This commit is contained in:
YuSanka 2019-01-28 12:19:28 +01:00
commit b0ecf07e9b
47 changed files with 1832 additions and 507 deletions

View file

@ -169,6 +169,11 @@ if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" OR "${CMAKE_CXX_COMPILER_ID}" STRE
endif ()
endif()
if (APPLE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=partial-availability -Werror=unguarded-availability -Werror=unguarded-availability-new")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Werror=partial-availability -Werror=unguarded-availability -Werror=unguarded-availability-new")
endif ()
# Where all the bundled libraries reside?
set(LIBDIR ${CMAKE_CURRENT_SOURCE_DIR}/src)
set(LIBDIR_BIN ${CMAKE_CURRENT_BINARY_DIR}/src)

Binary file not shown.

View file

@ -71,6 +71,11 @@ if(TBB_FOUND)
target_compile_definitions(libnest2d INTERFACE -DTBB_USE_CAPTURED_EXCEPTION=0)
target_link_libraries(libnest2d INTERFACE tbb)
# The following breaks compilation on Visual Studio in Debug mode.
#find_package(Threads REQUIRED)
#target_link_libraries(libnest2d INTERFACE ${TBB_LIBRARIES} ${CMAKE_DL_LIBS}
# Threads::Threads
# )
else()
find_package(OpenMP QUIET)
@ -88,7 +93,7 @@ endif()
add_subdirectory(${SRC_DIR}/libnest2d/backends/${LIBNEST2D_GEOMETRIES})
add_subdirectory(${SRC_DIR}/libnest2d/optimizers/${LIBNEST2D_OPTIMIZER})
#target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
target_include_directories(libnest2d INTERFACE ${SRC_DIR})
if(NOT LIBNEST2D_HEADER_ONLY)

View file

@ -62,9 +62,9 @@ if(NOT Boost_INCLUDE_DIRS_FOUND)
endif()
target_include_directories(ClipperBackend INTERFACE ${Boost_INCLUDE_DIRS} )
#target_sources(ClipperBackend INTERFACE
# ${CMAKE_CURRENT_SOURCE_DIR}/geometries.hpp
# ${SRC_DIR}/libnest2d/utils/boost_alg.hpp )
target_sources(ClipperBackend INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/geometries.hpp
${SRC_DIR}/libnest2d/utils/boost_alg.hpp )
target_compile_definitions(ClipperBackend INTERFACE LIBNEST2D_BACKEND_CLIPPER)

View file

@ -113,6 +113,7 @@ template<> struct CountourType<PolygonImpl> {
template<> struct ShapeTag<PolygonImpl> { using Type = PolygonTag; };
template<> struct ShapeTag<PathImpl> { using Type = PathTag; };
template<> struct ShapeTag<PointImpl> { using Type = PointTag; };
template<> struct ShapeTag<TMultiShape<PolygonImpl>> {
using Type = MultiPolygonTag;

