Fixed conflicts after merge with master

This commit is contained in:
enricoturri1966 2020-09-11 08:18:41 +02:00
commit aedb3892ba
29 changed files with 1473 additions and 475 deletions

View File

@ -101,6 +101,9 @@ void AppConfig::set_defaults()
if (get("use_inches").empty()) if (get("use_inches").empty())
set("use_inches", "0"); set("use_inches", "0");
if (get("show_splash_screen").empty())
set("show_splash_screen", "1");
// Remove legacy window positions/sizes // Remove legacy window positions/sizes
erase("", "main_frame_maximized"); erase("", "main_frame_maximized");
erase("", "main_frame_pos"); erase("", "main_frame_pos");

View File

@ -215,7 +215,9 @@ add_library(libslic3r STATIC
SimplifyMeshImpl.hpp SimplifyMeshImpl.hpp
SimplifyMesh.cpp SimplifyMesh.cpp
MarchingSquares.hpp MarchingSquares.hpp
Optimizer.hpp Optimize/Optimizer.hpp
Optimize/NLoptOptimizer.hpp
Optimize/BruteforceOptimizer.hpp
${OpenVDBUtils_SOURCES} ${OpenVDBUtils_SOURCES}
SLA/Pad.hpp SLA/Pad.hpp
SLA/Pad.cpp SLA/Pad.cpp

View File

@ -318,7 +318,7 @@ void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill>
#endif #endif
// friend to Layer // friend to Layer
void Layer::make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree) void Layer::make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree, FillAdaptive_Internal::Octree* support_fill_octree)
{ {
for (LayerRegion *layerm : m_regions) for (LayerRegion *layerm : m_regions)
layerm->fills.clear(); layerm->fills.clear();
@ -346,6 +346,7 @@ void Layer::make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree)
f->z = this->print_z; f->z = this->print_z;
f->angle = surface_fill.params.angle; f->angle = surface_fill.params.angle;
f->adapt_fill_octree = adaptive_fill_octree; f->adapt_fill_octree = adaptive_fill_octree;
f->support_fill_octree = support_fill_octree;
// calculate flow spacing for infill pattern generation // calculate flow spacing for infill pattern generation
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.flow.bridge; bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.flow.bridge;

View File

@ -35,7 +35,7 @@ std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_ob
const PrintRegionConfig &config = region->config(); const PrintRegionConfig &config = region->config();
bool nonempty = config.fill_density > 0; bool nonempty = config.fill_density > 0;
bool has_adaptive_infill = nonempty && config.fill_pattern == ipAdaptiveCubic; bool has_adaptive_infill = nonempty && config.fill_pattern == ipAdaptiveCubic;
bool has_support_infill = nonempty && false; // config.fill_pattern == icSupportCubic; bool has_support_infill = nonempty && config.fill_pattern == ipSupportCubic;
region_fill_data.push_back(RegionFillData({ region_fill_data.push_back(RegionFillData({
has_adaptive_infill ? Tristate::Maybe : Tristate::No, has_adaptive_infill ? Tristate::Maybe : Tristate::No,
has_support_infill ? Tristate::Maybe : Tristate::No, has_support_infill ? Tristate::Maybe : Tristate::No,
@ -90,19 +90,32 @@ std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_ob
return std::make_pair(adaptive_line_spacing, support_line_spacing); return std::make_pair(adaptive_line_spacing, support_line_spacing);
} }
void FillAdaptive::_fill_surface_single( void FillAdaptive::_fill_surface_single(const FillParams & params,
const FillParams &params, unsigned int thickness_layers,
unsigned int thickness_layers, const std::pair<float, Point> &direction,
const std::pair<float, Point> &direction, ExPolygon & expolygon,
ExPolygon &expolygon, Polylines & polylines_out)
Polylines &polylines_out)
{ {
if(this->adapt_fill_octree != nullptr)
this->generate_infill(params, thickness_layers, direction, expolygon, polylines_out, this->adapt_fill_octree);
}
void FillAdaptive::generate_infill(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out,
FillAdaptive_Internal::Octree *octree)
{
Vec3d rotation = Vec3d((5.0 * M_PI) / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0);
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones());
// Store grouped lines by its direction (multiple of 120°) // Store grouped lines by its direction (multiple of 120°)
std::vector<Lines> infill_lines_dir(3); std::vector<Lines> infill_lines_dir(3);
this->generate_infill_lines(this->adapt_fill_octree->root_cube.get(), this->generate_infill_lines(octree->root_cube.get(),
this->z, this->adapt_fill_octree->origin,infill_lines_dir, this->z, octree->origin, rotation_matrix,
this->adapt_fill_octree->cubes_properties, infill_lines_dir, octree->cubes_properties,
int(this->adapt_fill_octree->cubes_properties.size()) - 1); int(octree->cubes_properties.size()) - 1);
Polylines all_polylines; Polylines all_polylines;
all_polylines.reserve(infill_lines_dir[0].size() * 3); all_polylines.reserve(infill_lines_dir[0].size() * 3);
@ -186,6 +199,7 @@ void FillAdaptive::generate_infill_lines(
FillAdaptive_Internal::Cube *cube, FillAdaptive_Internal::Cube *cube,
double z_position, double z_position,
const Vec3d &origin, const Vec3d &origin,
const Transform3d &rotation_matrix,
std::vector<Lines> &dir_lines_out, std::vector<Lines> &dir_lines_out,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties, const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
int depth) int depth)
@ -197,7 +211,8 @@ void FillAdaptive::generate_infill_lines(
return; return;
} }
double z_diff = std::abs(z_position - cube->center.z()); Vec3d cube_center_tranformed = rotation_matrix * cube->center;
double z_diff = std::abs(z_position - cube_center_tranformed.z());
if (z_diff > cubes_properties[depth].height / 2) if (z_diff > cubes_properties[depth].height / 2)
{ {
@ -208,14 +223,14 @@ void FillAdaptive::generate_infill_lines(
{ {
Point from( Point from(
scale_((cubes_properties[depth].diagonal_length / 2) * (cubes_properties[depth].line_z_distance - z_diff) / cubes_properties[depth].line_z_distance), scale_((cubes_properties[depth].diagonal_length / 2) * (cubes_properties[depth].line_z_distance - z_diff) / cubes_properties[depth].line_z_distance),
scale_(cubes_properties[depth].line_xy_distance - ((z_position - (cube->center.z() - cubes_properties[depth].line_z_distance)) / sqrt(2)))); scale_(cubes_properties[depth].line_xy_distance - ((z_position - (cube_center_tranformed.z() - cubes_properties[depth].line_z_distance)) / sqrt(2))));
Point to(-from.x(), from.y()); Point to(-from.x(), from.y());
// Relative to cube center // Relative to cube center
double rotation_angle = (2.0 * M_PI) / 3.0; double rotation_angle = (2.0 * M_PI) / 3.0;
for (Lines &lines : dir_lines_out) for (Lines &lines : dir_lines_out)
{ {
Vec3d offset = cube->center - origin; Vec3d offset = cube_center_tranformed - (rotation_matrix * origin);
Point from_abs(from), to_abs(to); Point from_abs(from), to_abs(to);
from_abs.x() += int(scale_(offset.x())); from_abs.x() += int(scale_(offset.x()));
@ -235,7 +250,7 @@ void FillAdaptive::generate_infill_lines(
{ {
if(child != nullptr) if(child != nullptr)
{ {
generate_infill_lines(child.get(), z_position, origin, dir_lines_out, cubes_properties, depth - 1); generate_infill_lines(child.get(), z_position, origin, rotation_matrix, dir_lines_out, cubes_properties, depth - 1);
} }
} }
} }
@ -301,14 +316,11 @@ std::unique_ptr<FillAdaptive_Internal::Octree> FillAdaptive::build_octree(
triangle_mesh.require_shared_vertices(); triangle_mesh.require_shared_vertices();
} }
Vec3d rotation = Vec3d((5.0 * M_PI) / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0);
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones());
AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set( AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
triangle_mesh.its.vertices, triangle_mesh.its.indices); triangle_mesh.its.vertices, triangle_mesh.its.indices);
auto octree = std::make_unique<Octree>(std::make_unique<Cube>(cube_center), cube_center, cubes_properties); auto octree = std::make_unique<Octree>(std::make_unique<Cube>(cube_center), cube_center, cubes_properties);
FillAdaptive::expand_cube(octree->root_cube.get(), cubes_properties, rotation_matrix, aabbTree, triangle_mesh, int(cubes_properties.size()) - 1); FillAdaptive::expand_cube(octree->root_cube.get(), cubes_properties, aabbTree, triangle_mesh, int(cubes_properties.size()) - 1);
return octree; return octree;
} }
@ -316,7 +328,6 @@ std::unique_ptr<FillAdaptive_Internal::Octree> FillAdaptive::build_octree(
void FillAdaptive::expand_cube( void FillAdaptive::expand_cube(
FillAdaptive_Internal::Cube *cube, FillAdaptive_Internal::Cube *cube,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties, const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
const Transform3d &rotation_matrix,
const AABBTreeIndirect::Tree3f &distance_tree, const AABBTreeIndirect::Tree3f &distance_tree,
const TriangleMesh &triangle_mesh, int depth) const TriangleMesh &triangle_mesh, int depth)
{ {
@ -328,8 +339,8 @@ void FillAdaptive::expand_cube(
} }
std::vector<Vec3d> child_centers = { std::vector<Vec3d> child_centers = {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d(-1, -1, 1), Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d( 1, 1, -1),
Vec3d( 1, 1, 1), Vec3d(-1, 1, 1), Vec3d( 1, -1, 1), Vec3d( 1, 1, -1) Vec3d(-1, -1, 1), Vec3d( 1, -1, 1), Vec3d(-1, 1, 1), Vec3d( 1, 1, 1)
}; };
double cube_radius_squared = (cubes_properties[depth].height * cubes_properties[depth].height) / 16; double cube_radius_squared = (cubes_properties[depth].height * cubes_properties[depth].height) / 16;
@ -337,15 +348,173 @@ void FillAdaptive::expand_cube(
for (size_t i = 0; i < 8; ++i) for (size_t i = 0; i < 8; ++i)
{ {
const Vec3d &child_center = child_centers[i]; const Vec3d &child_center = child_centers[i];
Vec3d child_center_transformed = cube->center + rotation_matrix * (child_center * (cubes_properties[depth].edge_length / 4)); Vec3d child_center_transformed = cube->center + (child_center * (cubes_properties[depth].edge_length / 4));
if(AABBTreeIndirect::is_any_triangle_in_radius(triangle_mesh.its.vertices, triangle_mesh.its.indices, if(AABBTreeIndirect::is_any_triangle_in_radius(triangle_mesh.its.vertices, triangle_mesh.its.indices,
distance_tree, child_center_transformed, cube_radius_squared)) distance_tree, child_center_transformed, cube_radius_squared))
{ {
cube->children[i] = std::make_unique<Cube>(child_center_transformed); cube->children[i] = std::make_unique<Cube>(child_center_transformed);
FillAdaptive::expand_cube(cube->children[i].get(), cubes_properties, rotation_matrix, distance_tree, triangle_mesh, depth - 1); FillAdaptive::expand_cube(cube->children[i].get(), cubes_properties, distance_tree, triangle_mesh, depth - 1);
} }
} }
} }
void FillAdaptive_Internal::Octree::propagate_point(
Vec3d point,
FillAdaptive_Internal::Cube * current,
int depth,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties)
{
using namespace FillAdaptive_Internal;
if(depth <= 0)
{
return;
}
size_t octant_idx = Octree::find_octant(point, current->center);
Cube * child = current->children[octant_idx].get();
// Octant not exists, then create it
if(child == nullptr) {
std::vector<Vec3d> child_centers = {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d( 1, 1, -1),
Vec3d(-1, -1, 1), Vec3d( 1, -1, 1), Vec3d(-1, 1, 1), Vec3d( 1, 1, 1)
};
const Vec3d &child_center = child_centers[octant_idx];
Vec3d child_center_transformed = current->center + (child_center * (cubes_properties[depth].edge_length / 4));
current->children[octant_idx] = std::make_unique<Cube>(child_center_transformed);
child = current->children[octant_idx].get();
}
Octree::propagate_point(point, child, (depth - 1), cubes_properties);
}
std::unique_ptr<FillAdaptive_Internal::Octree> FillSupportCubic::build_octree(
TriangleMesh & triangle_mesh,
coordf_t line_spacing,
const Vec3d & cube_center,
const Transform3d &rotation_matrix)
{
using namespace FillAdaptive_Internal;
if(line_spacing <= 0 || std::isnan(line_spacing))
{
return nullptr;
}
Vec3d bb_size = triangle_mesh.bounding_box().size();
// The furthest point from the center of the bottom of the mesh bounding box.
double furthest_point = std::sqrt(((bb_size.x() * bb_size.x()) / 4.0) +
((bb_size.y() * bb_size.y()) / 4.0) +
(bb_size.z() * bb_size.z()));
double max_cube_edge_length = furthest_point * 2;
std::vector<CubeProperties> cubes_properties;
for (double edge_length = (line_spacing * 2); edge_length < (max_cube_edge_length * 2); edge_length *= 2)
{
CubeProperties props{};
props.edge_length = edge_length;
props.height = edge_length * sqrt(3);
props.diagonal_length = edge_length * sqrt(2);
props.line_z_distance = edge_length / sqrt(3);
props.line_xy_distance = edge_length / sqrt(6);
cubes_properties.push_back(props);
}
if (triangle_mesh.its.vertices.empty())
{
triangle_mesh.require_shared_vertices();
}
AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
triangle_mesh.its.vertices, triangle_mesh.its.indices);
auto octree = std::make_unique<Octree>(std::make_unique<Cube>(cube_center), cube_center, cubes_properties);
double cube_edge_length = line_spacing / 2.0;
int max_depth = int(octree->cubes_properties.size()) - 1;
BoundingBoxf3 mesh_bb = triangle_mesh.bounding_box();
Vec3f vertical(0, 0, 1);
for (size_t facet_idx = 0; facet_idx < triangle_mesh.stl.facet_start.size(); ++facet_idx)
{
if(triangle_mesh.stl.facet_start[facet_idx].normal.dot(vertical) <= 0.707)
{
// The angle is smaller than PI/4, than infill don't to be there
continue;
}
stl_vertex v_1 = triangle_mesh.stl.facet_start[facet_idx].vertex[0];
stl_vertex v_2 = triangle_mesh.stl.facet_start[facet_idx].vertex[1];
stl_vertex v_3 = triangle_mesh.stl.facet_start[facet_idx].vertex[2];
std::vector<Vec3d> triangle_vertices =
{Vec3d(v_1.x(), v_1.y(), v_1.z()),
Vec3d(v_2.x(), v_2.y(), v_2.z()),
Vec3d(v_3.x(), v_3.y(), v_3.z())};
BoundingBoxf3 triangle_bb(triangle_vertices);
Vec3d triangle_start_relative = triangle_bb.min - mesh_bb.min;
Vec3d triangle_end_relative = triangle_bb.max - mesh_bb.min;
Vec3crd triangle_start_idx = Vec3crd(
int(std::floor(triangle_start_relative.x() / cube_edge_length)),
int(std::floor(triangle_start_relative.y() / cube_edge_length)),
int(std::floor(triangle_start_relative.z() / cube_edge_length)));
Vec3crd triangle_end_idx = Vec3crd(
int(std::floor(triangle_end_relative.x() / cube_edge_length)),
int(std::floor(triangle_end_relative.y() / cube_edge_length)),
int(std::floor(triangle_end_relative.z() / cube_edge_length)));
for (int z = triangle_start_idx.z(); z <= triangle_end_idx.z(); ++z)
{
for (int y = triangle_start_idx.y(); y <= triangle_end_idx.y(); ++y)
{
for (int x = triangle_start_idx.x(); x <= triangle_end_idx.x(); ++x)
{
Vec3d cube_center_relative(x * cube_edge_length + (cube_edge_length / 2.0), y * cube_edge_length + (cube_edge_length / 2.0), z * cube_edge_length);
Vec3d cube_center_absolute = cube_center_relative + mesh_bb.min;
double cube_center_absolute_arr[3] = {cube_center_absolute.x(), cube_center_absolute.y(), cube_center_absolute.z()};
double distance = 0, cord_u = 0, cord_v = 0;
double dir[3] = {0.0, 0.0, 1.0};
double vert_0[3] = {triangle_vertices[0].x(),
triangle_vertices[0].y(),
triangle_vertices[0].z()};
double vert_1[3] = {triangle_vertices[1].x(),
triangle_vertices[1].y(),
triangle_vertices[1].z()};
double vert_2[3] = {triangle_vertices[2].x(),
triangle_vertices[2].y(),
triangle_vertices[2].z()};
if(intersect_triangle(cube_center_absolute_arr, dir, vert_0, vert_1, vert_2, &distance, &cord_u, &cord_v) && distance > 0 && distance <= cube_edge_length)
{
Vec3d cube_center_transformed(cube_center_absolute.x(), cube_center_absolute.y(), cube_center_absolute.z() + (cube_edge_length / 2.0));
Octree::propagate_point(rotation_matrix * cube_center_transformed, octree->root_cube.get(), max_depth, octree->cubes_properties);
}
}
}
}
}
return octree;
}
void FillSupportCubic::_fill_surface_single(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out)
{
if (this->support_fill_octree != nullptr)
this->generate_infill(params, thickness_layers, direction, expolygon, polylines_out, this->support_fill_octree);
}
} // namespace Slic3r } // namespace Slic3r

