
opt::TOptimizer<opt::Method::L_SIMPLEX> solver(stopcr);
stopcr.max_iterations = 100;
stopcr.relative_score_difference = 1e-6;
opt::TOptimizer<opt::Method::L_SUBPLEX> solver(stopcr);
Optimum optimum(0, 0);
double best_score = penality_;
@ -441,7 +664,7 @@ public:
std::for_each(cache.corners().begin(),
cache.corners().end(),
[ch, &contour_ofn, &solver, &best_score,
&optimum] (double pos)
&optimum, &boundaryCheck] (double pos)
{
try {
auto result = solver.optimize_min(contour_ofn,
@ -450,10 +673,11 @@ public:
);
if(result.score < best_score) {
Optimum o(std::get<0>(result.optimum), ch, -1);
if(boundaryCheck(o)) {
best_score = result.score;
optimum.relpos = std::get<0>(result.optimum);
optimum.nfpidx = ch;
optimum.hidx = -1;
optimum = o;
}
}
} catch(std::exception& e) {
derr() << "ERROR: " << e.what() << "\n";
@ -472,7 +696,7 @@ public:
std::for_each(cache.corners(hidx).begin(),
cache.corners(hidx).end(),
[&hole_ofn, &solver, &best_score,
&optimum, ch, hidx]
&optimum, ch, hidx, &boundaryCheck]
(double pos)
{
try {
@ -482,11 +706,13 @@ public:
);
if(result.score < best_score) {
best_score = result.score;
Optimum o(std::get<0>(result.optimum),
ch, hidx);
if(boundaryCheck(o)) {
best_score = result.score;
optimum = o;
}
}
} catch(std::exception& e) {
derr() << "ERROR: " << e.what() << "\n";
}
@ -524,34 +750,35 @@ public:
m.reserve(items_.size());
for(Item& item : items_) m.emplace_back(item.transformedShape());
auto&& bb = ShapeLike::boundingBox<RawShape>(m);
auto&& bb = sl::boundingBox<RawShape>(m);
Vertex ci, cb;
auto bbin = sl::boundingBox<RawShape>(bin_);
switch(config_.alignment) {
case Config::Alignment::CENTER: {
ci = bb.center();
cb = bin_.center();
cb = bbin.center();
break;
}
case Config::Alignment::BOTTOM_LEFT: {
ci = bb.minCorner();
cb = bin_.minCorner();
cb = bbin.minCorner();
break;
}
case Config::Alignment::BOTTOM_RIGHT: {
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
cb = {getX(bbin.maxCorner()), getY(bbin.minCorner())};
break;
}
case Config::Alignment::TOP_LEFT: {
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
cb = {getX(bbin.minCorner()), getY(bbin.maxCorner())};
break;
}
case Config::Alignment::TOP_RIGHT: {
ci = bb.maxCorner();
cb = bin_.maxCorner();
cb = bbin.maxCorner();
break;
}
}
@ -567,31 +794,32 @@ private:
void setInitialPosition(Item& item) {
Box&& bb = item.boundingBox();
Vertex ci, cb;
auto bbin = sl::boundingBox<RawShape>(bin_);
switch(config_.starting_point) {
case Config::Alignment::CENTER: {
ci = bb.center();
cb = bin_.center();
cb = bbin.center();
break;
}
case Config::Alignment::BOTTOM_LEFT: {
ci = bb.minCorner();
cb = bin_.minCorner();
cb = bbin.minCorner();
break;
}
case Config::Alignment::BOTTOM_RIGHT: {
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
cb = {getX(bbin.maxCorner()), getY(bbin.minCorner())};
break;
}
case Config::Alignment::TOP_LEFT: {
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
cb = {getX(bbin.minCorner()), getY(bbin.maxCorner())};
break;
}
case Config::Alignment::TOP_RIGHT: {
ci = bb.maxCorner();
cb = bin_.maxCorner();
cb = bbin.maxCorner();
break;
}
}
@ -602,7 +830,7 @@ private:
void placeOutsideOfBin(Item& item) {
auto&& bb = item.boundingBox();
Box binbb = ShapeLike::boundingBox<RawShape>(bin_);
Box binbb = sl::boundingBox<RawShape>(bin_);
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };

View File

@ -256,14 +256,14 @@ public:
if(not_packed.size() < 2)
return false; // No group of two items
else {
double largest_area = not_packed.front().get().area();
auto itmp = not_packed.begin(); itmp++;
double second_largest = itmp->get().area();
if( free_area - second_largest - largest_area > waste)
return false; // If even the largest two items do not fill
// the bin to the desired waste than we can end here.
}
bool ret = false;
auto it = not_packed.begin();
@ -481,7 +481,7 @@ public:
{
std::array<bool, 3> packed = {false};
for(auto id : idx) packed[id] =
for(auto id : idx) packed.at(id) =
placer.pack(candidates[id]);
bool check =
@ -535,10 +535,9 @@ public:
// then it should be removed from the not_packed list
{ auto it = store_.begin();
while (it != store_.end()) {
Placer p(bin);
Placer p(bin); p.configure(pconfig);
if(!p.pack(*it)) {
auto itmp = it++;
store_.erase(itmp);
it = store_.erase(it);
} else it++;
}
}
@ -605,8 +604,7 @@ public:
if(placer.pack(*it)) {
filled_area += it->get().area();
free_area = bin_area - filled_area;
auto itmp = it++;
not_packed.erase(itmp);
it = not_packed.erase(it);
makeProgress(placer, idx, 1);
} else it++;
}

View File

@ -52,17 +52,16 @@ public:
auto total = last-first;
auto makeProgress = [this, &total](Placer& placer, size_t idx) {
packed_bins_[idx] = placer.getItems();
this->progress_(--total);
this->progress_(static_cast<unsigned>(--total));
};
// Safety test: try to pack each item into an empty bin. If it fails
// then it should be removed from the list
{ auto it = store_.begin();
while (it != store_.end()) {
Placer p(bin);
Placer p(bin); p.configure(pconfig);
if(!p.pack(*it)) {
auto itmp = it++;
store_.erase(itmp);
it = store_.erase(it);
} else it++;
}
}

View File

@ -682,7 +682,9 @@ void testNfp(const std::vector<ItemPair>& testdata) {
auto&& nfp = Nfp::noFitPolygon<lvl>(stationary.rawShape(),
orbiter.transformedShape());
auto v = ShapeLike::isValid(nfp);
strategies::correctNfpPosition(nfp, stationary, orbiter);
auto v = ShapeLike::isValid(nfp.first);
if(!v.first) {
std::cout << v.second << std::endl;
@ -690,7 +692,7 @@ void testNfp(const std::vector<ItemPair>& testdata) {
ASSERT_TRUE(v.first);
Item infp(nfp);
Item infp(nfp.first);
int i = 0;
auto rorbiter = orbiter.transformedShape();
@ -742,6 +744,15 @@ TEST(GeometryAlgorithms, nfpConvexConvex) {
// testNfp<NfpLevel::BOTH_CONCAVE, 1000>(nfp_concave_testdata);
//}
TEST(GeometryAlgorithms, nfpConcaveConcave) {
using namespace libnest2d;
// Rectangle r1(10, 10);
// Rectangle r2(20, 20);
// auto result = Nfp::nfpSimpleSimple(r1.transformedShape(),
// r2.transformedShape());
}
TEST(GeometryAlgorithms, pointOnPolygonContour) {
using namespace libnest2d;

View File

@ -49,18 +49,18 @@ libnfporb::point_t scale(const libnfporb::point_t& p, long double factor) {
long double px = p.x_.val();
long double py = p.y_.val();
#endif
return libnfporb::point_t(px*factor, py*factor);
return {px*factor, py*factor};
}
}
PolygonImpl _nfp(const PolygonImpl &sh, const PolygonImpl &cother)
NfpR _nfp(const PolygonImpl &sh, const PolygonImpl &cother)
{
using Vertex = PointImpl;
PolygonImpl ret;
NfpR ret;
// try {
try {
libnfporb::polygon_t pstat, porb;
boost::geometry::convert(sh, pstat);
@ -85,7 +85,7 @@ PolygonImpl _nfp(const PolygonImpl &sh, const PolygonImpl &cother)
// this can throw
auto nfp = libnfporb::generateNFP(pstat, porb, true);
auto &ct = ShapeLike::getContour(ret);
auto &ct = ShapeLike::getContour(ret.first);
ct.reserve(nfp.front().size()+1);
for(auto v : nfp.front()) {
v = scale(v, refactor);
@ -94,10 +94,10 @@ PolygonImpl _nfp(const PolygonImpl &sh, const PolygonImpl &cother)
ct.push_back(ct.front());
std::reverse(ct.begin(), ct.end());
auto &rholes = ShapeLike::holes(ret);
auto &rholes = ShapeLike::holes(ret.first);
for(size_t hidx = 1; hidx < nfp.size(); ++hidx) {
if(nfp[hidx].size() >= 3) {
rholes.push_back({});
rholes.emplace_back();
auto& h = rholes.back();
h.reserve(nfp[hidx].size()+1);
@ -110,73 +110,48 @@ PolygonImpl _nfp(const PolygonImpl &sh, const PolygonImpl &cother)
}
}
auto& cmp = vsort;
std::sort(pstat.outer().begin(), pstat.outer().end(), cmp);
std::sort(porb.outer().begin(), porb.outer().end(), cmp);
ret.second = Nfp::referenceVertex(ret.first);
// leftmost lower vertex of the stationary polygon
auto& touch_sh = scale(pstat.outer().back(), refactor);
// rightmost upper vertex of the orbiting polygon
auto& touch_other = scale(porb.outer().front(), refactor);
// Calculate the difference and move the orbiter to the touch position.
auto dtouch = touch_sh - touch_other;
auto _top_other = scale(porb.outer().back(), refactor) + dtouch;
Vertex top_other(getX(_top_other), getY(_top_other));
// Get the righmost upper vertex of the nfp and move it to the RMU of
// the orbiter because they should coincide.
auto&& top_nfp = Nfp::rightmostUpVertex(ret);
auto dnfp = top_other - top_nfp;
std::for_each(ShapeLike::begin(ret), ShapeLike::end(ret),
[&dnfp](Vertex& v) { v+= dnfp; } );
for(auto& h : ShapeLike::holes(ret))
std::for_each( h.begin(), h.end(),
[&dnfp](Vertex& v) { v += dnfp; } );
// } catch(std::exception& e) {
// std::cout << "Error: " << e.what() << "\nTrying with convex hull..." << std::endl;
} catch(std::exception& e) {
std::cout << "Error: " << e.what() << "\nTrying with convex hull..." << std::endl;
// auto ch_stat = ShapeLike::convexHull(sh);
// auto ch_orb = ShapeLike::convexHull(cother);
// ret = Nfp::nfpConvexOnly(ch_stat, ch_orb);
// }
ret = Nfp::nfpConvexOnly(sh, cother);
}
return ret;
}
PolygonImpl Nfp::NfpImpl<PolygonImpl, NfpLevel::CONVEX_ONLY>::operator()(
NfpR Nfp::NfpImpl<PolygonImpl, NfpLevel::CONVEX_ONLY>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);//nfpConvexOnly(sh, cother);
}
PolygonImpl Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX>::operator()(
NfpR Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
PolygonImpl Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE>::operator()(
NfpR Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
PolygonImpl
Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX_WITH_HOLES>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
//PolygonImpl
//Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX_WITH_HOLES>::operator()(
// const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
//{
// return _nfp(sh, cother);
//}
PolygonImpl
Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE_WITH_HOLES>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
//PolygonImpl
//Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE_WITH_HOLES>::operator()(
// const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
//{
// return _nfp(sh, cother);
//}
}

View File

@ -5,37 +5,39 @@
namespace libnest2d {
PolygonImpl _nfp(const PolygonImpl& sh, const PolygonImpl& cother);
using NfpR = Nfp::NfpResult<PolygonImpl>;
NfpR _nfp(const PolygonImpl& sh, const PolygonImpl& cother);
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::CONVEX_ONLY> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
NfpR operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
NfpR operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
NfpR operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX_WITH_HOLES> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
//template<>
//struct Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX_WITH_HOLES> {
// NfpResult operator()(const PolygonImpl& sh, const PolygonImpl& cother);
//};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE_WITH_HOLES> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
//template<>
//struct Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE_WITH_HOLES> {
// NfpResult operator()(const PolygonImpl& sh, const PolygonImpl& cother);
//};
template<> struct Nfp::MaxNfpLevel<PolygonImpl> {
static const BP2D_CONSTEXPR NfpLevel value =
// NfpLevel::CONVEX_ONLY;
NfpLevel::BOTH_CONCAVE_WITH_HOLES;
NfpLevel::BOTH_CONCAVE;
};
}

View File

@ -5,11 +5,17 @@
#include <fstream>
#include <string>
#include <libnest2d.h>
#include <libnest2d/libnest2d.hpp>
namespace libnest2d { namespace svg {
template<class RawShape>
class SVGWriter {
using Item = _Item<RawShape>;
using Coord = TCoord<TPoint<RawShape>>;
using Box = _Box<TPoint<RawShape>>;
using PackGroup = _PackGroup<RawShape>;
public:
enum OrigoLocation {

