Solution for stupid arrangement of rotated items and some fine tuning.

This commit is contained in:
tamasmeszaros 2018-08-08 12:51:17 +02:00
parent 20b7aad6d1
commit ad92aa7486

View file

@ -167,10 +167,6 @@ objfunc(const PointImpl& bincenter,
if(isBig(item.area())) {
// This branch is for the bigger items..
// Here we will use the closest point of the item bounding box to
// the already arranged pile. So not the bb center nor the a choosen
// corner but whichever is the closest to the center. This will
// prevent some unwanted strange arrangements.
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
@ -211,17 +207,11 @@ objfunc(const PointImpl& bincenter,
// its neighbors. We will check the aligment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = std::numeric_limits<double>::max();
auto alignment_score = 1.0;
density = (fullbb.width()*fullbb.height()) / (norm*norm);
auto& trsh = item.transformedShape();
auto querybb = item.boundingBox();
auto wp = querybb.width()*0.2;
auto hp = querybb.height()*0.2;
auto pad = PointImpl( Coord(wp), Coord(hp));
querybb = Box({ querybb.minCorner() - pad,
querybb.maxCorner() + pad
});
// Query the spatial index for the neigbours
std::vector<SpatElement> result;
@ -229,26 +219,17 @@ objfunc(const PointImpl& bincenter,
spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
// if(result.empty()) {
// std::cout << "Error while arranging!" << std::endl;
// std::cout << spatindex.size() << " " << pile.size() << std::endl;
// auto ib = spatindex.bounds();
// Box ibb;
// boost::geometry::convert(ib, ibb);
// std::cout << "Inside: " << (sl::isInside<PolygonImpl>(querybb, ibb) ||
// boost::geometry::intersects(querybb, ibb)) << std::endl;
// }
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
auto& p = pile[idx];
auto parea = areacache[idx];
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
if(ascore < alignment_score) alignment_score = ascore;
}
}
// The final mix of the score is the balance between the distance
@ -258,15 +239,12 @@ objfunc(const PointImpl& bincenter,
score = 0.5 * dist + 0.5 * density;
else
score = 0.45 * dist + 0.45 * density + 0.1 * alignment_score;
}
} else if( !isBig(item.area()) && spatindex.empty()) {
// If there are no big items, only small, we should consider the
// density here as well to not get silly results
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
// Bindist is surprisingly enough...
score = bindist;
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
@ -294,7 +272,7 @@ void fillConfig(PConf& pcfg) {
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.6f;
pcfg.accuracy = 0.65f;
}
template<class TBin>