View File

@ -35,6 +35,17 @@ namespace FillAdaptive_Internal
Octree(std::unique_ptr<Cube> rootCube, const Vec3d &origin, const std::vector<CubeProperties> &cubes_properties) Octree(std::unique_ptr<Cube> rootCube, const Vec3d &origin, const std::vector<CubeProperties> &cubes_properties)
: root_cube(std::move(rootCube)), origin(origin), cubes_properties(cubes_properties) {} : root_cube(std::move(rootCube)), origin(origin), cubes_properties(cubes_properties) {}
inline static int find_octant(const Vec3d &i_cube, const Vec3d &current)
{
return (i_cube.z() > current.z()) * 4 + (i_cube.y() > current.y()) * 2 + (i_cube.x() > current.x());
}
static void propagate_point(
Vec3d point,
FillAdaptive_Internal::Cube *current_cube,
int depth,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties);
}; };
}; // namespace FillAdaptive_Internal }; // namespace FillAdaptive_Internal
@ -63,12 +74,20 @@ protected:
FillAdaptive_Internal::Cube *cube, FillAdaptive_Internal::Cube *cube,
double z_position, double z_position,
const Vec3d & origin, const Vec3d & origin,
const Transform3d & rotation_matrix,
std::vector<Lines> & dir_lines_out, std::vector<Lines> & dir_lines_out,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties, const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
int depth); int depth);
static void connect_lines(Lines &lines, Line new_line); static void connect_lines(Lines &lines, Line new_line);
void generate_infill(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out,
FillAdaptive_Internal::Octree *octree);
public: public:
static std::unique_ptr<FillAdaptive_Internal::Octree> build_octree( static std::unique_ptr<FillAdaptive_Internal::Octree> build_octree(
TriangleMesh &triangle_mesh, TriangleMesh &triangle_mesh,
@ -78,12 +97,36 @@ public:
static void expand_cube( static void expand_cube(
FillAdaptive_Internal::Cube *cube, FillAdaptive_Internal::Cube *cube,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties, const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
const Transform3d & rotation_matrix,
const AABBTreeIndirect::Tree3f &distance_tree, const AABBTreeIndirect::Tree3f &distance_tree,
const TriangleMesh & triangle_mesh, const TriangleMesh & triangle_mesh,
int depth); int depth);
}; };
class FillSupportCubic : public FillAdaptive
{
public:
virtual ~FillSupportCubic() = default;
protected:
virtual Fill* clone() const { return new FillSupportCubic(*this); };
virtual bool no_sort() const { return true; }
virtual void _fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out);
public:
static std::unique_ptr<FillAdaptive_Internal::Octree> build_octree(
TriangleMesh & triangle_mesh,
coordf_t line_spacing,
const Vec3d & cube_center,
const Transform3d &rotation_matrix);
};
// Calculate line spacing for // Calculate line spacing for
// 1) adaptive cubic infill // 1) adaptive cubic infill
// 2) adaptive internal support cubic infill // 2) adaptive internal support cubic infill

View File

@ -39,6 +39,7 @@ Fill* Fill::new_from_type(const InfillPattern type)
case ipHilbertCurve: return new FillHilbertCurve(); case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral(); case ipOctagramSpiral: return new FillOctagramSpiral();
case ipAdaptiveCubic: return new FillAdaptive(); case ipAdaptiveCubic: return new FillAdaptive();
case ipSupportCubic: return new FillSupportCubic();
default: throw std::invalid_argument("unknown type"); default: throw std::invalid_argument("unknown type");
} }
} }

View File

@ -73,7 +73,10 @@ public:
// In scaled coordinates. Bounding box of the 2D projection of the object. // In scaled coordinates. Bounding box of the 2D projection of the object.
BoundingBox bounding_box; BoundingBox bounding_box;
// Octree builds on mesh for usage in the adaptive cubic infill
FillAdaptive_Internal::Octree* adapt_fill_octree = nullptr; FillAdaptive_Internal::Octree* adapt_fill_octree = nullptr;
// Octree builds on mesh for usage in the support cubic infill
FillAdaptive_Internal::Octree* support_fill_octree = nullptr;
public: public:
virtual ~Fill() {} virtual ~Fill() {}

View File

@ -138,8 +138,8 @@ public:
return false; return false;
} }
void make_perimeters(); void make_perimeters();
void make_fills() { this->make_fills(nullptr); }; void make_fills() { this->make_fills(nullptr, nullptr); };
void make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree); void make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree, FillAdaptive_Internal::Octree* support_fill_octree);
void make_ironing(); void make_ironing();
void export_region_slices_to_svg(const char *path) const; void export_region_slices_to_svg(const char *path) const;