View File

@ -167,6 +167,18 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
{
std::string gcode;
// Toolchangeresult.gcode assumes the wipe tower corner is at the origin
// We want to rotate and shift all extrusions (gcode postprocessing) and starting and ending position
float alpha = m_wipe_tower_rotation/180.f * M_PI;
WipeTower::xy start_pos = tcr.start_pos;
WipeTower::xy end_pos = tcr.end_pos;
start_pos.rotate(alpha);
start_pos.translate(m_wipe_tower_pos);
end_pos.rotate(alpha);
end_pos.translate(m_wipe_tower_pos);
std::string tcr_rotated_gcode = rotate_wipe_tower_moves(tcr.gcode, tcr.start_pos, m_wipe_tower_pos, alpha);
// Disable linear advance for the wipe tower operations.
gcode += "M900 K0\n";
// Move over the wipe tower.
@ -174,14 +186,14 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
gcode += gcodegen.retract(true);
gcodegen.m_avoid_crossing_perimeters.use_external_mp_once = true;
gcode += gcodegen.travel_to(
wipe_tower_point_to_object_point(gcodegen, tcr.start_pos),
wipe_tower_point_to_object_point(gcodegen, start_pos),
erMixed,
"Travel to a Wipe Tower");
gcode += gcodegen.unretract();
// Let the tool change be executed by the wipe tower class.
// Inform the G-code writer about the changes done behind its back.
gcode += tcr.gcode;
gcode += tcr_rotated_gcode;
// Let the m_writer know the current extruder_id, but ignore the generated G-code.
if (new_extruder_id >= 0 && gcodegen.writer().need_toolchange(new_extruder_id))
gcodegen.writer().toolchange(new_extruder_id);
@ -195,18 +207,18 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
check_add_eol(gcode);
}
// A phony move to the end position at the wipe tower.
gcodegen.writer().travel_to_xy(Pointf(tcr.end_pos.x, tcr.end_pos.y));
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, tcr.end_pos));
gcodegen.writer().travel_to_xy(Pointf(end_pos.x, end_pos.y));
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos));
// Prepare a future wipe.
gcodegen.m_wipe.path.points.clear();
if (new_extruder_id >= 0) {
// Start the wipe at the current position.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, tcr.end_pos));
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, end_pos));
// Wipe end point: Wipe direction away from the closer tower edge to the further tower edge.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen,
WipeTower::xy((std::abs(m_left - tcr.end_pos.x) < std::abs(m_right - tcr.end_pos.x)) ? m_right : m_left,
tcr.end_pos.y)));
WipeTower::xy((std::abs(m_left - end_pos.x) < std::abs(m_right - end_pos.x)) ? m_right : m_left,
end_pos.y)));
}
// Let the planner know we are traveling between objects.
@ -214,6 +226,57 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
return gcode;
}
// This function postprocesses gcode_original, rotates and moves all G1 extrusions and returns resulting gcode
// Starting position has to be supplied explicitely (otherwise it would fail in case first G1 command only contained one coordinate)
std::string WipeTowerIntegration::rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const
{
std::istringstream gcode_str(gcode_original);
std::string gcode_out;
std::string line;
WipeTower::xy pos = start_pos;
WipeTower::xy transformed_pos;
WipeTower::xy old_pos(-1000.1f, -1000.1f);
while (gcode_str) {
std::getline(gcode_str, line); // we read the gcode line by line
if (line.find("G1 ") == 0) {
std::ostringstream line_out;
std::istringstream line_str(line);
line_str >> std::noskipws; // don't skip whitespace
char ch = 0;
while (line_str >> ch) {
if (ch == 'X')
line_str >> pos.x;
else
if (ch == 'Y')
line_str >> pos.y;
else
line_out << ch;
}
transformed_pos = pos;
transformed_pos.rotate(angle);
transformed_pos.translate(translation);
if (transformed_pos != old_pos) {
line = line_out.str();
char buf[2048] = "G1";
if (transformed_pos.x != old_pos.x)
sprintf(buf + strlen(buf), " X%.3f", transformed_pos.x);
if (transformed_pos.y != old_pos.y)
sprintf(buf + strlen(buf), " Y%.3f", transformed_pos.y);
line.replace(line.find("G1 "), 3, buf);
old_pos = transformed_pos;
}
}
gcode_out += line + "\n";
}
return gcode_out;
}
std::string WipeTowerIntegration::prime(GCode &gcodegen)
{
assert(m_layer_idx == 0);
@ -608,15 +671,18 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
if ((initial_extruder_id = tool_ordering.first_extruder()) != (unsigned int)-1)
break;
}
}
else {
} else {
// Find tool ordering for all the objects at once, and the initial extruder ID.
// If the tool ordering has been pre-calculated by Print class for wipe tower already, reuse it.
tool_ordering = print.m_tool_ordering.empty() ?
ToolOrdering(print, initial_extruder_id) :
print.m_tool_ordering;
initial_extruder_id = tool_ordering.first_extruder();
has_wipe_tower = print.has_wipe_tower() && tool_ordering.has_wipe_tower();
initial_extruder_id = (has_wipe_tower && ! print.config.single_extruder_multi_material_priming) ?
// The priming towers will be skipped.
tool_ordering.all_extruders().back() :
// Don't skip the priming towers.
tool_ordering.first_extruder();
}
if (initial_extruder_id == (unsigned int)-1) {
// Nothing to print!
@ -644,6 +710,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
m_placeholder_parser.set("current_object_idx", 0);
// For the start / end G-code to do the priming and final filament pull in case there is no wipe tower provided.
m_placeholder_parser.set("has_wipe_tower", has_wipe_tower);
m_placeholder_parser.set("has_single_extruder_multi_material_priming", has_wipe_tower && print.config.single_extruder_multi_material_priming);
std::string start_gcode = this->placeholder_parser_process("start_gcode", print.config.start_gcode.value, initial_extruder_id);
// Set bed temperature if the start G-code does not contain any bed temp control G-codes.
@ -724,8 +791,11 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
}
}
if (! (has_wipe_tower && print.config.single_extruder_multi_material_priming)) {
// Set initial extruder only after custom start G-code.
// Ugly hack: Do not set the initial extruder if the extruder is primed using the MMU priming towers at the edge of the print bed.
_write(file, this->set_extruder(initial_extruder_id));
}
// Do all objects for each layer.
if (print.config.complete_objects.value) {
@ -803,6 +873,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
if (has_wipe_tower && ! layers_to_print.empty()) {
m_wipe_tower.reset(new WipeTowerIntegration(print.config, *print.m_wipe_tower_priming.get(), print.m_wipe_tower_tool_changes, *print.m_wipe_tower_final_purge.get()));
_write(file, m_writer.travel_to_z(first_layer_height + m_config.z_offset.value, "Move to the first layer height"));
if (print.config.single_extruder_multi_material_priming) {
_write(file, m_wipe_tower->prime(*this));
// Verify, whether the print overaps the priming extrusions.
BoundingBoxf bbox_print(get_print_extrusions_extents(print));
@ -826,6 +897,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
_write(file, "M1 S10\n");
}
}
}
// Extrude the layers.
for (auto &layer : layers_to_print) {
const LayerTools &layer_tools = tool_ordering.tools_for_layer(layer.first);
@ -1003,9 +1075,10 @@ void GCode::print_machine_envelope(FILE *file, Print &print)
int(print.config.machine_max_feedrate_y.values.front() + 0.5),
int(print.config.machine_max_feedrate_z.values.front() + 0.5),
int(print.config.machine_max_feedrate_e.values.front() + 0.5));
fprintf(file, "M204 S%d T%d ; sets acceleration (S) and retract acceleration (T), mm/sec^2\n",
fprintf(file, "M204 P%d R%d T%d ; sets acceleration (P, T) and retract acceleration (R), mm/sec^2\n",
int(print.config.machine_max_acceleration_extruding.values.front() + 0.5),
int(print.config.machine_max_acceleration_retracting.values.front() + 0.5));
int(print.config.machine_max_acceleration_retracting.values.front() + 0.5),
int(print.config.machine_max_acceleration_extruding.values.front() + 0.5));
fprintf(file, "M205 X%.2lf Y%.2lf Z%.2lf E%.2lf ; sets the jerk limits, mm/sec\n",
print.config.machine_max_jerk_x.values.front(),
print.config.machine_max_jerk_y.values.front(),

View File

@ -83,8 +83,10 @@ public:
const WipeTower::ToolChangeResult &priming,
const std::vector<std::vector<WipeTower::ToolChangeResult>> &tool_changes,
const WipeTower::ToolChangeResult &final_purge) :
m_left(float(print_config.wipe_tower_x.value)),
m_right(float(print_config.wipe_tower_x.value + print_config.wipe_tower_width.value)),
m_left(/*float(print_config.wipe_tower_x.value)*/ 0.f),
m_right(float(/*print_config.wipe_tower_x.value +*/ print_config.wipe_tower_width.value)),
m_wipe_tower_pos(float(print_config.wipe_tower_x.value), float(print_config.wipe_tower_y.value)),
m_wipe_tower_rotation(float(print_config.wipe_tower_rotation_angle)),
m_priming(priming),
m_tool_changes(tool_changes),
m_final_purge(final_purge),
@ -101,9 +103,14 @@ private:
WipeTowerIntegration& operator=(const WipeTowerIntegration&);
std::string append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const;
// Postprocesses gcode: rotates and moves all G1 extrusions and returns result
std::string rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const;
// Left / right edges of the wipe tower, for the planning of wipe moves.
const float m_left;
const float m_right;
const WipeTower::xy m_wipe_tower_pos;
const float m_wipe_tower_rotation;
// Reference to cached values at the Printer class.
const WipeTower::ToolChangeResult &m_priming;
const std::vector<std::vector<WipeTower::ToolChangeResult>> &m_tool_changes;
@ -112,6 +119,7 @@ private:
int m_layer_idx;
int m_tool_change_idx;
bool m_brim_done;
bool i_have_brim = false;
};
class GCode {

View File

@ -134,6 +134,11 @@ BoundingBoxf get_print_object_extrusions_extents(const PrintObject &print_object
// The projection does not contain the priming regions.
BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_t max_print_z)
{
// Wipe tower extrusions are saved as if the tower was at the origin with no rotation
// We need to get position and angle of the wipe tower to transform them to actual position.
Pointf wipe_tower_pos(print.config.wipe_tower_x.value, print.config.wipe_tower_y.value);
float wipe_tower_angle = print.config.wipe_tower_rotation_angle.value;
BoundingBoxf bbox;
for (const std::vector<WipeTower::ToolChangeResult> &tool_changes : print.m_wipe_tower_tool_changes) {
if (! tool_changes.empty() && tool_changes.front().print_z > max_print_z)
@ -144,6 +149,11 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
if (e.width > 0) {
Pointf p1((&e - 1)->pos.x, (&e - 1)->pos.y);
Pointf p2(e.pos.x, e.pos.y);
p1.rotate(wipe_tower_angle);
p1.translate(wipe_tower_pos);
p2.rotate(wipe_tower_angle);
p2.translate(wipe_tower_pos);
bbox.merge(p1);
coordf_t radius = 0.5 * e.width;
bbox.min.x = std::min(bbox.min.x, std::min(p1.x, p2.x) - radius);

View File

@ -25,16 +25,28 @@ public:
bool operator==(const xy &rhs) const { return x == rhs.x && y == rhs.y; }
bool operator!=(const xy &rhs) const { return x != rhs.x || y != rhs.y; }
// Rotate the point around given point about given angle (in degrees)
// shifts the result so that point of rotation is in the middle of the tower
xy rotate(const xy& origin, float width, float depth, float angle) const {
// Rotate the point around center of the wipe tower about given angle (in degrees)
xy rotate(float width, float depth, float angle) const {
xy out(0,0);
float temp_x = x - width / 2.f;
float temp_y = y - depth / 2.f;
angle *= M_PI/180.;
out.x += (temp_x - origin.x) * cos(angle) - (temp_y - origin.y) * sin(angle);
out.y += (temp_x - origin.x) * sin(angle) + (temp_y - origin.y) * cos(angle);
return out + origin;
out.x += temp_x * cos(angle) - temp_y * sin(angle) + width / 2.f;
out.y += temp_x * sin(angle) + temp_y * cos(angle) + depth / 2.f;
return out;
}
// Rotate the point around origin about given angle in degrees
void rotate(float angle) {
float temp_x = x * cos(angle) - y * sin(angle);
y = x * sin(angle) + y * cos(angle);
x = temp_x;
}
void translate(const xy& vect) {
x += vect.x;
y += vect.y;
}
float x;
@ -104,6 +116,9 @@ public:
// This is useful not only for the print time estimation, but also for the control of layer cooling.
float elapsed_time;
// Is this a priming extrusion? (If so, the wipe tower rotation & translation will not be applied later)
bool priming;
// Sum the total length of the extrusion.
float total_extrusion_length_in_plane() {
float e_length = 0.f;