View file

@ -69,12 +69,14 @@ struct PointPair {
RawPoint p2;
};
struct PointTag {};
struct PolygonTag {};
struct PathTag {};
struct MultiPolygonTag {};
struct BoxTag {};
struct CircleTag {};
/// Meta-functions to derive the tags
template<class Shape> struct ShapeTag { using Type = typename Shape::Tag; };
template<class S> using Tag = typename ShapeTag<remove_cvref_t<S>>::Type;
@ -131,7 +133,7 @@ public:
_Circle(const RawPoint& center, double r): center_(center), radius_(r) {}
inline const RawPoint& center() const BP2D_NOEXCEPT { return center_; }
inline const void center(const RawPoint& c) { center_ = c; }
inline void center(const RawPoint& c) { center_ = c; }
inline double radius() const BP2D_NOEXCEPT { return radius_; }
inline void radius(double r) { radius_ = r; }
@ -518,21 +520,19 @@ inline bool intersects(const RawShape& /*sh*/, const RawShape& /*sh*/)
return false;
}
template<class RawShape>
inline bool isInside(const TPoint<RawShape>& /*point*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"shapelike::isInside(point, shape) unimplemented!");
template<class TGuest, class THost>
inline bool isInside(const TGuest&, const THost&,
const PointTag&, const PolygonTag&) {
static_assert(always_false<THost>::value,
"shapelike::isInside(point, path) unimplemented!");
return false;
}
template<class RawShape>
inline bool isInside(const RawShape& /*shape*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"shapelike::isInside(shape, shape) unimplemented!");
template<class TGuest, class THost>
inline bool isInside(const TGuest&, const THost&,
const PolygonTag&, const PolygonTag&) {
static_assert(always_false<THost>::value,
"shapelike::isInside(shape, shape) unimplemented!");
return false;
}
@ -651,7 +651,7 @@ template<class RawPath> inline bool isConvex(const RawPath& sh, const PathTag&)
template<class RawShape>
inline typename TContour<RawShape>::iterator
begin(RawShape& sh, const PolygonTag& t)
begin(RawShape& sh, const PolygonTag&)
{
return begin(contour(sh), PathTag());
}
@ -818,16 +818,16 @@ inline auto convexHull(const RawShape& sh)
return convexHull(sh, Tag<RawShape>());
}
template<class RawShape>
inline bool isInside(const TPoint<RawShape>& point,
const _Circle<TPoint<RawShape>>& circ)
template<class TP, class TC>
inline bool isInside(const TP& point, const TC& circ,
const PointTag&, const CircleTag&)
{
return pointlike::distance(point, circ.center()) < circ.radius();
}
template<class RawShape>
inline bool isInside(const TPoint<RawShape>& point,
const _Box<TPoint<RawShape>>& box)
template<class TP, class TB>
inline bool isInside(const TP& point, const TB& box,
const PointTag&, const BoxTag&)
{
auto px = getX(point);
auto py = getY(point);
@ -839,27 +839,27 @@ inline bool isInside(const TPoint<RawShape>& point,
return px > minx && px < maxx && py > miny && py < maxy;
}
template<class RawShape>
inline bool isInside(const RawShape& sh,
const _Circle<TPoint<RawShape>>& circ)
template<class RawShape, class TC>
inline bool isInside(const RawShape& sh, const TC& circ,
const PolygonTag&, const CircleTag&)
{
return std::all_of(cbegin(sh), cend(sh),
[&circ](const TPoint<RawShape>& p){
return isInside<RawShape>(p, circ);
return std::all_of(cbegin(sh), cend(sh), [&circ](const TPoint<RawShape>& p)
{
return isInside(p, circ, PointTag(), CircleTag());
});
}
template<class RawShape>
inline bool isInside(const _Box<TPoint<RawShape>>& box,
const _Circle<TPoint<RawShape>>& circ)
template<class TB, class TC>
inline bool isInside(const TB& box, const TC& circ,
const BoxTag&, const CircleTag&)
{
return isInside<RawShape>(box.minCorner(), circ) &&
isInside<RawShape>(box.maxCorner(), circ);
return isInside(box.minCorner(), circ, BoxTag(), CircleTag()) &&
isInside(box.maxCorner(), circ, BoxTag(), CircleTag());
}
template<class RawShape>
inline bool isInside(const _Box<TPoint<RawShape>>& ibb,
const _Box<TPoint<RawShape>>& box)
template<class TBGuest, class TBHost>
inline bool isInside(const TBGuest& ibb, const TBHost& box,
const BoxTag&, const BoxTag&)
{
auto iminX = getX(ibb.minCorner());
auto imaxX = getX(ibb.maxCorner());
@ -874,6 +874,18 @@ inline bool isInside(const _Box<TPoint<RawShape>>& ibb,
return iminX > minX && imaxX < maxX && iminY > minY && imaxY < maxY;
}
template<class RawShape, class TB>
inline bool isInside(const RawShape& poly, const TB& box,
const PolygonTag&, const BoxTag&)
{
return isInside(boundingBox(poly), box, BoxTag(), BoxTag());
}
template<class TGuest, class THost>
inline bool isInside(const TGuest& guest, const THost& host) {
return isInside(guest, host, Tag<TGuest>(), Tag<THost>());
}
template<class RawShape> // Potential O(1) implementation may exist
inline TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx,
const PolygonTag&)