View File

@ -0,0 +1,140 @@
#ifndef BRUTEFORCEOPTIMIZER_HPP
#define BRUTEFORCEOPTIMIZER_HPP
#include <libslic3r/Optimize/Optimizer.hpp>
namespace Slic3r { namespace opt {
namespace detail {
// Implementing a bruteforce optimizer
// Return the number of iterations needed to reach a specific grid position (idx)
template<size_t N>
long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
{
long ret = 0;
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
return ret;
}
// Implementation of a grid search where the search interval is sampled in
// equidistant points for each dimension. Grid size determines the number of
// samples for one dimension so the number of function calls is gridsize ^ dimension.
struct AlgBurteForce {
bool to_min;
StopCriteria stc;
size_t gridsz;
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
// This function is called recursively for each dimension and generates
// the grid values for the particular dimension. If D is less than zero,
// the object function input values are generated for each dimension and it
// can be evaluated. The current best score is compared with the newly
// returned score and changed appropriately.
template<int D, size_t N, class Fn, class Cmp>
bool run(std::array<size_t, N> &idx,
Result<N> &result,
const Bounds<N> &bounds,
Fn &&fn,
Cmp &&cmp)
{
if (stc.stop_condition()) return false;
if constexpr (D < 0) { // Let's evaluate fn
Input<N> inp;
auto max_iter = stc.max_iterations();
if (max_iter && num_iter(idx, gridsz) >= max_iter)
return false;
for (size_t d = 0; d < N; ++d) {
const Bound &b = bounds[d];
double step = (b.max() - b.min()) / (gridsz - 1);
inp[d] = b.min() + idx[d] * step;
}
auto score = fn(inp);
if (cmp(score, result.score)) { // Change current score to the new
double absdiff = std::abs(score - result.score);
result.score = score;
result.optimum = inp;
// Check if the required precision is reached.
if (absdiff < stc.abs_score_diff() ||
absdiff < stc.rel_score_diff() * std::abs(score))
return false;
}
} else {
for (size_t i = 0; i < gridsz; ++i) {
idx[D] = i; // Mark the current grid position and dig down
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::forward<Cmp>(cmp)))
return false;
}
}
return true;
}
template<class Fn, size_t N>
Result<N> optimize(Fn&& fn,
const Input<N> &/*initvals*/,
const Bounds<N>& bounds)
{
std::array<size_t, N> idx = {};
Result<N> result;
if (to_min) {
result.score = std::numeric_limits<double>::max();
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::less<double>{});
}
else {
result.score = std::numeric_limits<double>::lowest();
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::greater<double>{});
}
return result;
}
};
} // namespace detail
using AlgBruteForce = detail::AlgBurteForce;
template<>
class Optimizer<AlgBruteForce> {
AlgBruteForce m_alg;
public:
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
: m_alg{cr, gridsz}
{}
Optimizer& to_max() { m_alg.to_min = false; return *this; }
Optimizer& to_min() { m_alg.to_min = true; return *this; }
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
}
Optimizer &set_criteria(const StopCriteria &cr)
{
m_alg.stc = cr; return *this;
}
const StopCriteria &get_criteria() const { return m_alg.stc; }
};
}} // namespace Slic3r::opt
#endif // BRUTEFORCEOPTIMIZER_HPP

View File

@ -12,134 +12,11 @@
#endif #endif
#include <utility> #include <utility>
#include <tuple>
#include <array> #include <libslic3r/Optimize/Optimizer.hpp>
#include <cmath>
#include <functional>
#include <limits>
#include <cassert>
namespace Slic3r { namespace opt { namespace Slic3r { namespace opt {
// A type to hold the complete result of the optimization.
template<size_t N> struct Result {
int resultcode;
std::array<double, N> optimum;
double score;
};
// An interval of possible input values for optimization
class Bound {
double m_min, m_max;
public:
Bound(double min = std::numeric_limits<double>::min(),
double max = std::numeric_limits<double>::max())
: m_min(min), m_max(max)
{}
double min() const noexcept { return m_min; }
double max() const noexcept { return m_max; }
};
// Helper types for optimization function input and bounds
template<size_t N> using Input = std::array<double, N>;
template<size_t N> using Bounds = std::array<Bound, N>;
// A type for specifying the stop criteria. Setter methods can be concatenated
class StopCriteria {
// If the absolute value difference between two scores.
double m_abs_score_diff = std::nan("");
// If the relative value difference between two scores.
double m_rel_score_diff = std::nan("");
// Stop if this value or better is found.
double m_stop_score = std::nan("");
// A predicate that if evaluates to true, the optimization should terminate
// and the best result found prior to termination should be returned.
std::function<bool()> m_stop_condition = [] { return false; };
// The max allowed number of iterations.
unsigned m_max_iterations = 0;
public:
StopCriteria & abs_score_diff(double val)
{
m_abs_score_diff = val; return *this;
}
double abs_score_diff() const { return m_abs_score_diff; }
StopCriteria & rel_score_diff(double val)
{
m_rel_score_diff = val; return *this;
}
double rel_score_diff() const { return m_rel_score_diff; }
StopCriteria & stop_score(double val)
{
m_stop_score = val; return *this;
}
double stop_score() const { return m_stop_score; }
StopCriteria & max_iterations(double val)
{
m_max_iterations = val; return *this;
}
double max_iterations() const { return m_max_iterations; }
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
{
m_stop_condition = cond; return *this;
}
bool stop_condition() { return m_stop_condition(); }
};
// Helper class to use optimization methods involving gradient.
template<size_t N> struct ScoreGradient {
double score;
std::optional<std::array<double, N>> gradient;
ScoreGradient(double s, const std::array<double, N> &grad)
: score{s}, gradient{grad}
{}
};
// Helper to be used in static_assert.
template<class T> struct always_false { enum { value = false }; };
// Basic interface to optimizer object
template<class Method, class Enable = void> class Optimizer {
public:
Optimizer(const StopCriteria &)
{
static_assert (always_false<Method>::value,
"Optimizer unimplemented for given method!");
}
Optimizer<Method> &to_min() { return *this; }
Optimizer<Method> &to_max() { return *this; }
Optimizer<Method> &set_criteria(const StopCriteria &) { return *this; }
StopCriteria get_criteria() const { return {}; };
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds) { return {}; }
// optional for randomized methods:
void seed(long /*s*/) {}
};
namespace detail { namespace detail {
// Helper types for NLopt algorithm selection in template contexts // Helper types for NLopt algorithm selection in template contexts
@ -166,19 +43,6 @@ struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
template<class M, class T = void> template<class M, class T = void>
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>; using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
// Helper to convert C style array to std::array. The copy should be optimized
// away with modern compilers.
template<size_t N, class T> auto to_arr(const T *a)
{
std::array<T, N> r;
std::copy(a, a + N, std::begin(r));
return r;
}
template<size_t N, class T> auto to_arr(const T (&a) [N])
{
return to_arr<N>(static_cast<const T *>(a));
}
enum class OptDir { MIN, MAX }; // Where to optimize enum class OptDir { MIN, MAX }; // Where to optimize
@ -357,23 +221,12 @@ public:
void seed(long s) { m_opt.seed(s); } void seed(long s) { m_opt.seed(s); }
}; };
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); } // Predefinded NLopt algorithms
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
{
return ScoreGradient<N>(s, detail::to_arr(grad));
}
// Predefinded NLopt algorithms that are used in the codebase
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>; using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>; using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>; using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
using AlgNLoptDIRECT = detail::NLoptAlg<NLOPT_GN_DIRECT>;
// TODO: define others if needed... using AlgNLoptMLSL = detail::NLoptAlg<NLOPT_GN_MLSL>;
// Helper defs for pre-crafted global and local optimizers that work well.
using DefaultGlobalOptimizer = Optimizer<AlgNLoptGenetic>;
using DefaultLocalOptimizer = Optimizer<AlgNLoptSubplex>;
}} // namespace Slic3r::opt }} // namespace Slic3r::opt

View File

@ -0,0 +1,182 @@
#ifndef OPTIMIZER_HPP
#define OPTIMIZER_HPP
#include <utility>
#include <tuple>
#include <array>
#include <cmath>
#include <functional>
#include <limits>
#include <cassert>
namespace Slic3r { namespace opt {
// A type to hold the complete result of the optimization.
template<size_t N> struct Result {
int resultcode; // Method dependent
std::array<double, N> optimum;
double score;
};
// An interval of possible input values for optimization
class Bound {
double m_min, m_max;
public:
Bound(double min = std::numeric_limits<double>::min(),
double max = std::numeric_limits<double>::max())
: m_min(min), m_max(max)
{}
double min() const noexcept { return m_min; }
double max() const noexcept { return m_max; }
};
// Helper types for optimization function input and bounds
template<size_t N> using Input = std::array<double, N>;
template<size_t N> using Bounds = std::array<Bound, N>;
// A type for specifying the stop criteria. Setter methods can be concatenated
class StopCriteria {
// If the absolute value difference between two scores.
double m_abs_score_diff = std::nan("");
// If the relative value difference between two scores.
double m_rel_score_diff = std::nan("");
// Stop if this value or better is found.
double m_stop_score = std::nan("");
// A predicate that if evaluates to true, the optimization should terminate
// and the best result found prior to termination should be returned.
std::function<bool()> m_stop_condition = [] { return false; };
// The max allowed number of iterations.
unsigned m_max_iterations = 0;
public:
StopCriteria & abs_score_diff(double val)
{
m_abs_score_diff = val; return *this;
}
double abs_score_diff() const { return m_abs_score_diff; }
StopCriteria & rel_score_diff(double val)
{
m_rel_score_diff = val; return *this;
}
double rel_score_diff() const { return m_rel_score_diff; }
StopCriteria & stop_score(double val)
{
m_stop_score = val; return *this;
}
double stop_score() const { return m_stop_score; }
StopCriteria & max_iterations(double val)
{
m_max_iterations = val; return *this;
}
double max_iterations() const { return m_max_iterations; }
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
{
m_stop_condition = cond; return *this;
}
bool stop_condition() { return m_stop_condition(); }
};
// Helper class to use optimization methods involving gradient.
template<size_t N> struct ScoreGradient {
double score;
std::optional<std::array<double, N>> gradient;
ScoreGradient(double s, const std::array<double, N> &grad)
: score{s}, gradient{grad}
{}
};
// Helper to be used in static_assert.
template<class T> struct always_false { enum { value = false }; };
// Basic interface to optimizer object
template<class Method, class Enable = void> class Optimizer {
public:
Optimizer(const StopCriteria &)
{
static_assert (always_false<Method>::value,
"Optimizer unimplemented for given method!");
}
// Switch optimization towards function minimum
Optimizer &to_min() { return *this; }
// Switch optimization towards function maximum
Optimizer &to_max() { return *this; }
// Set criteria for successive optimizations
Optimizer &set_criteria(const StopCriteria &) { return *this; }
// Get current criteria
StopCriteria get_criteria() const { return {}; };
// Find function minimum or maximum for Func which has has signature:
// double(const Input<N> &input) and input with dimension N
//
// Initial starting point can be given as the second parameter.
//
// For each dimension an interval (Bound) has to be given marking the bounds
// for that dimension.
//
// initvals have to be within the specified bounds, otherwise its undefined
// behavior.
//
// Func can return a score of type double or optionally a ScoreGradient
// class to indicate the function gradient for a optimization methods that
// make use of the gradient.
template<class Func, size_t N>
Result<N> optimize(Func&& /*func*/,
const Input<N> &/*initvals*/,
const Bounds<N>& /*bounds*/) { return {}; }
// optional for randomized methods:
void seed(long /*s*/) {}
};
namespace detail {
// Helper to convert C style array to std::array. The copy should be optimized
// away with modern compilers.
template<size_t N, class T> auto to_arr(const T *a)
{
std::array<T, N> r;
std::copy(a, a + N, std::begin(r));
return r;
}
template<size_t N, class T> auto to_arr(const T (&a) [N])
{
return to_arr<N>(static_cast<const T *>(a));
}
} // namespace detail
// Helper functions to create bounds, initial value
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
{
return ScoreGradient<N>(s, detail::to_arr(grad));
}
}} // namespace Slic3r::opt
#endif // OPTIMIZER_HPP