View File

@ -5,7 +5,7 @@ TODO LIST
1. cooling moves - DONE
2. account for perimeter and finish_layer extrusions and subtract it from last wipe - DONE
3. priming extrusions (last wipe must clear the color)
3. priming extrusions (last wipe must clear the color) - DONE
4. Peter's wipe tower - layer's are not exactly square
5. Peter's wipe tower - variable width for higher levels
6. Peter's wipe tower - make sure it is not too sparse (apply max_bridge_distance and make last wipe longer)
@ -17,7 +17,6 @@ TODO LIST
#include <assert.h>
#include <math.h>
#include <fstream>
#include <iostream>
#include <vector>
#include <numeric>
@ -68,8 +67,11 @@ public:
return *this;
}
Writer& set_initial_position(const WipeTower::xy &pos) {
m_start_pos = WipeTower::xy(pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg);
Writer& set_initial_position(const WipeTower::xy &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) {
m_wipe_tower_width = width;
m_wipe_tower_depth = depth;
m_internal_angle = internal_angle;
m_start_pos = WipeTower::xy(pos,0.f,m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle);
m_current_pos = pos;
return *this;
}
@ -82,9 +84,6 @@ public:
Writer& set_extrusion_flow(float flow)
{ m_extrusion_flow = flow; return *this; }
Writer& set_rotation(WipeTower::xy& pos, float width, float depth, float angle)
{ m_wipe_tower_pos = pos; m_wipe_tower_width = width; m_wipe_tower_depth=depth; m_angle_deg = angle; return (*this); }
Writer& set_y_shift(float shift) {
m_current_pos.y -= shift-m_y_shift;
m_y_shift = shift;
@ -110,7 +109,7 @@ public:
float y() const { return m_current_pos.y; }
const WipeTower::xy& pos() const { return m_current_pos; }
const WipeTower::xy start_pos_rotated() const { return m_start_pos; }
const WipeTower::xy pos_rotated() const { return WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); }
const WipeTower::xy pos_rotated() const { return WipeTower::xy(m_current_pos, 0.f, m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle); }
float elapsed_time() const { return m_elapsed_time; }
// Extrude with an explicitely provided amount of extrusion.
@ -125,9 +124,9 @@ public:
double len = sqrt(dx*dx+dy*dy);
// For rotated wipe tower, transform position to printer coordinates
WipeTower::xy rotated_current_pos(WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); // this is where we are
WipeTower::xy rot(WipeTower::xy(x,y+m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); // this is where we want to go
// Now do the "internal rotation" with respect to the wipe tower center
WipeTower::xy rotated_current_pos(WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle)); // this is where we are
WipeTower::xy rot(WipeTower::xy(x,y+m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle)); // this is where we want to go
if (! m_preview_suppressed && e > 0.f && len > 0.) {
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
@ -147,6 +146,7 @@ public:
if (std::abs(rot.y - rotated_current_pos.y) > EPSILON)
m_gcode += set_format_Y(rot.y);
if (e != 0.f)
m_gcode += set_format_E(e);
@ -397,9 +397,8 @@ private:
std::string m_gcode;
std::vector<WipeTower::Extrusion> m_extrusions;
float m_elapsed_time;
float m_angle_deg = 0.f;
float m_internal_angle = 0.f;
float m_y_shift = 0.f;
WipeTower::xy m_wipe_tower_pos;
float m_wipe_tower_width = 0.f;
float m_wipe_tower_depth = 0.f;
float m_last_fan_speed = 0.f;
@ -539,6 +538,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::prime(
m_print_brim = true;
ToolChangeResult result;
result.priming = true;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -575,7 +575,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
}
box_coordinates cleaning_box(
m_wipe_tower_pos + xy(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
xy(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
m_wipe_tower_width - m_perimeter_width,
(tool != (unsigned int)(-1) ? /*m_layer_info->depth*/wipe_area+m_depth_traversed-0.5*m_perimeter_width
: m_wipe_tower_depth-m_perimeter_width));
@ -584,7 +584,6 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f))
.append(";--------------------\n"
"; CP TOOLCHANGE START\n")
@ -594,7 +593,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
.speed_override(100);
xy initial_position = cleaning_box.ld + WipeTower::xy(0.f,m_depth_traversed);
writer.set_initial_position(initial_position);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
// Increase the extruder driver current to allow fast ramming.
writer.set_extruder_trimpot(750);
@ -616,11 +615,11 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
if (last_change_in_layer) {// draw perimeter line
writer.set_y_shift(m_y_shift);
if (m_peters_wipe_tower)
writer.rectangle(m_wipe_tower_pos,m_layer_info->depth + 3*m_perimeter_width,m_wipe_tower_depth);
writer.rectangle(WipeTower::xy(0.f, 0.f),m_layer_info->depth + 3*m_perimeter_width,m_wipe_tower_depth);
else {
writer.rectangle(m_wipe_tower_pos,m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
writer.rectangle(WipeTower::xy(0.f, 0.f),m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
if (layer_finished()) { // no finish_layer will be called, we must wipe the nozzle
writer.travel(m_wipe_tower_pos.x + (writer.x()> (m_wipe_tower_pos.x + m_wipe_tower_width) / 2.f ? 0.f : m_wipe_tower_width), writer.y());
writer.travel(writer.x()> m_wipe_tower_width / 2.f ? 0.f : m_wipe_tower_width, writer.y());
}
}
}
@ -634,6 +633,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
"\n\n");
ToolChangeResult result;
result.priming = false;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -647,7 +647,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(bool sideOnly, float y_offset)
{
const box_coordinates wipeTower_box(
m_wipe_tower_pos,
WipeTower::xy(0.f, 0.f),
m_wipe_tower_width,
m_wipe_tower_depth);
@ -655,12 +655,11 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(bool sideOnly, flo
writer.set_extrusion_flow(m_extrusion_flow * 1.1f)
.set_z(m_z_pos) // Let the writer know the current Z position as a base for Z-hop.
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.append(";-------------------------------------\n"
"; CP WIPE TOWER FIRST LAYER BRIM START\n");
xy initial_position = wipeTower_box.lu - xy(m_perimeter_width * 6.f, 0);
writer.set_initial_position(initial_position);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
writer.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 6.f, 0), // Prime the extruder left of the wipe tower.
1.5f * m_extrusion_flow * (wipeTower_box.lu.y - wipeTower_box.ld.y), 2400);
@ -685,6 +684,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(bool sideOnly, flo
m_print_brim = false; // Mark the brim as extruded
ToolChangeResult result;
result.priming = false;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -724,7 +724,7 @@ void WipeTowerPrusaMM::toolchange_Unload(
if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) {
// this is y of the center of previous sparse infill border
float sparse_beginning_y = m_wipe_tower_pos.y;
float sparse_beginning_y = 0.f;
if (m_current_shape == SHAPE_REVERSED)
sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth())
- ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ;
@ -742,7 +742,7 @@ void WipeTowerPrusaMM::toolchange_Unload(
for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange
if (tch.old_tool == m_current_tool) {
sum_of_depths += tch.ramming_depth;
float ramming_end_y = m_wipe_tower_pos.y + sum_of_depths;
float ramming_end_y = sum_of_depths;
ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line
// debugging:
@ -950,7 +950,7 @@ void WipeTowerPrusaMM::toolchange_Wipe(
if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) {
m_left_to_right = !m_left_to_right;
writer.travel(writer.x(), writer.y() - dy)
.travel(m_wipe_tower_pos.x + (m_left_to_right ? m_wipe_tower_width : 0.f), writer.y());
.travel(m_left_to_right ? m_wipe_tower_width : 0.f, writer.y());
}
writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow.
@ -969,7 +969,6 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower ? m_layer_info->toolchanges_depth() : 0.f))
.append(";--------------------\n"
"; CP EMPTY GRID START\n")
@ -978,14 +977,12 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
// Slow down on the 1st layer.
float speed_factor = m_is_first_layer ? 0.5f : 1.f;
float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth();
box_coordinates fill_box(m_wipe_tower_pos + xy(m_perimeter_width, m_depth_traversed + m_perimeter_width),
box_coordinates fill_box(xy(m_perimeter_width, m_depth_traversed + m_perimeter_width),
m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width);
if (m_left_to_right) // so there is never a diagonal travel
writer.set_initial_position(fill_box.ru);
else
writer.set_initial_position(fill_box.lu);
writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel
m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
box_coordinates box = fill_box;
for (int i=0;i<2;++i) {
@ -1044,6 +1041,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
m_depth_traversed = m_wipe_tower_depth-m_perimeter_width;
ToolChangeResult result;
result.priming = false;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -1165,9 +1163,9 @@ void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeRes
{
set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z);
if (m_peters_wipe_tower)
m_wipe_tower_rotation_angle += 90.f;
m_internal_rotation += 90.f;
else
m_wipe_tower_rotation_angle += 180.f;
m_internal_rotation += 180.f;
if (!m_peters_wipe_tower && m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width)
m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f;
@ -1188,7 +1186,7 @@ void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeRes
last_toolchange.gcode += buf;
}
last_toolchange.gcode += finish_layer_toolchange.gcode;
last_toolchange.extrusions.insert(last_toolchange.extrusions.end(),finish_layer_toolchange.extrusions.begin(),finish_layer_toolchange.extrusions.end());
last_toolchange.extrusions.insert(last_toolchange.extrusions.end(), finish_layer_toolchange.extrusions.begin(), finish_layer_toolchange.extrusions.end());
last_toolchange.end_pos = finish_layer_toolchange.end_pos;
}
else

View File

@ -102,6 +102,8 @@ public:
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
float get_depth() const { return m_wipe_tower_depth; }
// Switch to a next layer.
@ -189,6 +191,7 @@ private:
float m_wipe_tower_width; // Width of the wipe tower.
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
float m_internal_rotation = 0.f;
float m_y_shift = 0.f; // y shift passed to writer
float m_z_pos = 0.f; // Current Z position.
float m_layer_height = 0.f; // Current layer height.

View File

@ -1185,11 +1185,25 @@ namespace Slic3r {
{
PROFILE_FUNC();
float value;
if (line.has_value('S', value))
if (line.has_value('S', value)) {
// Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
// and it is also generated by Slic3r to control acceleration per extrusion type
// (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
set_acceleration(value);
if (line.has_value('T', value))
set_retract_acceleration(value);
} else {
// New acceleration format, compatible with the upstream Marlin.
if (line.has_value('P', value))
set_acceleration(value);
if (line.has_value('R', value))
set_retract_acceleration(value);
if (line.has_value('T', value)) {
// Interpret the T value as the travel acceleration in the new Marlin format.
//FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
// set_travel_acceleration(value);
}
}
}
void GCodeTimeEstimator::_processM205(const GCodeReader::GCodeLine& line)

View File

@ -7,11 +7,6 @@
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
#include <numeric>
#include <libnest2d.h>
#include <ClipperUtils.hpp>
#include "slic3r/GUI/GUI.hpp"
#include <float.h>
#include <boost/algorithm/string/predicate.hpp>
@ -304,342 +299,10 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
return result;
}
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
bool hasbin = bb != nullptr && bb->defined;
double area_max = 0;
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes, min_obj_distance, &area_max, hasbin]
(ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
Box bin;
if(hasbin) {
// Scale up the bounding box to clipper scale.
BoundingBoxf bbb = *bb;
bbb.scale(1.0/SCALING_FACTOR);
bin = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
}
// Will use the DJD selection heuristic with the BottomLeft placement
// strategy
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
using PConf = Arranger::PlacementConfig;
using SConf = Arranger::SelectionConfig;
PConf pcfg; // Placement configuration
SConf scfg; // Selection configuration
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// Magic: we will specify what is the goal of arrangement... In this case
// we override the default object function to make the larger items go into
// the center of the pile and smaller items orbit it so the resulting pile
// has a circle-like shape. This is good for the print bed's heat profile.
// We alse sacrafice a bit of pack efficiency for this to work. As a side
// effect, the arrange procedure is a lot faster (we do not need to
// calculate the convex hulls)
pcfg.object_function = [bin, hasbin](
NfpPlacer::Pile pile, // The currently arranged pile
double /*area*/, // Sum area of items (not needed)
double norm, // A norming factor for physical dimensions
double penality) // Min penality in case of bad arrangement
{
auto bb = ShapeLike::boundingBox(pile);
// We get the current item that's being evaluated.
auto& sh = pile.back();
// We retrieve the reference point of this item
auto rv = Nfp::referenceVertex(sh);
// We get the distance of the reference point from the center of the
// heat bed
auto c = bin.center();
auto d = PointLike::distance(rv, c);
// The score will be the normalized distance which will be minimized,
// effectively creating a circle shaped pile of items
double score = double(d)/norm;
// If it does not fit into the print bed we will beat it
// with a large penality. If we would not do this, there would be only
// one big pile that doesn't care whether it fits onto the print bed.
if(hasbin && !NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
return score;
};
// Create the arranger object
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
// Set the progress indicator for the arranger.
arranger.progressIndicator(progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
Coord batch_offset)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
};
if(first_bin_only) {
applyResult(result.front(), 0);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
bin.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
/* arrange objects preserving their instance count
but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
std::function<void(unsigned)> progressind)
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
{
bool ret = false;
if(bb != nullptr && bb->defined) {
// Despite the new arrange is able to run without a specified bin,
// the perl testsuit still fails for this case. For now the safest
// thing to do is to use the new arrange only when a proper bin is
// specified.
ret = arr::arrange(*this, dist, bb, false, progressind);
} else {
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
@ -664,9 +327,8 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
}
o->invalidate_bounding_box();
}
}
return ret;
return true;
}
// Duplicate the entire model preserving instance relative positions.
@ -1109,9 +771,23 @@ void ModelObject::scale(const Pointf3 &versor)
void ModelObject::rotate(float angle, const Axis &axis)
{
float min_z = FLT_MAX;
for (ModelVolume *v : this->volumes)
{
v->mesh.rotate(angle, axis);
this->origin_translation = Pointf3(0,0,0);
min_z = std::min(min_z, v->mesh.stl.stats.min.z);
}
if (min_z != 0.0f)
{
// translate the object so that its minimum z lays on the bed
for (ModelVolume *v : this->volumes)
{
v->mesh.translate(0.0f, 0.0f, -min_z);
}
}
this->origin_translation = Pointf3(0, 0, 0);
this->invalidate_bounding_box();
}

View File

@ -290,8 +290,7 @@ public:
void center_instances_around_point(const Pointf &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL,
std::function<void(unsigned)> progressind = [](unsigned){});
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
// Croaks if the duplicated objects do not fit the print bed.
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);

View File

@ -0,0 +1,597 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
double /*bin_area*/,
ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
double /*pile_area*/,
const Item &item,
double norm, // A norming factor for physical dimensions
std::vector<double>& areacache, // pile item areas will be cached
// a spatial index to quickly get neighbors of the candidate item
SpatIndex& spatindex
)
{
using pl = PointLike;
using sl = ShapeLike;
static const double BIG_ITEM_TRESHOLD = 0.2;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
// If a new bin has been created:
if(pile.size() < areacache.size()) {
areacache.clear();
spatindex.clear();
}
// We must fill the caches:
int idx = 0;
for(auto& p : pile) {
if(idx == areacache.size()) {
areacache.emplace_back(sl::area(p));
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
spatindex.insert({sl::boundingBox(p), idx});
}
idx++;
}
// Candidate item bounding box
auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item
pile.emplace_back(item.transformedShape());
auto fullbb = ShapeLike::boundingBox(pile);
pile.pop_back();
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// The size indicator of the candidate item. This is not the area,
// but almost...
double item_normarea = normarea(item.area());
// Will hold the resulting score
double score = 0;
if(item_normarea > BIG_ITEM_TRESHOLD) {
// This branch is for the bigger items..
// Here we will use the closest point of the item bounding box to
// the already arranged pile. So not the bb center nor the a choosen
// corner but whichever is the closest to the center. This will
// prevent some unwanted strange arrangements.
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
// Density is the pack density: how big is the arranged pile
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the aligment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = std::numeric_limits<double>::max();
auto& trsh = item.transformedShape();
auto querybb = item.boundingBox();
// Query the spatial index for the neigbours
std::vector<SpatElement> result;
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
auto& p = pile[idx];
auto parea = areacache[idx];
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neigbours
auto C = 0.33;
score = C * dist + C * density + C * alignment_score;
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
// If there are no big items, only small, we should consider the
// density here as well to not get silly results
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.6f;
}
template<class TBin>
class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
using Selector = FirstFitSelection;
using Packer = Arranger<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = ShapeLike::Shapes<PolygonImpl>;
Packer pck_;
PConfig pconf_; // Placement configuration
double bin_area_;
std::vector<double> areacache_;
SpatIndex rtree_;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind):
pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
{
fillConfig(pconf_);
pck_.progressIndicator(progressind);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
areacache_.clear();
return pck_.arrangeIndexed(std::forward<Args>(args)...);
}
};
template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<Box>(bin, dist, progressind)
{
pconf_.object_function = [this, bin] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto result = objfunc(bin.center(), bin_area_, pile,
pile_area, item, norm, areacache_, rtree_);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
auto wdiff = fullbb.width() - bin.width();
auto hdiff = fullbb.height() - bin.height();
if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
return score;
};
pck_.configure(pconf_);
}
};
template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<PolygonImpl>(bin, dist, progressind)
{
pconf_.object_function = [this, &bin] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto binbb = ShapeLike::boundingBox(bin);
auto result = objfunc(binbb.center(), bin_area_, pile,
pile_area, item, norm, areacache_, rtree_);
double score = std::get<0>(result);
pile.emplace_back(item.transformedShape());
auto chull = ShapeLike::convexHull(pile);
pile.pop_back();
// If it does not fit into the print bed we will beat it with a
// large penality. If we would not do this, there would be only one
// big pile that doesn't care whether it fits onto the print bed.
if(!Placer::wouldFit(chull, bin)) score += norm;
return score;
};
pck_.configure(pconf_);
}
};
template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
_ArrBase<Box>(Box(0, 0), dist, progressind)
{
this->pconf_.object_function = [this] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto result = objfunc({0, 0}, 0, pile, pile_area,
item, norm, areacache_, rtree_);
return std::get<0>(result);
};
this->pck_.configure(pconf_);
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
enum BedShapeHint {
BOX,
CIRCLE,
IRREGULAR,
WHO_KNOWS
};
BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
// Determine the bed shape by hand
return BOX;
}
void applyResult(
IndexedPackGroup::value_type& group,
Coord batch_offset,
ShapeData2D& shapemap)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t min_obj_distance,
const Slic3r::Polyline& bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
IndexedPackGroup result;
BoundingBox bbb(bed.points);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
switch(bedhint) {
case BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case CIRCLE:
break;
case IRREGULAR:
case WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
// std::cout << ShapeLike::toString(irrbed) << std::endl;
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
}
#endif // MODELARRANGE_HPP

View File

@ -155,6 +155,7 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
"retract_restart_extra",
"retract_restart_extra_toolchange",
"retract_speed",
"single_extruder_multi_material_priming",
"slowdown_below_layer_time",
"standby_temperature_delta",
"start_gcode",
@ -166,7 +167,10 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
"use_relative_e_distances",
"use_volumetric_e",
"variable_layer_height",
"wipe"
"wipe",
"wipe_tower_x",
"wipe_tower_y",
"wipe_tower_rotation_angle"
};
std::vector<PrintStep> steps;
@ -175,7 +179,12 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
// Always invalidate the wipe tower. This is probably necessary because of the wipe_into_infill / wipe_into_objects
// features - nearly anything can influence what should (and could) be wiped into.
// Only these three parameters don't invalidate the wipe tower (they only affect the gcode export):
for (const t_config_option_key &opt_key : opt_keys)
if (opt_key != "wipe_tower_x" && opt_key != "wipe_tower_y" && opt_key != "wipe_tower_rotation_angle") {
steps.emplace_back(psWipeTower);
break;
}
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_ignore.find(opt_key) != steps_ignore.end()) {
@ -204,6 +213,7 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|| opt_key == "filament_unloading_speed"
|| opt_key == "filament_toolchange_delay"
|| opt_key == "filament_cooling_moves"
|| opt_key == "filament_minimal_purge_on_wipe_tower"
|| opt_key == "filament_cooling_initial_speed"
|| opt_key == "filament_cooling_final_speed"
|| opt_key == "filament_ramming_parameters"
@ -212,10 +222,7 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|| opt_key == "spiral_vase"
|| opt_key == "temperature"
|| opt_key == "wipe_tower"
|| opt_key == "wipe_tower_x"
|| opt_key == "wipe_tower_y"
|| opt_key == "wipe_tower_width"
|| opt_key == "wipe_tower_rotation_angle"
|| opt_key == "wipe_tower_bridging"
|| opt_key == "wiping_volumes_matrix"
|| opt_key == "parking_pos_retraction"
@ -1051,6 +1058,8 @@ void Print::_make_wipe_tower()
if (! this->has_wipe_tower())
return;
m_wipe_tower_depth = 0.f;
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
std::vector<float> wiping_matrix((this->config.wiping_volumes_matrix.values).begin(),(this->config.wiping_volumes_matrix.values).end());
// Extract purging volumes for each extruder pair:
@ -1145,11 +1154,18 @@ void Print::_make_wipe_tower()
for (const auto extruder_id : layer_tools.extruders) {
if ((first_layer && extruder_id == m_tool_ordering.all_extruders().back()) || extruder_id != current_extruder_id) {
float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id]; // total volume to wipe after this toolchange
// Not all of that can be used for infill purging:
volume_to_wipe -= config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
// try to assign some infills/objects for the wiping:
volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, current_extruder_id, extruder_id, wipe_volumes[current_extruder_id][extruder_id]);
volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, current_extruder_id, extruder_id, volume_to_wipe);
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id, first_layer && extruder_id == m_tool_ordering.all_extruders().back(), volume_to_wipe);
// add back the minimal amount toforce on the wipe tower:
volume_to_wipe += config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
// request a toolchange at the wipe tower with at least volume_to_wipe purging amount
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id,
first_layer && extruder_id == m_tool_ordering.all_extruders().back(), volume_to_wipe);
current_extruder_id = extruder_id;
}
}
@ -1162,6 +1178,7 @@ void Print::_make_wipe_tower()
// Generate the wipe tower layers.
m_wipe_tower_tool_changes.reserve(m_tool_ordering.layer_tools().size());
wipe_tower.generate(m_wipe_tower_tool_changes);
m_wipe_tower_depth = wipe_tower.get_depth();
// Unload the current filament over the purge tower.
coordf_t layer_height = this->objects.front()->config.layer_height.value;
@ -1183,10 +1200,6 @@ void Print::_make_wipe_tower()
wipe_tower.tool_change((unsigned int)-1, false));
}
std::string Print::output_filename()
{
this->placeholder_parser.update_timestamp();
@ -1225,7 +1238,6 @@ void Print::set_status(int percent, const std::string &message)
printf("Print::status %d => %s\n", percent, message.c_str());
}
// Returns extruder this eec should be printed with, according to PrintRegion config
int Print::get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion &region)
{
@ -1233,5 +1245,4 @@ int Print::get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion
std::max<int>(region.config.perimeter_extruder.value - 1, 0);
}
}

View File

@ -273,6 +273,7 @@ public:
void add_model_object(ModelObject* model_object, int idx = -1);
bool apply_config(DynamicPrintConfig config);
float get_wipe_tower_depth() const { return m_wipe_tower_depth; }
bool has_infinite_skirt() const;
bool has_skirt() const;
// Returns an empty string if valid, otherwise returns an error message.
@ -326,6 +327,9 @@ private:
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
PrintRegionConfig _region_config_from_model_volume(const ModelVolume &volume);
// Depth of the wipe tower to pass to GLCanvas3D for exact bounding box:
float m_wipe_tower_depth = 0.f;
// Has the calculation been canceled?
tbb::atomic<bool> m_canceled;
};

View File

@ -504,15 +504,27 @@ PrintConfigDef::PrintConfigDef()
def = this->add("filament_cooling_initial_speed", coFloats);
def->label = L("Speed of the first cooling move");
def->tooltip = L("Cooling moves are gradually accelerating beginning at this speed. ");
def->cli = "filament-cooling-initial-speed=i@";
def->cli = "filament-cooling-initial-speed=f@";
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats { 2.2f };
def = this->add("filament_minimal_purge_on_wipe_tower", coFloats);
def->label = L("Minimal purge on wipe tower");
def->tooltip = L("After a toolchange, certain amount of filament is used for purging. This "
"can end up on the wipe tower, infill or sacrificial object. If there was "
"enough infill etc. available, this could result in bad quality at the beginning "
"of purging. This is a minimum that must be wiped on the wipe tower before "
"Slic3r considers moving elsewhere. ");
def->cli = "filament-minimal-purge-on-wipe-tower=f@";
def->sidetext = L("mm³");
def->min = 0;
def->default_value = new ConfigOptionFloats { 5.f };
def = this->add("filament_cooling_final_speed", coFloats);
def->label = L("Speed of the last cooling move");
def->tooltip = L("Cooling moves are gradually accelerating towards this speed. ");
def->cli = "filament-cooling-final-speed=i@";
def->cli = "filament-cooling-final-speed=f@";
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats { 3.4f };
@ -1639,6 +1651,12 @@ PrintConfigDef::PrintConfigDef()
def->cli = "single-extruder-multi-material!";
def->default_value = new ConfigOptionBool(false);
def = this->add("single_extruder_multi_material_priming", coBool);
def->label = L("Prime all printing extruders");
def->tooltip = L("If enabled, all printing extruders will be primed at the front edge of the print bed at the start of the print.");
def->cli = "single-extruder-multi-material-priming!";
def->default_value = new ConfigOptionBool(true);
def = this->add("support_material", coBool);
def->label = L("Generate support material");
def->category = L("Support material");

View File

@ -534,6 +534,7 @@ public:
ConfigOptionFloats filament_unload_time;
ConfigOptionInts filament_cooling_moves;
ConfigOptionFloats filament_cooling_initial_speed;
ConfigOptionFloats filament_minimal_purge_on_wipe_tower;
ConfigOptionFloats filament_cooling_final_speed;
ConfigOptionStrings filament_ramming_parameters;
ConfigOptionBool gcode_comments;
@ -555,6 +556,7 @@ public:
ConfigOptionString start_gcode;
ConfigOptionStrings start_filament_gcode;
ConfigOptionBool single_extruder_multi_material;
ConfigOptionBool single_extruder_multi_material_priming;
ConfigOptionString toolchange_gcode;
ConfigOptionFloat travel_speed;
ConfigOptionBool use_firmware_retraction;
@ -597,6 +599,7 @@ protected:
OPT_PTR(filament_toolchange_delay);
OPT_PTR(filament_cooling_moves);
OPT_PTR(filament_cooling_initial_speed);
OPT_PTR(filament_minimal_purge_on_wipe_tower);
OPT_PTR(filament_cooling_final_speed);
OPT_PTR(filament_ramming_parameters);
OPT_PTR(gcode_comments);
@ -616,6 +619,7 @@ protected:
OPT_PTR(retract_restart_extra_toolchange);
OPT_PTR(retract_speed);
OPT_PTR(single_extruder_multi_material);
OPT_PTR(single_extruder_multi_material_priming);
OPT_PTR(start_gcode);
OPT_PTR(start_filament_gcode);
OPT_PTR(toolchange_gcode);