View File

@ -239,7 +239,7 @@ private:
void discover_horizontal_shells(); void discover_horizontal_shells();
void combine_infill(); void combine_infill();
void _generate_support_material(); void _generate_support_material();
std::unique_ptr<FillAdaptive_Internal::Octree> prepare_adaptive_infill_data(); std::pair<std::unique_ptr<FillAdaptive_Internal::Octree>, std::unique_ptr<FillAdaptive_Internal::Octree>> prepare_adaptive_infill_data();
// XYZ in scaled coordinates // XYZ in scaled coordinates
Vec3crd m_size; Vec3crd m_size;

View File

@ -882,6 +882,7 @@ void PrintConfigDef::init_fff_params()
def->enum_values.push_back("archimedeanchords"); def->enum_values.push_back("archimedeanchords");
def->enum_values.push_back("octagramspiral"); def->enum_values.push_back("octagramspiral");
def->enum_values.push_back("adaptivecubic"); def->enum_values.push_back("adaptivecubic");
def->enum_values.push_back("supportcubic");
def->enum_labels.push_back(L("Rectilinear")); def->enum_labels.push_back(L("Rectilinear"));
def->enum_labels.push_back(L("Grid")); def->enum_labels.push_back(L("Grid"));
def->enum_labels.push_back(L("Triangles")); def->enum_labels.push_back(L("Triangles"));
@ -896,6 +897,7 @@ void PrintConfigDef::init_fff_params()
def->enum_labels.push_back(L("Archimedean Chords")); def->enum_labels.push_back(L("Archimedean Chords"));
def->enum_labels.push_back(L("Octagram Spiral")); def->enum_labels.push_back(L("Octagram Spiral"));
def->enum_labels.push_back(L("Adaptive Cubic")); def->enum_labels.push_back(L("Adaptive Cubic"));
def->enum_labels.push_back(L("Support Cubic"));
def->set_default_value(new ConfigOptionEnum<InfillPattern>(ipStars)); def->set_default_value(new ConfigOptionEnum<InfillPattern>(ipStars));
def = this->add("first_layer_acceleration", coFloat); def = this->add("first_layer_acceleration", coFloat);

View File

@ -39,7 +39,7 @@ enum AuthorizationType {
enum InfillPattern : int { enum InfillPattern : int {
ipRectilinear, ipMonotonous, ipGrid, ipTriangles, ipStars, ipCubic, ipLine, ipConcentric, ipHoneycomb, ip3DHoneycomb, ipRectilinear, ipMonotonous, ipGrid, ipTriangles, ipStars, ipCubic, ipLine, ipConcentric, ipHoneycomb, ip3DHoneycomb,
ipGyroid, ipHilbertCurve, ipArchimedeanChords, ipOctagramSpiral, ipAdaptiveCubic, ipCount, ipGyroid, ipHilbertCurve, ipArchimedeanChords, ipOctagramSpiral, ipAdaptiveCubic, ipSupportCubic, ipCount,
}; };
enum class IroningType { enum class IroningType {
@ -140,6 +140,7 @@ template<> inline const t_config_enum_values& ConfigOptionEnum<InfillPattern>::g
keys_map["archimedeanchords"] = ipArchimedeanChords; keys_map["archimedeanchords"] = ipArchimedeanChords;
keys_map["octagramspiral"] = ipOctagramSpiral; keys_map["octagramspiral"] = ipOctagramSpiral;
keys_map["adaptivecubic"] = ipAdaptiveCubic; keys_map["adaptivecubic"] = ipAdaptiveCubic;
keys_map["supportcubic"] = ipSupportCubic;
} }
return keys_map; return keys_map;
} }

View File

@ -11,6 +11,7 @@
#include "Utils.hpp" #include "Utils.hpp"
#include "AABBTreeIndirect.hpp" #include "AABBTreeIndirect.hpp"
#include "Fill/FillAdaptive.hpp" #include "Fill/FillAdaptive.hpp"
#include "Format/STL.hpp"
#include <utility> #include <utility>
#include <boost/log/trivial.hpp> #include <boost/log/trivial.hpp>
@ -371,15 +372,15 @@ void PrintObject::infill()
this->prepare_infill(); this->prepare_infill();
if (this->set_started(posInfill)) { if (this->set_started(posInfill)) {
std::unique_ptr<FillAdaptive_Internal::Octree> octree = this->prepare_adaptive_infill_data(); auto [adaptive_fill_octree, support_fill_octree] = this->prepare_adaptive_infill_data();
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start"; BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
tbb::parallel_for( tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()), tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &octree](const tbb::blocked_range<size_t>& range) { [this, &adaptive_fill_octree = adaptive_fill_octree, &support_fill_octree = support_fill_octree](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled(); m_print->throw_if_canceled();
m_layers[layer_idx]->make_fills(octree.get()); m_layers[layer_idx]->make_fills(adaptive_fill_octree.get(), support_fill_octree.get());
} }
} }
); );
@ -432,11 +433,18 @@ void PrintObject::generate_support_material()
} }
} }
std::unique_ptr<FillAdaptive_Internal::Octree> PrintObject::prepare_adaptive_infill_data() //#define ADAPTIVE_SUPPORT_SIMPLE
std::pair<std::unique_ptr<FillAdaptive_Internal::Octree>, std::unique_ptr<FillAdaptive_Internal::Octree>> PrintObject::prepare_adaptive_infill_data()
{ {
using namespace FillAdaptive_Internal;
auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this); auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this);
if (adaptive_line_spacing == 0.)
return std::unique_ptr<FillAdaptive_Internal::Octree>{}; std::unique_ptr<Octree> adaptive_fill_octree = {}, support_fill_octree = {};
if (adaptive_line_spacing == 0. && support_line_spacing == 0.)
return std::make_pair(std::move(adaptive_fill_octree), std::move(support_fill_octree));
TriangleMesh mesh = this->model_object()->raw_mesh(); TriangleMesh mesh = this->model_object()->raw_mesh();
mesh.transform(m_trafo, true); mesh.transform(m_trafo, true);
@ -444,7 +452,55 @@ std::unique_ptr<FillAdaptive_Internal::Octree> PrintObject::prepare_adaptive_inf
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0); mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// Center of the first cube in octree // Center of the first cube in octree
Vec3d mesh_origin = mesh.bounding_box().center(); Vec3d mesh_origin = mesh.bounding_box().center();
return FillAdaptive::build_octree(mesh, adaptive_line_spacing, mesh_origin);
#ifdef ADAPTIVE_SUPPORT_SIMPLE
if (mesh.its.vertices.empty())
{
mesh.require_shared_vertices();
}
Vec3f vertical(0, 0, 1);
indexed_triangle_set its_set;
its_set.vertices = mesh.its.vertices;
// Filter out non overhanging faces
for (size_t i = 0; i < mesh.its.indices.size(); ++i) {
stl_triangle_vertex_indices vertex_idx = mesh.its.indices[i];
auto its_calculate_normal = [](const stl_triangle_vertex_indices &index, const std::vector<stl_vertex> &vertices) {
stl_normal normal = (vertices[index.y()] - vertices[index.x()]).cross(vertices[index.z()] - vertices[index.x()]);
return normal;
};
stl_normal normal = its_calculate_normal(vertex_idx, mesh.its.vertices);
stl_normalize_vector(normal);
if(normal.dot(vertical) >= 0.707) {
its_set.indices.push_back(vertex_idx);
}
}
mesh = TriangleMesh(its_set);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
Slic3r::store_stl(debug_out_path("overhangs.stl").c_str(), &mesh, false);
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#endif /* ADAPTIVE_SUPPORT_SIMPLE */
Vec3d rotation = Vec3d((5.0 * M_PI) / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0);
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones()).inverse();
if (adaptive_line_spacing != 0.) {
// Rotate mesh and build octree on it with axis-aligned (standart base) cubes
mesh.transform(rotation_matrix);
adaptive_fill_octree = FillAdaptive::build_octree(mesh, adaptive_line_spacing, rotation_matrix * mesh_origin);
}
if (support_line_spacing != 0.)
support_fill_octree = FillSupportCubic::build_octree(mesh, support_line_spacing, rotation_matrix * mesh_origin, rotation_matrix);
return std::make_pair(std::move(adaptive_fill_octree), std::move(support_fill_octree));
} }
void PrintObject::clear_layers() void PrintObject::clear_layers()

View File

@ -4,7 +4,11 @@
#include <tbb/spin_mutex.h> #include <tbb/spin_mutex.h>
#include <tbb/mutex.h> #include <tbb/mutex.h>
#include <tbb/parallel_for.h> #include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <algorithm> #include <algorithm>
#include <numeric>
#include <libslic3r/libslic3r.h> #include <libslic3r/libslic3r.h>
namespace Slic3r { namespace Slic3r {
@ -21,28 +25,56 @@ template<> struct _ccr<true>
using SpinningMutex = tbb::spin_mutex; using SpinningMutex = tbb::spin_mutex;
using BlockingMutex = tbb::mutex; using BlockingMutex = tbb::mutex;
template<class Fn, class It>
static IteratorOnly<It, void> loop_(const tbb::blocked_range<It> &range, Fn &&fn)
{
for (auto &el : range) fn(el);
}
template<class Fn, class I>
static IntegerOnly<I, void> loop_(const tbb::blocked_range<I> &range, Fn &&fn)
{
for (I i = range.begin(); i < range.end(); ++i) fn(i);
}
template<class It, class Fn> template<class It, class Fn>
static IteratorOnly<It, void> for_each(It from, static void for_each(It from, It to, Fn &&fn, size_t granularity = 1)
It to,
Fn && fn,
size_t granularity = 1)
{ {
tbb::parallel_for(tbb::blocked_range{from, to, granularity}, tbb::parallel_for(tbb::blocked_range{from, to, granularity},
[&fn, from](const auto &range) { [&fn, from](const auto &range) {
for (auto &el : range) fn(el); loop_(range, std::forward<Fn>(fn));
}); });
} }
template<class I, class Fn> template<class I, class MergeFn, class T, class AccessFn>
static IntegerOnly<I, void> for_each(I from, static T reduce(I from,
I to, I to,
Fn && fn, const T &init,
size_t granularity = 1) MergeFn &&mergefn,
AccessFn &&access,
size_t granularity = 1
)
{ {
tbb::parallel_for(tbb::blocked_range{from, to, granularity}, return tbb::parallel_reduce(
[&fn](const auto &range) { tbb::blocked_range{from, to, granularity}, init,
for (I i = range.begin(); i < range.end(); ++i) fn(i); [&](const auto &range, T subinit) {
}); T acc = subinit;
loop_(range, [&](auto &i) { acc = mergefn(acc, access(i)); });
return acc;
},
std::forward<MergeFn>(mergefn));
}
template<class I, class MergeFn, class T>
static IteratorOnly<I, T> reduce(I from,
I to,
const T & init,
MergeFn &&mergefn,
size_t granularity = 1)
{
return reduce(
from, to, init, std::forward<MergeFn>(mergefn),
[](typename I::value_type &i) { return i; }, granularity);
} }
}; };
@ -55,23 +87,52 @@ public:
using SpinningMutex = _Mtx; using SpinningMutex = _Mtx;
using BlockingMutex = _Mtx; using BlockingMutex = _Mtx;
template<class It, class Fn> template<class Fn, class It>
static IteratorOnly<It, void> for_each(It from, static IteratorOnly<It, void> loop_(It from, It to, Fn &&fn)
It to,
Fn &&fn,
size_t /* ignore granularity */ = 1)
{ {
for (auto it = from; it != to; ++it) fn(*it); for (auto it = from; it != to; ++it) fn(*it);
} }
template<class I, class Fn> template<class Fn, class I>
static IntegerOnly<I, void> for_each(I from, static IntegerOnly<I, void> loop_(I from, I to, Fn &&fn)
I to,
Fn &&fn,
size_t /* ignore granularity */ = 1)
{ {
for (I i = from; i < to; ++i) fn(i); for (I i = from; i < to; ++i) fn(i);
} }
template<class It, class Fn>
static void for_each(It from,
It to,
Fn &&fn,
size_t /* ignore granularity */ = 1)
{
loop_(from, to, std::forward<Fn>(fn));
}
template<class I, class MergeFn, class T, class AccessFn>
static T reduce(I from,
I to,
const T & init,
MergeFn &&mergefn,
AccessFn &&access,
size_t /*granularity*/ = 1
)
{
T acc = init;
loop_(from, to, [&](auto &i) { acc = mergefn(acc, access(i)); });
return acc;
}
template<class I, class MergeFn, class T>
static IteratorOnly<I, T> reduce(I from,
I to,
const T &init,
MergeFn &&mergefn,
size_t /*granularity*/ = 1
)
{
return reduce(from, to, init, std::forward<MergeFn>(mergefn),
[](typename I::value_type &i) { return i; });
}
}; };
using ccr = _ccr<USE_FULL_CONCURRENCY>; using ccr = _ccr<USE_FULL_CONCURRENCY>;