View File

@ -75,6 +75,7 @@ bool PrintObject::delete_last_copy()
bool PrintObject::set_copies(const Points &points)
{
bool copies_num_changed = this->_copies.size() != points.size();
this->_copies = points;
// order copies with a nearest neighbor search and translate them by _copies_shift
@ -93,6 +94,7 @@ bool PrintObject::set_copies(const Points &points)
bool invalidated = this->_print->invalidate_step(psSkirt);
invalidated |= this->_print->invalidate_step(psBrim);
if (copies_num_changed)
invalidated |= this->_print->invalidate_step(psWipeTower);
return invalidated;
}

View File

@ -8,6 +8,7 @@
#include <unordered_map>
#include <slic3r/GUI/GUI.hpp>
#include <ModelArrange.hpp>
#include <slic3r/GUI/PresetBundle.hpp>
#include <Geometry.hpp>
@ -293,6 +294,8 @@ void AppController::arrange_model()
supports_asynch()? std::launch::async : std::launch::deferred,
[this]()
{
using Coord = libnest2d::TCoord<libnest2d::PointImpl>;
unsigned count = 0;
for(auto obj : model_->objects) count += obj->instances.size();
@ -310,13 +313,25 @@ void AppController::arrange_model()
auto dist = print_ctl()->config().min_object_distance();
BoundingBoxf bb(print_ctl()->config().bed_shape.values);
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
auto& bedpoints = print_ctl()->config().bed_shape.values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints)
bed.append(Point::new_scale(v.x, v.y));
if(pind) pind->update(0, _(L("Arranging objects...")));
try {
model_->arrange_objects(dist, &bb, [pind, count](unsigned rem){
if(pind) pind->update(count - rem, _(L("Arranging objects...")));
arr::arrange(*model_,
min_obj_distance,
bed,
arr::BOX,
false, // create many piles not just one pile
[pind, count](unsigned rem) {
if(pind)
pind->update(count - rem, _(L("Arranging objects...")));
});
} catch(std::exception& e) {
std::cerr << e.what() << std::endl;

View File

@ -644,20 +644,62 @@ std::vector<int> GLVolumeCollection::load_object(
return volumes_idx;
}
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs)
{
float color[4] = { 0.5f, 0.5f, 0.0f, 0.5f };
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width)
{
if (depth < 0.01f)
return int(this->volumes.size() - 1);
if (height == 0.0f)
height = 0.1f;
auto mesh = make_cube(width, depth, height);
mesh.translate(-width / 2.f, -depth / 2.f, 0.f);
Point origin_of_rotation(0.f, 0.f);
mesh.rotate(rotation_angle,&origin_of_rotation);
TriangleMesh mesh;
float color[4] = { 0.5f, 0.5f, 0.0f, 1.f };
// In case we don't know precise dimensions of the wipe tower yet, we'll draw the box with different color with one side jagged:
if (size_unknown) {
color[0] = 0.9f;
color[1] = 0.6f;
depth = std::max(depth, 10.f); // Too narrow tower would interfere with the teeth. The estimate is not precise anyway.
float min_width = 30.f;
// We'll now create the box with jagged edge. y-coordinates of the pre-generated model are shifted so that the front
// edge has y=0 and centerline of the back edge has y=depth:
Pointf3s points;
std::vector<Point3> facets;
float out_points_idx[][3] = {{0, -depth, 0}, {0, 0, 0}, {38.453, 0, 0}, {61.547, 0, 0}, {100, 0, 0}, {100, -depth, 0}, {55.7735, -10, 0}, {44.2265, 10, 0},
{38.453, 0, 1}, {0, 0, 1}, {0, -depth, 1}, {100, -depth, 1}, {100, 0, 1}, {61.547, 0, 1}, {55.7735, -10, 1}, {44.2265, 10, 1}};
int out_facets_idx[][3] = {{0, 1, 2}, {3, 4, 5}, {6, 5, 0}, {3, 5, 6}, {6, 2, 7}, {6, 0, 2}, {8, 9, 10}, {11, 12, 13}, {10, 11, 14}, {14, 11, 13}, {15, 8, 14},
{8, 10, 14}, {3, 12, 4}, {3, 13, 12}, {6, 13, 3}, {6, 14, 13}, {7, 14, 6}, {7, 15, 14}, {2, 15, 7}, {2, 8, 15}, {1, 8, 2}, {1, 9, 8},
{0, 9, 1}, {0, 10, 9}, {5, 10, 0}, {5, 11, 10}, {4, 11, 5}, {4, 12, 11}};
for (int i=0;i<16;++i)
points.push_back(Pointf3(out_points_idx[i][0] / (100.f/min_width), out_points_idx[i][1] + depth, out_points_idx[i][2]));
for (int i=0;i<28;++i)
facets.push_back(Point3(out_facets_idx[i][0], out_facets_idx[i][1], out_facets_idx[i][2]));
TriangleMesh tooth_mesh(points, facets);
// We have the mesh ready. It has one tooth and width of min_width. We will now append several of these together until we are close to
// the required width of the block. Than we can scale it precisely.
size_t n = std::max(1, int(width/min_width)); // How many shall be merged?
for (size_t i=0;i<n;++i) {
mesh.merge(tooth_mesh);
tooth_mesh.translate(min_width, 0.f, 0.f);
}
mesh.scale(Pointf3(width/(n*min_width), 1.f, height)); // Scaling to proper width
}
else
mesh = make_cube(width, depth, height);
// We'll make another mesh to show the brim (fixed layer height):
TriangleMesh brim_mesh = make_cube(width+2.f*brim_width, depth+2.f*brim_width, 0.2f);
brim_mesh.translate(-brim_width, -brim_width, 0.f);
mesh.merge(brim_mesh);
mesh.rotate(rotation_angle, &origin_of_rotation); // rotates the box according to the config rotation setting
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
if (use_VBOs)
v.indexed_vertex_array.load_mesh_full_shading(mesh);

View File

@ -401,7 +401,7 @@ public:
bool use_VBOs);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs);
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width);
// Render the volumes by OpenGL.
void render_VBOs() const;

View File

@ -9,6 +9,8 @@
#include "Model.hpp"
#include "boost/nowide/iostream.hpp"
#include <algorithm>
namespace Slic3r {
namespace GUI {
@ -146,20 +148,17 @@ void BedShapePanel::set_shape(ConfigOptionPoints* points)
if (lines[0].parallel_to(lines[2]) && lines[1].parallel_to(lines[3])) {
// okay, it's a rectangle
// find origin
// the || 0 hack prevents "-0" which might confuse the user
int x_min, x_max, y_min, y_max;
coordf_t x_min, x_max, y_min, y_max;
x_max = x_min = points->values[0].x;
y_max = y_min = points->values[0].y;
for (auto pt : points->values){
if (x_min > pt.x) x_min = pt.x;
if (x_max < pt.x) x_max = pt.x;
if (y_min > pt.y) y_min = pt.y;
if (y_max < pt.y) y_max = pt.y;
for (auto pt : points->values)
{
x_min = std::min(x_min, pt.x);
x_max = std::max(x_max, pt.x);
y_min = std::min(y_min, pt.y);
y_max = std::max(y_max, pt.y);
}
if (x_min < 0) x_min = 0;
if (x_max < 0) x_max = 0;
if (y_min < 0) y_min = 0;
if (y_max < 0) y_max = 0;
auto origin = new ConfigOptionPoints{ Pointf(-x_min, -y_min) };
m_shape_options_book->SetSelection(SHAPE_RECTANGULAR);

View File

@ -95,9 +95,10 @@ namespace Slic3r { namespace GUI {
wxString tooltip_text("");
wxString tooltip = _(m_opt.tooltip);
if (tooltip.length() > 0)
tooltip_text = tooltip + "(" + _(L("default")) + ": " +
(boost::iends_with(m_opt_id, "_gcode") ? "\n" : "") +
default_string + ")";
tooltip_text = tooltip + "\n " + _(L("default value")) + "\t: " +
(boost::iends_with(m_opt_id, "_gcode") ? "\n" : "") + default_string +
(boost::iends_with(m_opt_id, "_gcode") ? "" : "\n") + "\n " +
_(L("variable name")) + "\t: " + m_opt_id;
return tooltip_text;
}