View File

@ -1,35 +1,259 @@
#include <limits> #include <limits>
#include <exception>
#include <libnest2d/optimizers/nlopt/genetic.hpp>
#include <libslic3r/SLA/Rotfinder.hpp> #include <libslic3r/SLA/Rotfinder.hpp>
#include <libslic3r/SLA/SupportTree.hpp> #include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/PrintConfig.hpp"
#include <libslic3r/Geometry.hpp>
#include "Model.hpp" #include "Model.hpp"
namespace Slic3r { #include <thread>
namespace sla {
std::array<double, 3> find_best_rotation(const ModelObject& modelobj, namespace Slic3r { namespace sla {
float accuracy,
std::function<void(unsigned)> statuscb, inline bool is_on_floor(const SLAPrintObject &mo)
std::function<bool()> stopcond)
{ {
using libnest2d::opt::Method; auto opt_elevation = mo.config().support_object_elevation.getFloat();
using libnest2d::opt::bound; auto opt_padaround = mo.config().pad_around_object.getBool();
using libnest2d::opt::Optimizer;
using libnest2d::opt::TOptimizer;
using libnest2d::opt::StopCriteria;
static const unsigned MAX_TRIES = 100000; return opt_elevation < EPSILON || opt_padaround;
}
// Find transformed mesh ground level without copy and with parallel reduce.
double find_ground_level(const TriangleMesh &mesh,
const Transform3d & tr,
size_t threads)
{
size_t vsize = mesh.its.vertices.size();
auto minfn = [](double a, double b) { return std::min(a, b); };
auto accessfn = [&mesh, &tr] (size_t vi) {
return (tr * mesh.its.vertices[vi].template cast<double>()).z();
};
double zmin = std::numeric_limits<double>::max();
size_t granularity = vsize / threads;
return ccr_par::reduce(size_t(0), vsize, zmin, minfn, accessfn, granularity);
}
// Get the vertices of a triangle directly in an array of 3 points
std::array<Vec3d, 3> get_triangle_vertices(const TriangleMesh &mesh,
size_t faceidx)
{
const auto &face = mesh.its.indices[faceidx];
return {Vec3d{mesh.its.vertices[face(0)].cast<double>()},
Vec3d{mesh.its.vertices[face(1)].cast<double>()},
Vec3d{mesh.its.vertices[face(2)].cast<double>()}};
}
std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh,
const Transform3d & tr,
size_t faceidx)
{
const auto &tri = get_triangle_vertices(mesh, faceidx);
return {tr * tri[0], tr * tri[1], tr * tri[2]};
}
// Get area and normal of a triangle
struct Facestats {
Vec3d normal;
double area;
explicit Facestats(const std::array<Vec3d, 3> &triangle)
{
Vec3d U = triangle[1] - triangle[0];
Vec3d V = triangle[2] - triangle[0];
Vec3d C = U.cross(V);
normal = C.normalized();
area = 0.5 * C.norm();
}
};
inline const Vec3d DOWN = {0., 0., -1.};
constexpr double POINTS_PER_UNIT_AREA = 1.;
// The score function for a particular face
inline double get_score(const Facestats &fc)
{
// Simply get the angle (acos of dot product) between the face normal and
// the DOWN vector.
double phi = 1. - std::acos(fc.normal.dot(DOWN)) / PI;
// Only consider faces that have have slopes below 90 deg:
phi = phi * (phi > 0.5);
// Make the huge slopes more significant than the smaller slopes
phi = phi * phi * phi;
// Multiply with the area of the current face
return fc.area * POINTS_PER_UNIT_AREA * phi;
}
template<class AccessFn>
double sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
{
double initv = 0.;
auto mergefn = std::plus<double>{};
size_t grainsize = facecount / Nthreads;
size_t from = 0, to = facecount;
return ccr_par::reduce(from, to, initv, mergefn, accessfn, grainsize);
}
// Try to guess the number of support points needed to support a mesh
double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
return get_score(fc);
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
return sum_score(accessfn, facecount, Nthreads) / facecount;
}
double get_model_supportedness_onfloor(const TriangleMesh &mesh,
const Transform3d & tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
size_t Nthreads = std::thread::hardware_concurrency();
double zmin = find_ground_level(mesh, tr, Nthreads);
double zlvl = zmin + 0.1; // Set up a slight tolerance from z level
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi);
Facestats fc{tri};
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
return -fc.area * POINTS_PER_UNIT_AREA;
return get_score(fc);
};
size_t facecount = mesh.its.indices.size();
return sum_score(accessfn, facecount, Nthreads) / facecount;
}
using XYRotation = std::array<double, 2>;
// prepare the rotation transformation
Transform3d to_transform3d(const XYRotation &rot)
{
Transform3d rt = Transform3d::Identity();
rt.rotate(Eigen::AngleAxisd(rot[1], Vec3d::UnitY()));
rt.rotate(Eigen::AngleAxisd(rot[0], Vec3d::UnitX()));
return rt;
}
XYRotation from_transform3d(const Transform3d &tr)
{
Vec3d rot3d = Geometry::Transformation {tr}.get_rotation();
return {rot3d.x(), rot3d.y()};
}
// Find the best score from a set of function inputs. Evaluate for every point.
template<size_t N, class Fn, class It, class StopCond>
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
{
std::array<double, N> ret;
double score = std::numeric_limits<double>::max();
size_t Nthreads = std::thread::hardware_concurrency();
size_t dist = std::distance(from, to);
std::vector<double> scores(dist, score);
ccr_par::for_each(size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
if (stopfn()) return;
scores[i] = fn(*(from + i));
}, dist / Nthreads);
auto it = std::min_element(scores.begin(), scores.end());
if (it != scores.end()) ret = *(from + std::distance(scores.begin(), it));
return ret;
}
// collect the rotations for each face of the convex hull
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
{
TriangleMesh chull = mesh.convex_hull_3d();
chull.require_shared_vertices();
double chull2d_area = chull.convex_hull().area();
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
size_t facecount = chull.its.indices.size();
struct RotArea { XYRotation rot; double area; };
auto inputs = reserve_vector<RotArea>(facecount);
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
};
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
};
for (size_t fi = 0; fi < facecount; ++fi) {
Facestats fc{get_triangle_vertices(chull, fi)};
if (fc.area > area_threshold) {
auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN);
XYRotation rot = from_transform3d(Transform3d::Identity() * q);
RotArea ra = {rot, fc.area};
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
if (it == inputs.end() || !eqcmp(it->rot, rot))
inputs.insert(it, ra);
}
}
inputs.shrink_to_fit();
if (!max_count) max_count = inputs.size();
std::sort(inputs.begin(), inputs.end(),
[](const RotArea &ra, const RotArea &rb) {
return ra.area > rb.area;
});
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
return ret;
}
Vec2d find_best_rotation(const SLAPrintObject & po,
float accuracy,
std::function<void(unsigned)> statuscb,
std::function<bool()> stopcond)
{
static const unsigned MAX_TRIES = 1000;
// return value // return value
std::array<double, 3> rot; XYRotation rot;
// We will use only one instance of this converted mesh to examine different // We will use only one instance of this converted mesh to examine different
// rotations // rotations
const TriangleMesh& mesh = modelobj.raw_mesh(); TriangleMesh mesh = po.model_object()->raw_mesh();
mesh.require_shared_vertices();
// For current iteration number // To keep track of the number of iterations
unsigned status = 0; unsigned status = 0;
// The maximum number of iterations // The maximum number of iterations
@ -38,77 +262,61 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
// call status callback with zero, because we are at the start // call status callback with zero, because we are at the start
statuscb(status); statuscb(status);
// So this is the object function which is called by the solver many times auto statusfn = [&statuscb, &status, &max_tries] {
// It has to yield a single value representing the current score. We will
// call the status callback in each iteration but the actual value may be
// the same for subsequent iterations (status goes from 0 to 100 but
// iterations can be many more)
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
(double rx, double ry, double rz)
{
const TriangleMesh& m = mesh;
// prepare the rotation transformation
Transform3d rt = Transform3d::Identity();
rt.rotate(Eigen::AngleAxisd(rz, Vec3d::UnitZ()));
rt.rotate(Eigen::AngleAxisd(ry, Vec3d::UnitY()));
rt.rotate(Eigen::AngleAxisd(rx, Vec3d::UnitX()));
double score = 0;
// For all triangles we calculate the normal and sum up the dot product
// (a scalar indicating how much are two vectors aligned) with each axis
// this will result in a value that is greater if a normal is aligned
// with all axes. If the normal is aligned than the triangle itself is
// orthogonal to the axes and that is good for print quality.
// TODO: some applications optimize for minimum z-axis cross section
// area. The current function is only an example of how to optimize.
// Later we can add more criteria like the number of overhangs, etc...
for(size_t i = 0; i < m.stl.facet_start.size(); i++) {
Vec3d n = m.stl.facet_start[i].normal.cast<double>();
// rotate the normal with the current rotation given by the solver
n = rt * n;
// We should score against the alignment with the reference planes
score += std::abs(n.dot(Vec3d::UnitX()));
score += std::abs(n.dot(Vec3d::UnitY()));
score += std::abs(n.dot(Vec3d::UnitZ()));
}
// report status // report status
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) ); statuscb(unsigned(++status * 100.0/max_tries) );
return score;
}; };
// Firing up the genetic optimizer. For now it uses the nlopt library. // Different search methods have to be used depending on the model elevation
StopCriteria stc; if (is_on_floor(po)) {
stc.max_iterations = max_tries;
stc.relative_score_difference = 1e-3;
stc.stop_condition = stopcond; // stop when stopcond returns true
TOptimizer<Method::G_GENETIC> solver(stc);
// We are searching rotations around the three axes x, y, z. Thus the std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
// problem becomes a 3 dimensional optimization task. max_tries = inputs.size();
// We can specify the bounds for a dimension in the following way:
auto b = bound(-PI/2, PI/2);
// Now we start the optimization process with initial angles (0, 0, 0) // If the model can be placed on the bed directly, we only need to
auto result = solver.optimize_max(objfunc, // check the 3D convex hull face rotations.
libnest2d::opt::initvals(0.0, 0.0, 0.0),
b, b, b);
// Save the result and fck off auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
rot[0] = std::get<0>(result.optimum); statusfn();
rot[1] = std::get<1>(result.optimum); Transform3d tr = to_transform3d(rot);
rot[2] = std::get<2>(result.optimum); return get_model_supportedness_onfloor(mesh, tr);
};
return rot; rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
} else {
// Preparing the optimizer.
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
.max_iterations(max_tries)
.stop_condition(stopcond),
gridsize);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
auto result = solver.to_min().optimize(
[&mesh, &statusfn] (const XYRotation &rot)
{
statusfn();
return get_model_supportedness(mesh, to_transform3d(rot));
}, opt::initvals({0., 0.}), bounds);
// Save the result and fck off
rot = result.optimum;
}
return {rot[0], rot[1]};
} }
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr)
{
TriangleMesh mesh = po.model_object()->raw_mesh();
mesh.require_shared_vertices();
return is_on_floor(po) ? get_model_supportedness_onfloor(mesh, tr) :
get_model_supportedness(mesh, tr);
} }
}
}} // namespace Slic3r::sla

View File

@ -4,9 +4,11 @@
#include <functional> #include <functional>
#include <array> #include <array>
#include <libslic3r/Point.hpp>
namespace Slic3r { namespace Slic3r {
class ModelObject; class SLAPrintObject;
namespace sla { namespace sla {
@ -25,14 +27,17 @@ namespace sla {
* *
* @return Returns the rotations around each axis (x, y, z) * @return Returns the rotations around each axis (x, y, z)
*/ */
std::array<double, 3> find_best_rotation( Vec2d find_best_rotation(
const ModelObject& modelobj, const SLAPrintObject& modelobj,
float accuracy = 1.0f, float accuracy = 1.0f,
std::function<void(unsigned)> statuscb = [] (unsigned) {}, std::function<void(unsigned)> statuscb = [] (unsigned) {},
std::function<bool()> stopcond = [] () { return false; } std::function<bool()> stopcond = [] () { return false; }
); );
} double get_model_supportedness(const SLAPrintObject &mesh,
} const Transform3d & tr);
} // namespace sla
} // namespace Slic3r
#endif // SLAROTFINDER_HPP #endif // SLAROTFINDER_HPP

View File

@ -1,7 +1,7 @@
#include <libslic3r/SLA/SupportTreeBuildsteps.hpp> #include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
#include <libslic3r/SLA/SpatIndex.hpp> #include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/Optimizer.hpp> #include <libslic3r/Optimize/NLoptOptimizer.hpp>
#include <boost/log/trivial.hpp> #include <boost/log/trivial.hpp>
namespace Slic3r { namespace Slic3r {

View File

@ -70,7 +70,7 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3i> &fac
stl_get_size(&stl); stl_get_size(&stl);
} }
TriangleMesh::TriangleMesh(const indexed_triangle_set &M) TriangleMesh::TriangleMesh(const indexed_triangle_set &M) : repaired(false)
{ {
stl.stats.type = inmemory; stl.stats.type = inmemory;