View File

@ -1,12 +1,14 @@
#include <numeric>
#include <algorithm>
#include <thread>
#include <condition_variable>
#include <stdexcept>
#include <boost/format.hpp>
#include <boost/asio.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/log/trivial.hpp>
#include <boost/optional.hpp>
#include "libslic3r/Utils.hpp"
#include "avrdude/avrdude-slic3r.hpp"
@ -32,11 +34,13 @@
#include <wx/gauge.h>
#include <wx/collpane.h>
#include <wx/msgdlg.h>
#include <wx/filefn.h>
namespace fs = boost::filesystem;
namespace asio = boost::asio;
using boost::system::error_code;
using boost::optional;
namespace Slic3r {
@ -46,19 +50,31 @@ using Utils::SerialPortInfo;
using Utils::Serial;
// USB IDs used to perform device lookup
enum {
USB_VID_PRUSA = 0x2c99,
USB_PID_MK2 = 1,
USB_PID_MK3 = 2,
USB_PID_MMU_BOOT = 3,
USB_PID_MMU_APP = 4,
};
// This enum discriminates the kind of information in EVT_AVRDUDE,
// it's stored in the ExtraLong field of wxCommandEvent.
enum AvrdudeEvent
{
AE_MESSAGE,
AE_PROGRESS,
AE_STATUS,
AE_EXIT,
AE_ERROR,
};
wxDECLARE_EVENT(EVT_AVRDUDE, wxCommandEvent);
wxDEFINE_EVENT(EVT_AVRDUDE, wxCommandEvent);
wxDECLARE_EVENT(EVT_ASYNC_DIALOG, wxCommandEvent);
wxDEFINE_EVENT(EVT_ASYNC_DIALOG, wxCommandEvent);
// Private
@ -66,15 +82,17 @@ struct FirmwareDialog::priv
{
enum AvrDudeComplete
{
AC_NONE,
AC_SUCCESS,
AC_FAILURE,
AC_CANCEL,
AC_USER_CANCELLED,
};
FirmwareDialog *q; // PIMPL back pointer ("Q-Pointer")
// GUI elements
wxComboBox *port_picker;
std::vector<SerialPortInfo> ports;
wxStaticText *port_autodetect;
wxFilePickerCtrl *hex_picker;
wxStaticText *txt_status;
wxGauge *progressbar;
@ -85,43 +103,66 @@ struct FirmwareDialog::priv
wxButton *btn_flash;
wxString btn_flash_label_ready;
wxString btn_flash_label_flashing;
wxString label_status_flashing;
wxTimer timer_pulse;
// Async modal dialog during flashing
std::mutex mutex;
int modal_response;
std::condition_variable response_cv;
// Data
std::vector<SerialPortInfo> ports;
optional<SerialPortInfo> port;
HexFile hex_file;
// This is a shared pointer holding the background AvrDude task
// also serves as a status indication (it is set _iff_ the background task is running, otherwise it is reset).
AvrDude::Ptr avrdude;
std::string avrdude_config;
unsigned progress_tasks_done;
unsigned progress_tasks_bar;
bool cancelled;
bool user_cancelled;
const bool extra_verbose; // For debugging
priv(FirmwareDialog *q) :
q(q),
btn_flash_label_ready(_(L("Flash!"))),
btn_flash_label_flashing(_(L("Cancel"))),
label_status_flashing(_(L("Flashing in progress. Please do not disconnect the printer!"))),
timer_pulse(q),
avrdude_config((fs::path(::Slic3r::resources_dir()) / "avrdude" / "avrdude.conf").string()),
progress_tasks_done(0),
progress_tasks_bar(0),
cancelled(false),
user_cancelled(false),
extra_verbose(false)
{}
void find_serial_ports();
void fit_no_shrink();
void set_txt_status(const wxString &label);
void flashing_start(unsigned tasks);
void flashing_done(AvrDudeComplete complete);
void check_model_id(const HexFile &metadata, const SerialPortInfo &port);
void enable_port_picker(bool enable);
void load_hex_file(const wxString &path);
void queue_status(wxString message);
void queue_error(const wxString &message);
void prepare_common(AvrDude &, const SerialPortInfo &port, const std::string &filename);
void prepare_mk2(AvrDude &, const SerialPortInfo &port, const std::string &filename);
void prepare_mk3(AvrDude &, const SerialPortInfo &port, const std::string &filename);
void prepare_mm_control(AvrDude &, const SerialPortInfo &port, const std::string &filename);
bool ask_model_id_mismatch(const std::string &printer_model);
bool check_model_id();
void wait_for_mmu_bootloader(unsigned retries);
void mmu_reboot(const SerialPortInfo &port);
void lookup_port_mmu();
void prepare_common();
void prepare_mk2();
void prepare_mk3();
void prepare_mm_control();
void perform_upload();
void cancel();
void user_cancel();
void on_avrdude(const wxCommandEvent &evt);
void on_async_dialog(const wxCommandEvent &evt);
void ensure_joined();
};
@ -146,10 +187,32 @@ void FirmwareDialog::priv::find_serial_ports()
}
}
void FirmwareDialog::priv::fit_no_shrink()
{
// Ensure content fits into window and window is not shrinked
const auto old_size = q->GetSize();
q->Layout();
q->Fit();
const auto new_size = q->GetSize();
const auto new_width = std::max(old_size.GetWidth(), new_size.GetWidth());
const auto new_height = std::max(old_size.GetHeight(), new_size.GetHeight());
q->SetSize(new_width, new_height);
}
void FirmwareDialog::priv::set_txt_status(const wxString &label)
{
const auto width = txt_status->GetSize().GetWidth();
txt_status->SetLabel(label);
txt_status->Wrap(width);
fit_no_shrink();
}
void FirmwareDialog::priv::flashing_start(unsigned tasks)
{
modal_response = wxID_NONE;
txt_stdout->Clear();
txt_status->SetLabel(_(L("Flashing in progress. Please do not disconnect the printer!")));
set_txt_status(label_status_flashing);
txt_status->SetForegroundColour(GUI::get_label_clr_modified());
port_picker->Disable();
btn_rescan->Disable();
@ -160,7 +223,7 @@ void FirmwareDialog::priv::flashing_start(unsigned tasks)
progressbar->SetValue(0);
progress_tasks_done = 0;
progress_tasks_bar = 0;
cancelled = false;
user_cancelled = false;
timer_pulse.Start(50);
}
@ -177,54 +240,190 @@ void FirmwareDialog::priv::flashing_done(AvrDudeComplete complete)
progressbar->SetValue(progressbar->GetRange());
switch (complete) {
case AC_SUCCESS: txt_status->SetLabel(_(L("Flashing succeeded!"))); break;
case AC_FAILURE: txt_status->SetLabel(_(L("Flashing failed. Please see the avrdude log below."))); break;
case AC_CANCEL: txt_status->SetLabel(_(L("Flashing cancelled."))); break;
case AC_SUCCESS: set_txt_status(_(L("Flashing succeeded!"))); break;
case AC_FAILURE: set_txt_status(_(L("Flashing failed. Please see the avrdude log below."))); break;
case AC_USER_CANCELLED: set_txt_status(_(L("Flashing cancelled."))); break;
default: break;
}
}
void FirmwareDialog::priv::check_model_id(const HexFile &metadata, const SerialPortInfo &port)
void FirmwareDialog::priv::enable_port_picker(bool enable)
{
if (metadata.model_id.empty()) {
// No data to check against
return;
port_picker->Show(enable);
btn_rescan->Show(enable);
port_autodetect->Show(! enable);
q->Layout();
fit_no_shrink();
}
void FirmwareDialog::priv::load_hex_file(const wxString &path)
{
hex_file = HexFile(path.wx_str());
enable_port_picker(hex_file.device != HexFile::DEV_MM_CONTROL);
}
void FirmwareDialog::priv::queue_status(wxString message)
{
auto evt = new wxCommandEvent(EVT_AVRDUDE, this->q->GetId());
evt->SetExtraLong(AE_STATUS);
evt->SetString(std::move(message));
wxQueueEvent(this->q, evt);
}
void FirmwareDialog::priv::queue_error(const wxString &message)
{
auto evt = new wxCommandEvent(EVT_AVRDUDE, this->q->GetId());
evt->SetExtraLong(AE_STATUS);
evt->SetString(wxString::Format(_(L("Flashing failed: %s")), message));
wxQueueEvent(this->q, evt); avrdude->cancel();
}
bool FirmwareDialog::priv::ask_model_id_mismatch(const std::string &printer_model)
{
// model_id in the hex file doesn't match what the printer repoted.
// Ask the user if it should be flashed anyway.
std::unique_lock<std::mutex> lock(mutex);
auto evt = new wxCommandEvent(EVT_ASYNC_DIALOG, this->q->GetId());
evt->SetString(wxString::Format(_(L(
"This firmware hex file does not match the printer model.\n"
"The hex file is intended for: %s\n"
"Printer reported: %s\n\n"
"Do you want to continue and flash this hex file anyway?\n"
"Please only continue if you are sure this is the right thing to do.")),
hex_file.model_id, printer_model
));
wxQueueEvent(this->q, evt);
response_cv.wait(lock, [this]() { return this->modal_response != wxID_NONE; });
if (modal_response == wxID_YES) {
return true;
} else {
user_cancel();
return false;
}
}
asio::io_service io;
Serial serial(io, port.port, 115200);
serial.printer_setup();
bool FirmwareDialog::priv::check_model_id()
{
// XXX: The implementation in Serial doesn't currently work reliably enough to be used.
// Therefore, regretably, so far the check cannot be used and we just return true here.
// TODO: Rewrite Serial using more platform-native code.
return true;
// if (hex_file.model_id.empty()) {
// // No data to check against, assume it's ok
// return true;
// }
// asio::io_service io;
// Serial serial(io, port->port, 115200);
// serial.printer_setup();
// enum {
// TIMEOUT = 2000,
// RETREIES = 5,
// };
// if (! serial.printer_ready_wait(RETREIES, TIMEOUT)) {
// queue_error(wxString::Format(_(L("Could not connect to the printer at %s")), port->port));
// return false;
// }
// std::string line;
// error_code ec;
// serial.printer_write_line("PRUSA Rev");
// while (serial.read_line(TIMEOUT, line, ec)) {
// if (ec) {
// queue_error(wxString::Format(_(L("Could not connect to the printer at %s")), port->port));
// return false;
// }
// if (line == "ok") { continue; }
// if (line == hex_file.model_id) {
// return true;
// } else {
// return ask_model_id_mismatch(line);
// }
// line.clear();
// }
// return false;
}
void FirmwareDialog::priv::wait_for_mmu_bootloader(unsigned retries)
{
enum {
TIMEOUT = 1000,
RETREIES = 3,
SLEEP_MS = 500,
};
if (! serial.printer_ready_wait(RETREIES, TIMEOUT)) {
throw wxString::Format(_(L("Could not connect to the printer at %s")), port.port);
}
for (unsigned i = 0; i < retries && !user_cancelled; i++) {
std::this_thread::sleep_for(std::chrono::milliseconds(SLEEP_MS));
std::string line;
error_code ec;
serial.printer_write_line("PRUSA Rev");
while (serial.read_line(TIMEOUT, line, ec)) {
if (ec) { throw wxString::Format(_(L("Could not connect to the printer at %s")), port.port); }
if (line == "ok") { continue; }
auto ports = Utils::scan_serial_ports_extended();
ports.erase(std::remove_if(ports.begin(), ports.end(), [=](const SerialPortInfo &port ) {
return port.id_vendor != USB_VID_PRUSA && port.id_product != USB_PID_MMU_BOOT;
}), ports.end());
if (line == metadata.model_id) {
if (ports.size() == 1) {
port = ports[0];
return;
} else if (ports.size() > 1) {
BOOST_LOG_TRIVIAL(error) << "Several VID/PID 0x2c99/3 devices found";
queue_error(_(L("Multiple Original Prusa i3 MMU 2.0 devices found. Please only connect one at a time for flashing.")));
return;
} else {
throw wxString::Format(_(L(
"The firmware hex file does not match the printer model.\n"
"The hex file is intended for:\n %s\n"
"Printer reports:\n %s"
)), metadata.model_id, line);
}
line.clear();
}
}
void FirmwareDialog::priv::prepare_common(AvrDude &avrdude, const SerialPortInfo &port, const std::string &filename)
void FirmwareDialog::priv::mmu_reboot(const SerialPortInfo &port)
{
asio::io_service io;
Serial serial(io, port.port, 1200);
std::this_thread::sleep_for(std::chrono::milliseconds(50));
}
void FirmwareDialog::priv::lookup_port_mmu()
{
BOOST_LOG_TRIVIAL(info) << "Flashing MMU 2.0, looking for VID/PID 0x2c99/3 or 0x2c99/4 ...";
auto ports = Utils::scan_serial_ports_extended();
ports.erase(std::remove_if(ports.begin(), ports.end(), [=](const SerialPortInfo &port ) {
return port.id_vendor != USB_VID_PRUSA &&
port.id_product != USB_PID_MMU_BOOT &&
port.id_product != USB_PID_MMU_APP;
}), ports.end());
if (ports.size() == 0) {
BOOST_LOG_TRIVIAL(info) << "MMU 2.0 device not found, asking the user to press Reset and waiting for the device to show up ...";
queue_status(_(L(
"The Multi Material Control device was not found.\n"
"If the device is connected, please press the Reset button next to the USB connector ..."
)));
wait_for_mmu_bootloader(30);
} else if (ports.size() > 1) {
BOOST_LOG_TRIVIAL(error) << "Several VID/PID 0x2c99/3 devices found";
queue_error(_(L("Multiple Original Prusa i3 MMU 2.0 devices found. Please only connect one at a time for flashing.")));
} else {
if (ports[0].id_product == USB_PID_MMU_APP) {
// The device needs to be rebooted into the bootloader mode
BOOST_LOG_TRIVIAL(info) << boost::format("Found VID/PID 0x2c99/4 at `%1%`, rebooting the device ...") % ports[0].port;
mmu_reboot(ports[0]);
wait_for_mmu_bootloader(10);
} else {
port = ports[0];
}
}
}
void FirmwareDialog::priv::prepare_common()
{
std::vector<std::string> args {{
extra_verbose ? "-vvvvv" : "-v",
@ -233,10 +432,10 @@ void FirmwareDialog::priv::prepare_common(AvrDude &avrdude, const SerialPortInfo
// The Prusa's avrdude is patched to never send semicolons inside the data packets, as the USB to serial chip
// is flashed with a buggy firmware.
"-c", "wiring",
"-P", port.port,
"-b", "115200", // TODO: Allow other rates? Ditto below.
"-P", port->port,
"-b", "115200", // TODO: Allow other rates? Ditto elsewhere.
"-D",
"-U", (boost::format("flash:w:0:%1%:i") % filename).str(),
"-U", (boost::format("flash:w:0:%1%:i") % hex_file.path.string()).str(),
}};
BOOST_LOG_TRIVIAL(info) << "Invoking avrdude, arguments: "
@ -244,97 +443,75 @@ void FirmwareDialog::priv::prepare_common(AvrDude &avrdude, const SerialPortInfo
return a + ' ' + b;
});
avrdude.push_args(std::move(args));
avrdude->push_args(std::move(args));
}
void FirmwareDialog::priv::prepare_mk2(AvrDude &avrdude, const SerialPortInfo &port, const std::string &filename)
void FirmwareDialog::priv::prepare_mk2()
{
prepare_common(avrdude, port, filename);
if (! port) { return; }
if (! check_model_id()) {
avrdude->cancel();
return;
}
prepare_common();
}
void FirmwareDialog::priv::prepare_mk3(AvrDude &avrdude, const SerialPortInfo &port, const std::string &filename)