View File

@ -78,172 +78,229 @@ namespace GUI {
class MainFrame; class MainFrame;
static float get_scale_for_main_display()
{
// ysFIXME : Workaround :
// wxFrame is created on the main monitor, so we can take a scale factor from this one
// before The Application and the Mainframe are created
wxFrame fr(nullptr, wxID_ANY, wxEmptyString);
#if ENABLE_WX_3_1_3_DPI_CHANGED_EVENT && !defined(__WXGTK__)
int dpi = get_dpi_for_window(&fr);
float sf = dpi != DPI_DEFAULT ? sf = (float)dpi / DPI_DEFAULT : 1.0;
#else
printf("dpi = %d\n", get_dpi_for_window(&fr));
// initialize default width_unit according to the width of the one symbol ("m") of the currently active font of this window.
float sf = 0.1 * std::max<size_t>(10, fr.GetTextExtent("m").x - 1);
#endif // ENABLE_WX_3_1_3_DPI_CHANGED_EVENT
printf("scale factor = %f\n", sf);
return sf;
}
// scale input bitmap and return scale factor
static float scale_bitmap(wxBitmap& bmp)
{
float sf = get_scale_for_main_display();
// scale bitmap if needed
if (sf > 1.0) {
wxImage image = bmp.ConvertToImage();
if (image.IsOk() && image.GetWidth() != 0 && image.GetHeight() != 0)
{
int width = int(sf * image.GetWidth());
int height = int(sf * image.GetHeight());
image.Rescale(width, height, wxIMAGE_QUALITY_BILINEAR);
bmp = wxBitmap(std::move(image));
}
}
return sf;
}
static void word_wrap_string(wxString& input, int line_px_len, float scalef)
{
// calculate count od symbols in one line according to the scale
int line_len = std::roundf( (float)line_px_len / (scalef * 10)) + 10;
int idx = -1;
int cur_len = 0;
for (size_t i = 0; i < input.Len(); i++)
{
cur_len++;
if (input[i] == ' ')
idx = i;
if (input[i] == '\n')
{
idx = -1;
cur_len = 0;
}
if (cur_len >= line_len && idx >= 0)
{
input[idx] = '\n';
cur_len = static_cast<int>(i) - idx;
}
}
}
static void DecorateSplashScreen(wxBitmap& bmp)
{
wxASSERT(bmp.IsOk());
float scale_factor = scale_bitmap(bmp);
// use a memory DC to draw directly onto the bitmap
wxMemoryDC memDc(bmp);
// draw an dark grey box at the left of the splashscreen.
// this box will be 2/5 of the weight of the bitmap, and be at the left.
int banner_width = (bmp.GetWidth() / 5) * 2 - 2;
const wxRect banner_rect(wxPoint(0, (bmp.GetHeight() / 9) * 2), wxPoint(banner_width, bmp.GetHeight()));
wxDCBrushChanger bc(memDc, wxBrush(wxColour(51, 51, 51)));
wxDCPenChanger pc(memDc, wxPen(wxColour(51, 51, 51)));
memDc.DrawRectangle(banner_rect);
// title
#if ENABLE_GCODE_VIEWER
wxString title_string = wxGetApp().is_editor() ? SLIC3R_APP_NAME : GCODEVIEWER_APP_NAME;
#else
wxString title_string = SLIC3R_APP_NAME;
#endif // ENABLE_GCODE_VIEWER
wxFont title_font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT);
title_font.SetPointSize(24);
// dynamically get the version to display
wxString version_string = _L("Version") + " " + std::string(SLIC3R_VERSION);
wxFont version_font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Larger().Larger();
// create a copyright notice that uses the year that this file was compiled
wxString year(__DATE__);
wxString cr_symbol = wxString::FromUTF8("\xc2\xa9");
wxString copyright_string = wxString::Format("%s 2016-%s Prusa Research.\n"
"%s 2011-2018 Alessandro Ranellucci.",
cr_symbol, year.Mid(year.Length() - 4), cr_symbol) + "\n\n";
wxFont copyright_font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Larger();
copyright_string += //"Slic3r" + _L("is licensed under the") + _L("GNU Affero General Public License, version 3") + "\n\n" +
_L("PrusaSlicer is based on Slic3r by Alessandro Ranellucci and the RepRap community.") + "\n\n" +
_L("Contributions by Henrik Brix Andersen, Nicolas Dandrimont, Mark Hindess, Petr Ledvina, Joseph Lenox, Y. Sapir, Mike Sheldrake, Vojtech Bubnik and numerous others.");
word_wrap_string(copyright_string, banner_width, scale_factor);
wxCoord margin = int(scale_factor * 20);
// draw the (orange) labels inside of our black box (at the left of the splashscreen)
memDc.SetTextForeground(wxColour(237, 107, 33));
memDc.SetFont(title_font);
memDc.DrawLabel(title_string, banner_rect.Deflate(margin, 0), wxALIGN_TOP | wxALIGN_LEFT);
memDc.SetFont(version_font);
memDc.DrawLabel(version_string, banner_rect.Deflate(margin, 2 * margin), wxALIGN_TOP | wxALIGN_LEFT);
memDc.SetFont(copyright_font);
memDc.DrawLabel(copyright_string, banner_rect.Deflate(margin, 2 * margin), wxALIGN_BOTTOM | wxALIGN_LEFT);
}
class SplashScreen : public wxSplashScreen class SplashScreen : public wxSplashScreen
{ {
public: public:
SplashScreen(const wxBitmap& bitmap, long splashStyle, int milliseconds, wxWindow* parent) SplashScreen(const wxBitmap& bitmap, long splashStyle, int milliseconds, wxPoint pos = wxDefaultPosition, bool is_decorated = false)
: wxSplashScreen(bitmap, splashStyle, milliseconds, parent, wxID_ANY, wxDefaultPosition, wxDefaultSize, : wxSplashScreen(bitmap, splashStyle, milliseconds, nullptr, wxID_ANY,
wxSIMPLE_BORDER | wxFRAME_NO_TASKBAR) wxDefaultPosition, wxDefaultSize, wxSIMPLE_BORDER | wxFRAME_NO_TASKBAR )
{ {
wxASSERT(bitmap.IsOk()); wxASSERT(bitmap.IsOk());
m_main_bitmap = bitmap; m_main_bitmap = bitmap;
m_scale_factor = get_scale_for_main_display(); if (!is_decorated)
Decorate(m_main_bitmap, pos, true);
m_scale = get_display_scale(pos);
m_font = get_scaled_sys_font(get_splashscreen_display_scale_factor(pos)).Bold().Larger();
if (pos != wxDefaultPosition) {
this->SetPosition(pos);
this->CenterOnScreen();
}
} }
void SetText(const wxString& text) void SetText(const wxString& text)
{ {
SetBmp(m_main_bitmap); set_bitmap(m_main_bitmap);
if (!text.empty()) { if (!text.empty()) {
wxBitmap bitmap(m_main_bitmap); wxBitmap bitmap(m_main_bitmap);
wxMemoryDC memDC; wxMemoryDC memDC;
memDC.SelectObject(bitmap); memDC.SelectObject(bitmap);
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Bold().Larger(); wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT);
memDC.SetFont(font); memDC.SetFont(m_font);
memDC.SetTextForeground(wxColour(237, 107, 33)); memDC.SetTextForeground(wxColour(237, 107, 33));
memDC.DrawText(text, int(m_scale_factor * 45), int(m_scale_factor * 215)); memDC.DrawText(text, int(m_scale * 45), int(m_scale * 200));
memDC.SelectObject(wxNullBitmap); memDC.SelectObject(wxNullBitmap);
SetBmp(bitmap); set_bitmap(bitmap);
} }
} }
void SetBmp(wxBitmap& bmp) static bool Decorate(wxBitmap& bmp, wxPoint screen_pos = wxDefaultPosition, bool force_decor = false)
{
if (!bmp.IsOk())
return false;
float screen_sf = get_splashscreen_display_scale_factor(screen_pos);
float screen_scale = get_display_scale(screen_pos);
if (screen_sf == 1.0) {
// it means that we have just one display or all displays have a same scale
// Scale bitmap for this display and continue the decoration
scale_bitmap(bmp, screen_scale);
}
else if (force_decor) {
// if we are here, it means that bitmap is already scaled for the main display
// and now we should just scale it th the secondary monitor and continue the decoration
scale_bitmap(bmp, screen_sf);
}
else {
// if screens have different scale and this function is called with force_decor == false
// then just rescale the bitmap for the main display scale
scale_bitmap(bmp, get_display_scale());
return false;
// Decoration will be continued later, from the SplashScreen constructor
}
// use a memory DC to draw directly onto the bitmap
wxMemoryDC memDc(bmp);
// draw an dark grey box at the left of the splashscreen.
// this box will be 2/5 of the weight of the bitmap, and be at the left.
int banner_width = (bmp.GetWidth() / 5) * 2 - 2;
const wxRect banner_rect(wxPoint(0, (bmp.GetHeight() / 9) * 2), wxPoint(banner_width, bmp.GetHeight()));
wxDCBrushChanger bc(memDc, wxBrush(wxColour(51, 51, 51)));
wxDCPenChanger pc(memDc, wxPen(wxColour(51, 51, 51)));
memDc.DrawRectangle(banner_rect);
wxFont sys_font = get_scaled_sys_font(screen_sf);
// title
#if ENABLE_GCODE_VIEWER
wxString title_string = wxGetApp().is_editor() ? SLIC3R_APP_NAME : GCODEVIEWER_APP_NAME;
#else
wxString title_string = SLIC3R_APP_NAME;
#endif // ENABLE_GCODE_VIEWER
wxFont title_font = sys_font;
title_font.SetPointSize(3 * sys_font.GetPointSize());
// dynamically get the version to display
wxString version_string = _L("Version") + " " + std::string(SLIC3R_VERSION);
wxFont version_font = sys_font.Larger().Larger();
// create a copyright notice that uses the year that this file was compiled
wxString year(__DATE__);
wxString cr_symbol = wxString::FromUTF8("\xc2\xa9");
wxString copyright_string = wxString::Format("%s 2016-%s Prusa Research.\n"
"%s 2011-2018 Alessandro Ranellucci.",
cr_symbol, year.Mid(year.Length() - 4), cr_symbol) + "\n\n";
wxFont copyright_font = sys_font.Larger();
copyright_string += //"Slic3r" + _L("is licensed under the") + _L("GNU Affero General Public License, version 3") + "\n\n" +
_L("PrusaSlicer is based on Slic3r by Alessandro Ranellucci and the RepRap community.") + "\n\n" +
_L("Contributions by Henrik Brix Andersen, Nicolas Dandrimont, Mark Hindess, Petr Ledvina, Joseph Lenox, Y. Sapir, Mike Sheldrake, Vojtech Bubnik and numerous others.") + "\n\n" +
_L("Splash screen could be desabled from the \"Preferences\"");
word_wrap_string(copyright_string, banner_width, screen_scale);
wxCoord margin = int(screen_scale * 20);
// draw the (orange) labels inside of our black box (at the left of the splashscreen)
memDc.SetTextForeground(wxColour(237, 107, 33));
memDc.SetFont(title_font);
memDc.DrawLabel(title_string, banner_rect.Deflate(margin, 0), wxALIGN_TOP | wxALIGN_LEFT);
memDc.SetFont(version_font);
memDc.DrawLabel(version_string, banner_rect.Deflate(margin, 2 * margin), wxALIGN_TOP | wxALIGN_LEFT);
memDc.SetFont(copyright_font);
memDc.DrawLabel(copyright_string, banner_rect.Deflate(margin, margin), wxALIGN_BOTTOM | wxALIGN_LEFT);
return true;
}
private:
wxBitmap m_main_bitmap;
wxFont m_font;
float m_scale {1.0};
void set_bitmap(wxBitmap& bmp)
{ {
m_window->SetBitmap(bmp); m_window->SetBitmap(bmp);
m_window->Refresh(); m_window->Refresh();
m_window->Update(); m_window->Update();
} }
private: static float get_splashscreen_display_scale_factor(wxPoint pos = wxDefaultPosition)
wxBitmap m_main_bitmap; {
float m_scale_factor {1.0}; if (wxDisplay::GetCount() == 1)
return 1.0;
wxFrame main_screen_fr(nullptr, wxID_ANY, wxEmptyString);
wxFrame splash_screen_fr(nullptr, wxID_ANY, wxEmptyString, pos);
#if ENABLE_WX_3_1_3_DPI_CHANGED_EVENT && !defined(__WXGTK__)
int main_dpi = get_dpi_for_window(&main_screen_fr);
int splash_dpi = get_dpi_for_window(&splash_screen_fr);
float sf = (float)splash_dpi / (float)main_dpi;
#else
// initialize default width_unit according to the width of the one symbol ("m") of the currently active font of this window.
float sf = (float)splash_screen_fr.GetTextExtent("m").x / (float)main_screen_fr.GetTextExtent("m").x;
#endif // ENABLE_WX_3_1_3_DPI_CHANGED_EVENT
return sf;
}
static float get_display_scale(wxPoint pos = wxDefaultPosition)
{
// pos equals to wxDefaultPosition, when display is main
wxFrame fr(nullptr, wxID_ANY, wxEmptyString, pos);
#if ENABLE_WX_3_1_3_DPI_CHANGED_EVENT && !defined(__WXGTK__)
int dpi = get_dpi_for_window(&fr);
float scale = dpi != DPI_DEFAULT ? (float)dpi / DPI_DEFAULT : 1.0;
#else
// initialize default width_unit according to the width of the one symbol ("m") of the currently active font of this window.
float scale = 0.1 * std::max<size_t>(10, fr.GetTextExtent("m").x - 1);
#endif // ENABLE_WX_3_1_3_DPI_CHANGED_EVENT
return scale;
}
static void scale_bitmap(wxBitmap& bmp, float scale)
{
if (scale == 1.0)
return;
wxImage image = bmp.ConvertToImage();
if (!image.IsOk() || image.GetWidth() == 0 || image.GetHeight() == 0)
return;
int width = int(scale * image.GetWidth());
int height = int(scale * image.GetHeight());
image.Rescale(width, height, wxIMAGE_QUALITY_BILINEAR);
bmp = wxBitmap(std::move(image));
}
static wxFont get_scaled_sys_font(float screen_sf)
{
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT);
if (screen_sf != 1.0)
font.SetPointSize(int(screen_sf * (float)font.GetPointSize()));
return font;
}
static void word_wrap_string(wxString& input, int line_px_len, float scalef)
{
// calculate count od symbols in one line according to the scale
int line_len = int((float)line_px_len / (scalef * 10) + 0.5) + 10;
int idx = -1;
int cur_len = 0;
for (size_t i = 0; i < input.Len(); i++)
{
cur_len++;
if (input[i] == ' ')
idx = i;
if (input[i] == '\n')
{
idx = -1;
cur_len = 0;
}
if (cur_len >= line_len && idx >= 0)
{
input[idx] = '\n';
cur_len = static_cast<int>(i) - idx;
}
}
}
}; };
wxString file_wildcards(FileType file_type, const std::string &custom_extension) wxString file_wildcards(FileType file_type, const std::string &custom_extension)
@ -580,17 +637,32 @@ bool GUI_App::on_init_inner()
*/ */
wxInitAllImageHandlers(); wxInitAllImageHandlers();
wxBitmap bitmap = create_scaled_bitmap("prusa_slicer_logo", nullptr, 400); SplashScreen* scrn = nullptr;
if (app_config->get("show_splash_screen") == "1")
{
#if ENABLE_GCODE_VIEWER #if ENABLE_GCODE_VIEWER
wxBitmap bmp(is_editor() ? from_u8(var("splashscreen.jpg")) : from_u8(var("splashscreen-gcodeviewer.jpg")), wxBITMAP_TYPE_JPEG); wxBitmap bmp(is_editor() ? from_u8(var("splashscreen.jpg")) : from_u8(var("splashscreen-gcodeviewer.jpg")), wxBITMAP_TYPE_JPEG);
#else #else
wxBitmap bmp(from_u8(var("splashscreen.jpg")), wxBITMAP_TYPE_JPEG); wxBitmap bmp(from_u8(var("splashscreen.jpg")), wxBITMAP_TYPE_JPEG);
#endif // ENABLE_GCODE_VIEWER #endif // ENABLE_GCODE_VIEWER
DecorateSplashScreen(bmp); // Detect position (display) to show the splash screen
// Now this position is equal to the mainframe position
wxPoint splashscreen_pos = wxDefaultPosition;
if (app_config->has("window_mainframe")) {
auto metrics = WindowMetrics::deserialize(app_config->get("window_mainframe"));
if (metrics)
splashscreen_pos = metrics->get_rect().GetPosition();
}
SplashScreen* scrn = new SplashScreen(bmp.IsOk() ? bmp : bitmap, wxSPLASH_CENTRE_ON_SCREEN | wxSPLASH_TIMEOUT, 4000, nullptr); // try to decorate and/or scale the bitmap before splash screen creation
scrn->SetText(_L("Loading configuration...")); bool is_decorated = SplashScreen::Decorate(bmp, splashscreen_pos);
// create splash screen with updated bmp
scrn = new SplashScreen(bmp.IsOk() ? bmp : create_scaled_bitmap("prusa_slicer_logo", nullptr, 400),
wxSPLASH_CENTRE_ON_SCREEN | wxSPLASH_TIMEOUT, 4000, splashscreen_pos, is_decorated);
scrn->SetText(_L("Loading configuration..."));
}
preset_bundle = new PresetBundle(); preset_bundle = new PresetBundle();
@ -646,7 +718,9 @@ bool GUI_App::on_init_inner()
// application frame // application frame
#if ENABLE_GCODE_VIEWER #if ENABLE_GCODE_VIEWER
if (is_editor()) if (scrn && is_editor())
#else
if (scrn)
#endif // ENABLE_GCODE_VIEWER #endif // ENABLE_GCODE_VIEWER
scrn->SetText(_L("Creating settings tabs...")); scrn->SetText(_L("Creating settings tabs..."));

View File

@ -1,9 +1,15 @@
// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro. // Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
#include "GLGizmoRotate.hpp" #include "GLGizmoRotate.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp" #include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/ImGuiWrapper.hpp"
#include <GL/glew.h> #include <GL/glew.h>
#include "slic3r/GUI/GUI_App.hpp"
#include "slic3r/GUI/GUI.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "libslic3r/SLA/Rotfinder.hpp"
namespace Slic3r { namespace Slic3r {
namespace GUI { namespace GUI {
@ -194,6 +200,64 @@ void GLGizmoRotate::on_render_for_picking() const
glsafe(::glPopMatrix()); glsafe(::glPopMatrix());
} }
GLGizmoRotate3D::RotoptimzeWindow::RotoptimzeWindow(ImGuiWrapper * imgui,
State & state,
const Alignment &alignment)
: m_imgui{imgui}
{
imgui->begin(_L("Rotation"), ImGuiWindowFlags_NoMove |
ImGuiWindowFlags_AlwaysAutoResize |
ImGuiWindowFlags_NoCollapse);
// adjust window position to avoid overlap the view toolbar
float win_h = ImGui::GetWindowHeight();
float x = alignment.x, y = alignment.y;
y = std::min(y, alignment.bottom_limit - win_h);
ImGui::SetWindowPos(ImVec2(x, y), ImGuiCond_Always);
static constexpr const char * button_txt = L("Optimize orientation");
static constexpr const char * slider_txt = L("Accuracy");
float button_width = imgui->calc_text_size(_(button_txt)).x;
ImGui::PushItemWidth(100.);
//if (imgui->button(_(button_txt))) {
if (ImGui::ArrowButton(_(button_txt).c_str(), ImGuiDir_Down)){
std::cout << "Blip" << std::endl;
}
ImGui::SliderFloat(_(slider_txt).c_str(), &state.accuracy, 0.01f, 1.f, "%.1f");
static const std::vector<std::string> options = {
_L("Least supports").ToStdString(),
_L("Suface quality").ToStdString()
};
// if (imgui->combo(_L("Choose method"), options, state.method) ) {
// std::cout << "method: " << state.method << std::endl;
// }
}
GLGizmoRotate3D::RotoptimzeWindow::~RotoptimzeWindow()
{
m_imgui->end();
}
void GLGizmoRotate3D::on_render_input_window(float x, float y, float bottom_limit)
{
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
return;
// TODO:
// m_rotoptimizewin_state.mobj = ?;
// RotoptimzeWindow popup{m_imgui, m_rotoptimizewin_state, {x, y, bottom_limit}};
}
void GLGizmoRotate::render_circle() const void GLGizmoRotate::render_circle() const
{ {
::glBegin(GL_LINE_LOOP); ::glBegin(GL_LINE_LOOP);

View File

@ -52,12 +52,12 @@ public:
std::string get_tooltip() const override; std::string get_tooltip() const override;
protected: protected:
virtual bool on_init(); bool on_init() override;
virtual std::string on_get_name() const { return ""; } std::string on_get_name() const override { return ""; }
virtual void on_start_dragging(); void on_start_dragging() override;
virtual void on_update(const UpdateData& data); void on_update(const UpdateData& data) override;
virtual void on_render() const; void on_render() const override;
virtual void on_render_for_picking() const; void on_render_for_picking() const override;
private: private:
void render_circle() const; void render_circle() const;
@ -94,46 +94,79 @@ public:
} }
protected: protected:
virtual bool on_init(); bool on_init() override;
virtual std::string on_get_name() const; std::string on_get_name() const override;
virtual void on_set_state() void on_set_state() override
{ {
for (GLGizmoRotate& g : m_gizmos) for (GLGizmoRotate& g : m_gizmos)
g.set_state(m_state); g.set_state(m_state);
} }
virtual void on_set_hover_id() void on_set_hover_id() override
{ {
for (int i = 0; i < 3; ++i) for (int i = 0; i < 3; ++i)
m_gizmos[i].set_hover_id((m_hover_id == i) ? 0 : -1); m_gizmos[i].set_hover_id((m_hover_id == i) ? 0 : -1);
} }
virtual void on_enable_grabber(unsigned int id) void on_enable_grabber(unsigned int id) override
{ {
if (id < 3) if (id < 3)
m_gizmos[id].enable_grabber(0); m_gizmos[id].enable_grabber(0);
} }
virtual void on_disable_grabber(unsigned int id) void on_disable_grabber(unsigned int id) override
{ {
if (id < 3) if (id < 3)
m_gizmos[id].disable_grabber(0); m_gizmos[id].disable_grabber(0);
} }
virtual bool on_is_activable() const; bool on_is_activable() const override;
virtual void on_start_dragging(); void on_start_dragging() override;
virtual void on_stop_dragging(); void on_stop_dragging() override;
virtual void on_update(const UpdateData& data) void on_update(const UpdateData& data) override
{ {
for (GLGizmoRotate& g : m_gizmos) for (GLGizmoRotate& g : m_gizmos)
{ {
g.update(data); g.update(data);
} }
} }
virtual void on_render() const; void on_render() const override;
virtual void on_render_for_picking() const void on_render_for_picking() const override
{ {
for (const GLGizmoRotate& g : m_gizmos) for (const GLGizmoRotate& g : m_gizmos)
{ {
g.render_for_picking(); g.render_for_picking();
} }
} }
void on_render_input_window(float x, float y, float bottom_limit) override;
private:
class RotoptimzeWindow {
ImGuiWrapper *m_imgui = nullptr;
public:
struct State {
enum Metods { mMinSupportPoints, mLegacy };
float accuracy = 1.f;
int method = mMinSupportPoints;
ModelObject *mobj = nullptr;
};
struct Alignment { float x, y, bottom_limit; };
RotoptimzeWindow(ImGuiWrapper * imgui,
State & state,
const Alignment &bottom_limit);
~RotoptimzeWindow();
RotoptimzeWindow(const RotoptimzeWindow&) = delete;
RotoptimzeWindow(RotoptimzeWindow &&) = delete;
RotoptimzeWindow& operator=(const RotoptimzeWindow &) = delete;
RotoptimzeWindow& operator=(RotoptimzeWindow &&) = delete;
};
RotoptimzeWindow::State m_rotoptimizewin_state = {};
}; };
} // namespace GUI } // namespace GUI

View File

@ -425,10 +425,10 @@ bool ImGuiWrapper::combo(const wxString& label, const std::vector<std::string>&
text(label); text(label);
ImGui::SameLine(); ImGui::SameLine();
int selection_out = -1; int selection_out = selection;
bool res = false; bool res = false;
const char *selection_str = selection < (int)options.size() ? options[selection].c_str() : ""; const char *selection_str = selection < int(options.size()) && selection >= 0 ? options[selection].c_str() : "";
if (ImGui::BeginCombo("", selection_str)) { if (ImGui::BeginCombo("", selection_str)) {
for (int i = 0; i < (int)options.size(); i++) { for (int i = 0; i < (int)options.size(); i++) {
if (ImGui::Selectable(options[i].c_str(), i == selection)) { if (ImGui::Selectable(options[i].c_str(), i == selection)) {

View File

@ -4,6 +4,7 @@
#include "libslic3r/SLA/Rotfinder.hpp" #include "libslic3r/SLA/Rotfinder.hpp"
#include "libslic3r/MinAreaBoundingBox.hpp" #include "libslic3r/MinAreaBoundingBox.hpp"
#include "libslic3r/Model.hpp" #include "libslic3r/Model.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "slic3r/GUI/Plater.hpp" #include "slic3r/GUI/Plater.hpp"
@ -12,26 +13,41 @@ namespace Slic3r { namespace GUI {
void RotoptimizeJob::process() void RotoptimizeJob::process()
{ {
int obj_idx = m_plater->get_selected_object_idx(); int obj_idx = m_plater->get_selected_object_idx();
if (obj_idx < 0) { return; } if (obj_idx < 0 || int(m_plater->sla_print().objects().size()) <= obj_idx)
return;
ModelObject *o = m_plater->model().objects[size_t(obj_idx)]; ModelObject *o = m_plater->model().objects[size_t(obj_idx)];
const SLAPrintObject *po = m_plater->sla_print().objects()[size_t(obj_idx)];
auto r = sla::find_best_rotation( if (!o || !po) return;
*o,
.005f, TriangleMesh mesh = o->raw_mesh();
mesh.require_shared_vertices();
// for (auto inst : o->instances) {
// Transform3d tr = Transform3d::Identity();
// tr.rotate(Eigen::AngleAxisd(inst->get_rotation(Z), Vec3d::UnitZ()));
// tr.rotate(Eigen::AngleAxisd(inst->get_rotation(Y), Vec3d::UnitY()));
// tr.rotate(Eigen::AngleAxisd(inst->get_rotation(X), Vec3d::UnitX()));
// double score = sla::get_model_supportedness(*po, tr);
// std::cout << "Model supportedness before: " << score << std::endl;
// }
Vec2d r = sla::find_best_rotation(*po, 0.75f,
[this](unsigned s) { [this](unsigned s) {
if (s < 100) if (s < 100)
update_status(int(s), update_status(int(s), _(L("Searching for optimal orientation")));
_(L("Searching for optimal orientation")));
}, },
[this]() { return was_canceled(); }); [this] () { return was_canceled(); });
double mindist = 6.0; // FIXME double mindist = 6.0; // FIXME
if (!was_canceled()) { if (!was_canceled()) {
for(ModelInstance * oi : o->instances) { for(ModelInstance * oi : o->instances) {
oi->set_rotation({r[X], r[Y], r[Z]}); oi->set_rotation({r[X], r[Y], 0.});
auto trmatrix = oi->get_transformation().get_matrix(); auto trmatrix = oi->get_transformation().get_matrix();
Polygon trchull = o->convex_hull_2d(trmatrix); Polygon trchull = o->convex_hull_2d(trmatrix);

View File

@ -131,6 +131,15 @@ void PreferencesDialog::build()
option = Option(def, "use_inches"); option = Option(def, "use_inches");
m_optgroup_general->append_single_option_line(option); m_optgroup_general->append_single_option_line(option);
*/ */
// Show/Hide splash screen
def.label = L("Show splash screen");
def.type = coBool;
def.tooltip = L("Show splash screen");
def.set_default_value(new ConfigOptionBool{ app_config->get("show_splash_screen") == "1" });
option = Option(def, "show_splash_screen");
m_optgroup_general->append_single_option_line(option);
m_optgroup_camera = std::make_shared<ConfigOptionsGroup>(this, _(L("Camera"))); m_optgroup_camera = std::make_shared<ConfigOptionsGroup>(this, _(L("Camera")));
m_optgroup_camera->label_width = 40; m_optgroup_camera->label_width = 40;
m_optgroup_camera->m_on_change = [this](t_config_option_key opt_key, boost::any value) { m_optgroup_camera->m_on_change = [this](t_config_option_key opt_key, boost::any value) {

View File

@ -17,6 +17,7 @@ add_executable(${_TEST_NAME}_tests
test_marchingsquares.cpp test_marchingsquares.cpp
test_timeutils.cpp test_timeutils.cpp
test_voronoi.cpp test_voronoi.cpp
test_optimizers.cpp
test_png_io.cpp test_png_io.cpp
test_timeutils.cpp test_timeutils.cpp
) )

View File

@ -0,0 +1,59 @@
#include <catch2/catch.hpp>
#include <test_utils.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
void check_opt_result(double score, double ref, double abs_err, double rel_err)
{
double abs_diff = std::abs(score - ref);
double rel_diff = std::abs(abs_diff / std::abs(ref));
bool abs_reached = abs_diff < abs_err;
bool rel_reached = rel_diff < rel_err;
bool precision_reached = abs_reached || rel_reached;
REQUIRE(precision_reached);
}
template<class Opt> void test_sin(Opt &&opt)
{
using namespace Slic3r::opt;
auto optfunc = [](const auto &in) {
auto [phi] = in;
return std::sin(phi);
};
auto init = initvals({PI});
auto optbounds = bounds({ {0., 2 * PI}});
Result result_min = opt.to_min().optimize(optfunc, init, optbounds);
Result result_max = opt.to_max().optimize(optfunc, init, optbounds);
check_opt_result(result_min.score, -1., 1e-2, 1e-4);
check_opt_result(result_max.score, 1., 1e-2, 1e-4);
}
template<class Opt> void test_sphere_func(Opt &&opt)
{
using namespace Slic3r::opt;
Result result = opt.to_min().optimize([](const auto &in) {
auto [x, y] = in;
return x * x + y * y + 1.;
}, initvals({.6, -0.2}), bounds({{-1., 1.}, {-1., 1.}}));
check_opt_result(result.score, 1., 1e-2, 1e-4);
}
TEST_CASE("Test brute force optimzer for basic 1D and 2D functions", "[Opt]") {
using namespace Slic3r::opt;
Optimizer<AlgBruteForce> opt;
test_sin(opt);
test_sphere_func(opt);
}

View File

@ -5,6 +5,7 @@
#include "sla_test_utils.hpp" #include "sla_test_utils.hpp"
#include <libslic3r/SLA/SupportTreeMesher.hpp> #include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
namespace { namespace {
@ -239,3 +240,14 @@ TEST_CASE("halfcone test", "[halfcone]") {
m.require_shared_vertices(); m.require_shared_vertices();
m.WriteOBJFile("Halfcone.obj"); m.WriteOBJFile("Halfcone.obj");
} }
TEST_CASE("Test concurrency")
{
std::vector<double> vals = grid(0., 100., 10.);
double ref = std::accumulate(vals.begin(), vals.end(), 0.);
double s = sla::ccr_par::reduce(vals.begin(), vals.end(), 0., std::plus<double>{});
REQUIRE(s == Approx(ref));
}