void FirmwareDialog::priv::prepare_mk3()
{
prepare_common(avrdude, port, filename);
if (! port) { return; }
if (! check_model_id()) {
avrdude->cancel();
return;
}
prepare_common();
// The hex file also contains another section with l10n data to be flashed into the external flash on MK3 (Einsy)
// This is done via another avrdude invocation, here we build arg list for that:
std::vector<std::string> args_l10n {{
std::vector<std::string> args {{
extra_verbose ? "-vvvvv" : "-v",
"-p", "atmega2560",
// Using the "Arduino" mode to program Einsy's external flash with languages, using the STK500 protocol (not the STK500v2).
// The Prusa's avrdude is patched again to never send semicolons inside the data packets.
"-c", "arduino",
"-P", port.port,
"-P", port->port,
"-b", "115200",
"-D",
"-u", // disable safe mode
"-U", (boost::format("flash:w:1:%1%:i") % filename).str(),
"-U", (boost::format("flash:w:1:%1%:i") % hex_file.path.string()).str(),
}};
BOOST_LOG_TRIVIAL(info) << "Invoking avrdude for external flash flashing, arguments: "
<< std::accumulate(std::next(args_l10n.begin()), args_l10n.end(), args_l10n[0], [](std::string a, const std::string &b) {
<< std::accumulate(std::next(args.begin()), args.end(), args[0], [](std::string a, const std::string &b) {
return a + ' ' + b;
});
avrdude.push_args(std::move(args_l10n));
avrdude->push_args(std::move(args));
}
void FirmwareDialog::priv::prepare_mm_control(AvrDude &avrdude, const SerialPortInfo &port_in, const std::string &filename)
void FirmwareDialog::priv::prepare_mm_control()
{
// Check if the port has the PID/VID of 0x2c99/3
// If not, check if it is the MMU (0x2c99/4) and reboot the by opening @ 1200 bauds
BOOST_LOG_TRIVIAL(info) << "Flashing MMU 2.0, looking for VID/PID 0x2c99/3 or 0x2c99/4 ...";
SerialPortInfo port = port_in;
if (! port.id_match(0x2c99, 3)) {
if (! port.id_match(0x2c99, 4)) {
// This is not a Prusa MMU 2.0 device
BOOST_LOG_TRIVIAL(error) << boost::format("Not a Prusa MMU 2.0 device: `%1%`") % port.port;
throw wxString::Format(_(L("The device at `%s` is not am Original Prusa i3 MMU 2.0 device")), port.port);
port = boost::none;
lookup_port_mmu();
if (! port) {
queue_error(_(L("The device could not have been found")));
return;
}
BOOST_LOG_TRIVIAL(info) << boost::format("Found VID/PID 0x2c99/4 at `%1%`, rebooting the device ...") % port.port;
{
asio::io_service io;
Serial serial(io, port.port, 1200);
std::this_thread::sleep_for(std::chrono::milliseconds(50));
}
// Wait for the bootloader to show up
std::this_thread::sleep_for(std::chrono::milliseconds(2000));
// Look for the rebooted device
BOOST_LOG_TRIVIAL(info) << "... looking for VID/PID 0x2c99/3 ...";
auto new_ports = Utils::scan_serial_ports_extended();
unsigned hits = 0;
for (auto &&new_port : new_ports) {
if (new_port.id_match(0x2c99, 3)) {
hits++;
port = std::move(new_port);
}
}
if (hits == 0) {
BOOST_LOG_TRIVIAL(error) << "No VID/PID 0x2c99/3 device found after rebooting the MMU 2.0";
throw wxString::Format(_(L("Failed to reboot the device at `%s` for programming")), port.port);
} else if (hits > 1) {
// We found multiple 0x2c99/3 devices, this is bad, because there's no way to find out
// which one is the one user wants to flash.
BOOST_LOG_TRIVIAL(error) << "Several VID/PID 0x2c99/3 devices found after rebooting the MMU 2.0";
throw wxString::Format(_(L("Multiple Original Prusa i3 MMU 2.0 devices found. Please only connect one at a time for flashing.")), port.port);
}
}
BOOST_LOG_TRIVIAL(info) << boost::format("Found VID/PID 0x2c99/3 at `%1%`, flashing ...") % port.port;
BOOST_LOG_TRIVIAL(info) << boost::format("Found VID/PID 0x2c99/3 at `%1%`, flashing ...") % port->port;
queue_status(label_status_flashing);
std::vector<std::string> args {{
extra_verbose ? "-vvvvv" : "-v",
"-p", "atmega32u4",
"-c", "avr109",
"-P", port.port,
"-P", port->port,
"-b", "57600",
"-D",
"-U", (boost::format("flash:w:0:%1%:i") % filename).str(),
"-U", (boost::format("flash:w:0:%1%:i") % hex_file.path.string()).str(),
}};
BOOST_LOG_TRIVIAL(info) << "Invoking avrdude, arguments: "
@ -342,7 +519,7 @@ void FirmwareDialog::priv::prepare_mm_control(AvrDude &avrdude, const SerialPort
return a + ' ' + b;
});
avrdude.push_args(std::move(args));
avrdude->push_args(std::move(args));
}
@ -351,20 +528,21 @@ void FirmwareDialog::priv::perform_upload()
auto filename = hex_picker->GetPath();
if (filename.IsEmpty()) { return; }
int selection = port_picker->GetSelection();
if (selection == wxNOT_FOUND) { return; }
load_hex_file(filename); // Might already be loaded, but we want to make sure it's fresh
int selection = port_picker->GetSelection();
if (selection != wxNOT_FOUND) {
port = this->ports[selection];
const SerialPortInfo &port = this->ports[selection];
// Verify whether the combo box list selection equals to the combo box edit value.
if (wxString::FromUTF8(this->ports[selection].friendly_name.data()) != port_picker->GetValue()) {
if (wxString::FromUTF8(port->friendly_name.data()) != port_picker->GetValue()) {
return;
}
}
const bool extra_verbose = false; // For debugging
HexFile metadata(filename.wx_str());
const std::string filename_utf8(filename.utf8_str().data());
flashing_start(metadata.device == HexFile::DEV_MK3 ? 2 : 1);
flashing_start(hex_file.device == HexFile::DEV_MK3 ? 2 : 1);
// Init the avrdude object
AvrDude avrdude(avrdude_config);
@ -374,36 +552,23 @@ void FirmwareDialog::priv::perform_upload()
auto q = this->q;
this->avrdude = avrdude
.on_run([=](AvrDude &avrdude) {
auto queue_error = [&](wxString message) {
avrdude.cancel();
auto evt = new wxCommandEvent(EVT_AVRDUDE, this->q->GetId());
evt->SetExtraLong(AE_ERROR);
evt->SetString(std::move(message));
wxQueueEvent(this->q, evt);
};
.on_run([this]() {
try {
switch (metadata.device) {
switch (this->hex_file.device) {
case HexFile::DEV_MK3:
this->check_model_id(metadata, port);
this->prepare_mk3(avrdude, port, filename_utf8);
this->prepare_mk3();
break;
case HexFile::DEV_MM_CONTROL:
this->check_model_id(metadata, port);
this->prepare_mm_control(avrdude, port, filename_utf8);
this->prepare_mm_control();
break;
default:
this->prepare_mk2(avrdude, port, filename_utf8);
this->prepare_mk2();
break;
}
} catch (const wxString &message) {
queue_error(message);
} catch (const std::exception &ex) {
queue_error(wxString::Format(_(L("Error accessing port at %s: %s")), port.port, ex.what()));
queue_error(wxString::Format(_(L("Error accessing port at %s: %s")), port->port, ex.what()));
}
})
.on_message(std::move([q, extra_verbose](const char *msg, unsigned /* size */) {
@ -423,20 +588,19 @@ void FirmwareDialog::priv::perform_upload()
evt->SetInt(progress);
wxQueueEvent(q, evt);
}))
.on_complete(std::move([q](int status, size_t /* args_id */) {
auto evt = new wxCommandEvent(EVT_AVRDUDE, q->GetId());
.on_complete(std::move([this]() {
auto evt = new wxCommandEvent(EVT_AVRDUDE, this->q->GetId());
evt->SetExtraLong(AE_EXIT);
evt->SetInt(status);
wxQueueEvent(q, evt);
evt->SetInt(this->avrdude->exit_code());
wxQueueEvent(this->q, evt);
}))
.run();
}
void FirmwareDialog::priv::cancel()
void FirmwareDialog::priv::user_cancel()
{
if (avrdude) {
cancelled = true;
txt_status->SetLabel(_(L("Cancelling...")));
user_cancelled = true;
avrdude->cancel();
}
}
@ -474,19 +638,17 @@ void FirmwareDialog::priv::on_avrdude(const wxCommandEvent &evt)
case AE_EXIT:
BOOST_LOG_TRIVIAL(info) << "avrdude exit code: " << evt.GetInt();
complete_kind = cancelled ? AC_CANCEL : (evt.GetInt() == 0 ? AC_SUCCESS : AC_FAILURE);
// Figure out the exit state
if (user_cancelled) { complete_kind = AC_USER_CANCELLED; }
else if (avrdude->cancelled()) { complete_kind = AC_NONE; } // Ie. cancelled programatically
else { complete_kind = evt.GetInt() == 0 ? AC_SUCCESS : AC_FAILURE; }
flashing_done(complete_kind);
ensure_joined();
break;
case AE_ERROR:
txt_stdout->AppendText(evt.GetString());
flashing_done(AC_FAILURE);
ensure_joined();
{
GUI::ErrorDialog dlg(this->q, evt.GetString());
dlg.ShowModal();
}
case AE_STATUS:
set_txt_status(evt.GetString());
break;
default:
@ -494,6 +656,16 @@ void FirmwareDialog::priv::on_avrdude(const wxCommandEvent &evt)
}
}
void FirmwareDialog::priv::on_async_dialog(const wxCommandEvent &evt)
{
wxMessageDialog dlg(this->q, evt.GetString(), wxMessageBoxCaptionStr, wxYES_NO | wxNO_DEFAULT | wxICON_QUESTION);
{
std::lock_guard<std::mutex> lock(mutex);
modal_response = dlg.ShowModal();
}
response_cv.notify_all();
}
void FirmwareDialog::priv::ensure_joined()
{
// Make sure the background thread is collected and the AvrDude object reset
@ -521,44 +693,50 @@ FirmwareDialog::FirmwareDialog(wxWindow *parent) :
wxFont mono_font(wxFontInfo().Family(wxFONTFAMILY_TELETYPE));
mono_font.MakeSmaller();
// Create GUI components and layout
auto *panel = new wxPanel(this);
wxBoxSizer *vsizer = new wxBoxSizer(wxVERTICAL);
panel->SetSizer(vsizer);
auto *label_hex_picker = new wxStaticText(panel, wxID_ANY, _(L("Firmware image:")));
p->hex_picker = new wxFilePickerCtrl(panel, wxID_ANY);
auto *label_port_picker = new wxStaticText(panel, wxID_ANY, _(L("Serial port:")));
p->port_picker = new wxComboBox(panel, wxID_ANY);
p->port_autodetect = new wxStaticText(panel, wxID_ANY, _(L("Autodetected")));
p->btn_rescan = new wxButton(panel, wxID_ANY, _(L("Rescan")));
auto *port_sizer = new wxBoxSizer(wxHORIZONTAL);
port_sizer->Add(p->port_picker, 1, wxEXPAND | wxRIGHT, SPACING);
port_sizer->Add(p->btn_rescan, 0);
port_sizer->Add(p->port_autodetect, 1, wxEXPAND);
p->enable_port_picker(true);
auto *label_hex_picker = new wxStaticText(panel, wxID_ANY, _(L("Firmware image:")));
p->hex_picker = new wxFilePickerCtrl(panel, wxID_ANY);
auto *label_progress = new wxStaticText(panel, wxID_ANY, _(L("Progress:")));
p->progressbar = new wxGauge(panel, wxID_ANY, 1, wxDefaultPosition, wxDefaultSize, wxGA_HORIZONTAL | wxGA_SMOOTH);
auto *label_status = new wxStaticText(panel, wxID_ANY, _(L("Status:")));
p->txt_status = new wxStaticText(panel, wxID_ANY, _(L("Ready")));
p->txt_status->SetFont(status_font);
auto *label_progress = new wxStaticText(panel, wxID_ANY, _(L("Progress:")));
p->progressbar = new wxGauge(panel, wxID_ANY, 1, wxDefaultPosition, wxDefaultSize, wxGA_HORIZONTAL | wxGA_SMOOTH);
auto *grid = new wxFlexGridSizer(2, SPACING, SPACING);
grid->AddGrowableCol(1);
grid->Add(label_port_picker, 0, wxALIGN_CENTER_VERTICAL);
grid->Add(port_sizer, 0, wxEXPAND);
grid->Add(label_hex_picker, 0, wxALIGN_CENTER_VERTICAL);
grid->Add(p->hex_picker, 0, wxEXPAND);
grid->Add(label_status, 0, wxALIGN_CENTER_VERTICAL);
grid->Add(p->txt_status, 0, wxEXPAND);
grid->Add(label_port_picker, 0, wxALIGN_CENTER_VERTICAL);
grid->Add(port_sizer, 0, wxEXPAND);
grid->Add(label_progress, 0, wxALIGN_CENTER_VERTICAL);
grid->Add(p->progressbar, 1, wxEXPAND | wxALIGN_CENTER_VERTICAL);
grid->Add(label_status, 0, wxALIGN_CENTER_VERTICAL);
grid->Add(p->txt_status, 0, wxEXPAND);
vsizer->Add(grid, 0, wxEXPAND | wxTOP | wxBOTTOM, SPACING);
p->spoiler = new wxCollapsiblePane(panel, wxID_ANY, _(L("Advanced: avrdude output log")));
p->spoiler = new wxCollapsiblePane(panel, wxID_ANY, _(L("Advanced: avrdude output log")), wxDefaultPosition, wxDefaultSize, wxCP_DEFAULT_STYLE | wxCP_NO_TLW_RESIZE);
auto *spoiler_pane = p->spoiler->GetPane();
auto *spoiler_sizer = new wxBoxSizer(wxVERTICAL);
p->txt_stdout = new wxTextCtrl(spoiler_pane, wxID_ANY, wxEmptyString, wxDefaultPosition, wxDefaultSize, wxTE_MULTILINE | wxTE_READONLY);
@ -571,6 +749,7 @@ FirmwareDialog::FirmwareDialog(wxWindow *parent) :
p->btn_close = new wxButton(panel, wxID_CLOSE);
p->btn_flash = new wxButton(panel, wxID_ANY, p->btn_flash_label_ready);
p->btn_flash->Disable();
auto *bsizer = new wxBoxSizer(wxHORIZONTAL);
bsizer->Add(p->btn_close);
bsizer->AddStretchSpacer();
@ -585,16 +764,26 @@ FirmwareDialog::FirmwareDialog(wxWindow *parent) :
SetSize(std::max(size.GetWidth(), static_cast<int>(MIN_WIDTH)), std::max(size.GetHeight(), static_cast<int>(MIN_HEIGHT)));
Layout();
// Bind events
p->hex_picker->Bind(wxEVT_FILEPICKER_CHANGED, [this](wxFileDirPickerEvent& evt) {
if (wxFileExists(evt.GetPath())) {
this->p->load_hex_file(evt.GetPath());
this->p->btn_flash->Enable();
}
});
p->spoiler->Bind(wxEVT_COLLAPSIBLEPANE_CHANGED, [this](wxCollapsiblePaneEvent &evt) {
// Dialog size gets screwed up by wxCollapsiblePane, we need to fix it here
if (evt.GetCollapsed()) {
this->SetMinSize(wxSize(MIN_WIDTH, MIN_HEIGHT));
const auto new_height = this->GetSize().GetHeight() - this->p->txt_stdout->GetSize().GetHeight();
this->SetSize(this->GetSize().GetWidth(), new_height);
} else {
this->SetMinSize(wxSize(MIN_WIDTH, MIN_HEIGHT_EXPANDED));
}
this->Fit();
this->Layout();
this->p->fit_no_shrink();
});
p->btn_close->Bind(wxEVT_BUTTON, [this](wxCommandEvent &) { this->Close(); });
@ -608,7 +797,8 @@ FirmwareDialog::FirmwareDialog(wxWindow *parent) :
_(L("Confirmation")),
wxYES_NO | wxNO_DEFAULT | wxICON_QUESTION);
if (dlg.ShowModal() == wxID_YES) {
this->p->cancel();
this->p->set_txt_status(_(L("Cancelling...")));
this->p->user_cancel();
}
} else {
// Start a flashing task
@ -619,6 +809,7 @@ FirmwareDialog::FirmwareDialog(wxWindow *parent) :
Bind(wxEVT_TIMER, [this](wxTimerEvent &evt) { this->p->progressbar->Pulse(); });
Bind(EVT_AVRDUDE, [this](wxCommandEvent &evt) { this->p->on_avrdude(evt); });
Bind(EVT_ASYNC_DIALOG, [this](wxCommandEvent &evt) { this->p->on_async_dialog(evt); });
Bind(wxEVT_CLOSE_WINDOW, [this](wxCloseEvent &evt) {
if (this->p->avrdude) {

View File

@ -1941,12 +1941,23 @@ void GLCanvas3D::set_model(Model* model)
void GLCanvas3D::set_bed_shape(const Pointfs& shape)
{
bool new_shape = (shape != m_bed.get_shape());
if (new_shape)
m_bed.set_shape(shape);
// Set the origin and size for painting of the coordinate system axes.
m_axes.origin = Pointf3(0.0, 0.0, (coordf_t)GROUND_Z);
set_axes_length(0.3f * (float)m_bed.get_bounding_box().max_size());
if (new_shape)
{
// forces the selection of the proper camera target
if (m_volumes.volumes.empty())
zoom_to_bed();
else
zoom_to_volumes();
}
m_dirty = true;
}
@ -2303,7 +2314,12 @@ void GLCanvas3D::reload_scene(bool force)
float w = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_width"))->value;
float a = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_rotation_angle"))->value;
m_volumes.load_wipe_tower_preview(1000, x, y, w, 15.0f * (float)(extruders_count - 1), (float)height, a, m_use_VBOs && m_initialized);
float depth = m_print->get_wipe_tower_depth();
if (!m_print->state.is_done(psWipeTower))
depth = (900.f/w) * (float)(extruders_count - 1) ;
m_volumes.load_wipe_tower_preview(1000, x, y, w, depth, (float)height, a, m_use_VBOs && m_initialized, !m_print->state.is_done(psWipeTower),
m_print->config.nozzle_diameter.values[0] * 1.25f * 4.5f);
}
}
@ -3372,7 +3388,7 @@ void GLCanvas3D::_camera_tranform() const
::glMatrixMode(GL_MODELVIEW);
::glLoadIdentity();
::glRotatef(-m_camera.get_theta(), 1.0f, 0.0f, 0.0f); // pitch
::glRotatef(-m_camera.get_theta(), 1.0f, 0.0f, 0.0f); // pitch
::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f); // yaw
Pointf3 neg_target = m_camera.target.negative();
@ -4052,6 +4068,8 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
{
const Print *print;
const std::vector<float> *tool_colors;
WipeTower::xy wipe_tower_pos;
float wipe_tower_angle;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max() { return 131072; } // 3.15MB
@ -4079,11 +4097,14 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
ctxt.print = m_print;
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
if (m_print->m_wipe_tower_priming)
if (m_print->m_wipe_tower_priming && m_print->config.single_extruder_multi_material_priming)
ctxt.priming.emplace_back(*m_print->m_wipe_tower_priming.get());
if (m_print->m_wipe_tower_final_purge)
ctxt.final.emplace_back(*m_print->m_wipe_tower_final_purge.get());
ctxt.wipe_tower_angle = ctxt.print->config.wipe_tower_rotation_angle.value/180.f * M_PI;
ctxt.wipe_tower_pos = WipeTower::xy(ctxt.print->config.wipe_tower_x.value, ctxt.print->config.wipe_tower_y.value);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
@ -4141,12 +4162,25 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
lines.reserve(n_lines);
widths.reserve(n_lines);
heights.assign(n_lines, extrusions.layer_height);
WipeTower::Extrusion e_prev = extrusions.extrusions[i-1];
if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation
e_prev.pos.rotate(ctxt.wipe_tower_angle);
e_prev.pos.translate(ctxt.wipe_tower_pos);
}
for (; i < j; ++i) {
const WipeTower::Extrusion &e = extrusions.extrusions[i];
WipeTower::Extrusion e = extrusions.extrusions[i];
assert(e.width > 0.f);
const WipeTower::Extrusion &e_prev = *(&e - 1);
if (!extrusions.priming) {
e.pos.rotate(ctxt.wipe_tower_angle);
e.pos.translate(ctxt.wipe_tower_pos);
}
lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
widths.emplace_back(e.width);
e_prev = e;
}
_3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
*vols[ctxt.volume_idx(e.tool, 0)]);
@ -4705,8 +4739,11 @@ void GLCanvas3D::_load_shells()
const PrintConfig& config = m_print->config;
unsigned int extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
const float width_per_extruder = 15.0f; // a simple workaround after wipe_tower_per_color_wipe got obsolete
m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, width_per_extruder * (extruders_count - 1), max_z, config.wipe_tower_rotation_angle, m_use_VBOs && m_initialized);
float depth = m_print->get_wipe_tower_depth();
if (!m_print->state.is_done(psWipeTower))
depth = (900.f/config.wipe_tower_width) * (float)(extruders_count - 1) ;
m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
m_use_VBOs && m_initialized, !m_print->state.is_done(psWipeTower), m_print->config.nozzle_diameter.values[0] * 1.25f * 4.5f);
}
}
@ -4812,7 +4849,7 @@ void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
if (m_model == nullptr)
return;
std::set<std::string> done; // prevent moving instances twice
std::set<std::string> done; // prevent moving instances twice
bool object_moved = false;
Pointf3 wipe_tower_origin(0.0, 0.0, 0.0);
for (int volume_idx : volume_idxs)
@ -4821,7 +4858,7 @@ void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
int obj_idx = volume->object_idx();
int instance_idx = volume->instance_idx();
// prevent moving instances twice
// prevent moving instances twice
char done_id[64];
::sprintf(done_id, "%d_%d", obj_idx, instance_idx);
if (done.find(done_id) != done.end())

View File

@ -903,6 +903,7 @@ void add_frequently_changed_parameters(wxWindow* parent, wxBoxSizer* sizer, wxFl
std::vector<float> extruders = dlg.get_extruders();
(config.option<ConfigOptionFloats>("wiping_volumes_matrix"))->values = std::vector<double>(matrix.begin(),matrix.end());
(config.option<ConfigOptionFloats>("wiping_volumes_extruders"))->values = std::vector<double>(extruders.begin(),extruders.end());
g_on_request_update_callback.call();
}
}));
return sizer;
@ -919,6 +920,10 @@ ConfigOptionsGroup* get_optgroup()
return m_optgroup.get();
}
void register_on_request_update_callback(void* callback) {
if (callback != nullptr)
g_on_request_update_callback.register_callback(callback);
}
wxButton* get_wiping_dialog_button()
{

View File

@ -4,6 +4,7 @@
#include <string>
#include <vector>
#include "Config.hpp"
#include "../../libslic3r/Utils.hpp"
#include <wx/intl.h>
#include <wx/string.h>
@ -171,6 +172,9 @@ wxString from_u8(const std::string &str);
void add_frequently_changed_parameters(wxWindow* parent, wxBoxSizer* sizer, wxFlexGridSizer* preset_sizer);
static PerlCallback g_on_request_update_callback;
void register_on_request_update_callback(void* callback);
ConfigOptionsGroup* get_optgroup();
wxButton* get_wiping_dialog_button();

View File

@ -303,8 +303,8 @@ const std::vector<std::string>& Preset::print_options()
"perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width",
"top_infill_extrusion_width", "support_material_extrusion_width", "infill_overlap", "bridge_flow_ratio", "clip_multipart_objects",
"elefant_foot_compensation", "xy_size_compensation", "threads", "resolution", "wipe_tower", "wipe_tower_x", "wipe_tower_y",
"wipe_tower_width", "wipe_tower_rotation_angle", "wipe_tower_bridging", "compatible_printers",
"compatible_printers_condition","inherits"
"wipe_tower_width", "wipe_tower_rotation_angle", "wipe_tower_bridging", "single_extruder_multi_material_priming",
"compatible_printers", "compatible_printers_condition","inherits"
};
return s_opts;
}
@ -315,10 +315,11 @@ const std::vector<std::string>& Preset::filament_options()
"filament_colour", "filament_diameter", "filament_type", "filament_soluble", "filament_notes", "filament_max_volumetric_speed",
"extrusion_multiplier", "filament_density", "filament_cost",
"filament_loading_speed", "filament_load_time", "filament_unloading_speed", "filament_unload_time", "filament_toolchange_delay",
"filament_cooling_moves", "filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters", "temperature",
"first_layer_temperature", "bed_temperature", "first_layer_bed_temperature", "fan_always_on", "cooling", "min_fan_speed", "max_fan_speed",
"bridge_fan_speed", "disable_fan_first_layers", "fan_below_layer_time", "slowdown_below_layer_time", "min_print_speed",
"start_filament_gcode", "end_filament_gcode","compatible_printers", "compatible_printers_condition", "inherits"
"filament_cooling_moves", "filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters",
"filament_minimal_purge_on_wipe_tower", "temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature",
"fan_always_on", "cooling", "min_fan_speed", "max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "fan_below_layer_time",
"slowdown_below_layer_time", "min_print_speed", "start_filament_gcode", "end_filament_gcode","compatible_printers", "compatible_printers_condition",
"inherits"
};
return s_opts;
}

View File

@ -919,6 +919,7 @@ void TabPrint::build()
optgroup->append_single_option_line("wipe_tower_width");
optgroup->append_single_option_line("wipe_tower_rotation_angle");
optgroup->append_single_option_line("wipe_tower_bridging");
optgroup->append_single_option_line("single_extruder_multi_material_priming");
optgroup = page->new_optgroup(_(L("Advanced")));
optgroup->append_single_option_line("interface_shells");
@ -1297,6 +1298,7 @@ void TabFilament::build()
optgroup->append_single_option_line("filament_cooling_moves");
optgroup->append_single_option_line("filament_cooling_initial_speed");
optgroup->append_single_option_line("filament_cooling_final_speed");
optgroup->append_single_option_line("filament_minimal_purge_on_wipe_tower");
line = { _(L("Ramming")), "" };
line.widget = [this](wxWindow* parent){

View File

@ -46,8 +46,7 @@ static size_t hex_num_sections(fs::ifstream &file)
}
HexFile::HexFile(fs::path path) :
path(std::move(path)),
device(DEV_GENERIC)
path(std::move(path))
{
fs::ifstream file(this->path);
if (! file.good()) {

View File

@ -19,9 +19,10 @@ struct HexFile
};
boost::filesystem::path path;
DeviceKind device;
DeviceKind device = DEV_GENERIC;
std::string model_id;
HexFile() {}
HexFile(boost::filesystem::path path);
};

View File

@ -373,7 +373,7 @@ void Serial::set_DTR(bool on)
void Serial::reset_line_num()
{
// See https://github.com/MarlinFirmware/Marlin/wiki/M110
printer_write_line("M110 N0", 0);
write_string("M110 N0\n");
m_line_num = 0;
}
@ -390,9 +390,9 @@ bool Serial::read_line(unsigned timeout, std::string &line, error_code &ec)
asio::async_read(*this, boost::asio::buffer(&c, 1), [&](const error_code &read_ec, size_t size) {
if (ec || size == 0) {
fail = true;
ec = read_ec;
ec = read_ec; // FIXME: only if operation not aborted
}
timer.cancel();
timer.cancel(); // FIXME: ditto
});
if (timeout > 0) {
@ -444,6 +444,7 @@ bool Serial::printer_ready_wait(unsigned retries, unsigned timeout)
}
line.clear();
}
line.clear();
}
@ -469,7 +470,7 @@ void Serial::printer_reset()
this->set_DTR(true);
std::this_thread::sleep_for(std::chrono::milliseconds(200));
this->set_DTR(false);
std::this_thread::sleep_for(std::chrono::milliseconds(2000));
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
std::string Serial::printer_format_line(const std::string &line, unsigned line_num)

View File

@ -51,12 +51,13 @@ public:
// Reads a line or times out, the timeout is in milliseconds
bool read_line(unsigned timeout, std::string &line, boost::system::error_code &ec);
// Perform setup for communicating with a printer
// Perform an initial setup for communicating with a printer
void printer_setup();
// Write data from a string
size_t write_string(const std::string &str);
// Attempts to reset the line numer and waits until the printer says "ok"
bool printer_ready_wait(unsigned retries, unsigned timeout);
// Write Marlin-formatted line, with a line number and a checksum

View File

@ -104,3 +104,12 @@ void fix_model_by_win10_sdk_gui(ModelObject *model_object_src, Print *print, Mod
void set_3DScene(SV *scene)
%code%{ Slic3r::GUI::set_3DScene((_3DScene *)wxPli_sv_2_object(aTHX_ scene, "Slic3r::Model::3DScene") ); %};
%package{Slic3r::_GUI};
%{
void
register_on_request_update_callback(callback)
SV *callback;
CODE:
Slic3r::GUI::register_on_request_update_callback((void*)callback);
%}

View File

@ -89,7 +89,7 @@
std::vector<int> load_object(ModelObject *object, int obj_idx, std::vector<int> instance_idxs, std::string color_by, std::string select_by, std::string drag_by, bool use_VBOs);
int load_wipe_tower_preview(int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs);
int load_wipe_tower_preview(int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width);
void erase()
%code{% THIS->clear(); %};