View file

@ -251,6 +251,460 @@ inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
return {rsh, top_nfp};
}
template<class RawShape>
NfpResult<RawShape> nfpSimpleSimple(const RawShape& cstationary,
const RawShape& cother)
{
// Algorithms are from the original algorithm proposed in paper:
// https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
// /////////////////////////////////////////////////////////////////////////
// Algorithm 1: Obtaining the minkowski sum
// /////////////////////////////////////////////////////////////////////////
// I guess this is not a full minkowski sum of the two input polygons by
// definition. This yields a subset that is compatible with the next 2
// algorithms.
using Result = NfpResult<RawShape>;
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
namespace sl = shapelike;
using std::signbit;
using std::sort;
using std::vector;
using std::ref;
using std::reference_wrapper;
// TODO The original algorithms expects the stationary polygon in
// counter clockwise and the orbiter in clockwise order.
// So for preventing any further complication, I will make the input
// the way it should be, than make my way around the orientations.
// Reverse the stationary contour to counter clockwise
auto stcont = sl::contour(cstationary);
{
std::reverse(sl::begin(stcont), sl::end(stcont));
stcont.pop_back();
auto it = std::min_element(sl::begin(stcont), sl::end(stcont),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(sl::begin(stcont), it, sl::end(stcont));
sl::addVertex(stcont, sl::front(stcont));
}
RawShape stationary;
sl::contour(stationary) = stcont;
// Reverse the orbiter contour to counter clockwise
auto orbcont = sl::contour(cother);
{
std::reverse(orbcont.begin(), orbcont.end());
// Step 1: Make the orbiter reverse oriented
orbcont.pop_back();
auto it = std::min_element(orbcont.begin(), orbcont.end(),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(orbcont.begin(), it, orbcont.end());
orbcont.emplace_back(orbcont.front());
for(auto &v : orbcont) v = -v;
}
// Copy the orbiter (contour only), we will have to work on it
RawShape orbiter;
sl::contour(orbiter) = orbcont;
// An edge with additional data for marking it
struct MarkedEdge {
Edge e; Radians turn_angle = 0; bool is_turning_point = false;
MarkedEdge() = default;
MarkedEdge(const Edge& ed, Radians ta, bool tp):
e(ed), turn_angle(ta), is_turning_point(tp) {}
// debug
std::string label;
};
// Container for marked edges
using EdgeList = vector<MarkedEdge>;
EdgeList A, B;
// This is how an edge list is created from the polygons
auto fillEdgeList = [](EdgeList& L, const RawShape& ppoly, int dir) {
auto& poly = sl::contour(ppoly);
L.reserve(sl::contourVertexCount(poly));
if(dir > 0) {
auto it = poly.begin();
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != poly.end()) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
} else {
auto it = sl::rbegin(poly);
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != sl::rend(poly)) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
}
auto getTurnAngle = [](const Edge& e1, const Edge& e2) {
auto phi = e1.angleToXaxis();
auto phi_prev = e2.angleToXaxis();
auto turn_angle = phi-phi_prev;
if(turn_angle > Pi) turn_angle -= TwoPi;
if(turn_angle < -Pi) turn_angle += TwoPi;
return turn_angle;
};
auto eit = L.begin();
auto enext = std::next(eit);
eit->turn_angle = getTurnAngle(L.front().e, L.back().e);
while(enext != L.end()) {
enext->turn_angle = getTurnAngle( enext->e, eit->e);
eit->is_turning_point =
signbit(enext->turn_angle) != signbit(eit->turn_angle);
++eit; ++enext;
}
L.back().is_turning_point = signbit(L.back().turn_angle) !=
signbit(L.front().turn_angle);
};
// Step 2: Fill the edgelists
fillEdgeList(A, stationary, 1);
fillEdgeList(B, orbiter, 1);
int i = 1;
for(MarkedEdge& me : A) {
std::cout << "a" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "a"; me.label += std::to_string(i);
i++;
}
i = 1;
for(MarkedEdge& me : B) {
std::cout << "b" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "b"; me.label += std::to_string(i);
i++;
}
// A reference to a marked edge that also knows its container
struct MarkedEdgeRef {
reference_wrapper<MarkedEdge> eref;
reference_wrapper<vector<MarkedEdgeRef>> container;
Coord dir = 1; // Direction modifier
inline Radians angleX() const { return eref.get().e.angleToXaxis(); }
inline const Edge& edge() const { return eref.get().e; }
inline Edge& edge() { return eref.get().e; }
inline bool isTurningPoint() const {
return eref.get().is_turning_point;
}
inline bool isFrom(const vector<MarkedEdgeRef>& cont ) {
return &(container.get()) == &cont;
}
inline bool eq(const MarkedEdgeRef& mr) {
return &(eref.get()) == &(mr.eref.get());
}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec):
eref(er), container(ec), dir(1) {}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec,
Coord d):
eref(er), container(ec), dir(d) {}
};
using EdgeRefList = vector<MarkedEdgeRef>;
// Comparing two marked edges
auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) {
return e1.angleX() < e2.angleX();
};
EdgeRefList Aref, Bref; // We create containers for the references
Aref.reserve(A.size()); Bref.reserve(B.size());
// Fill reference container for the stationary polygon
std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) {
Aref.emplace_back( ref(me), ref(Aref) );
});
// Fill reference container for the orbiting polygon
std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) {
Bref.emplace_back( ref(me), ref(Bref) );
});
auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure
(const EdgeRefList& Q, const EdgeRefList& R, bool positive)
{
// Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)"
// Sort the containers of edge references and merge them.
// Q could be sorted only once and be reused here but we would still
// need to merge it with sorted(R).
EdgeRefList merged;
EdgeRefList S, seq;
merged.reserve(Q.size() + R.size());
merged.insert(merged.end(), R.begin(), R.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
merged.insert(merged.end(), Q.begin(), Q.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
// Step 2 "set i = 1, k = 1, direction = 1, s1 = q1"
// we don't use i, instead, q is an iterator into Q. k would be an index
// into the merged sequence but we use "it" as an iterator for that
// here we obtain references for the containers for later comparisons
const auto& Rcont = R.begin()->container.get();
const auto& Qcont = Q.begin()->container.get();
// Set the initial direction
Coord dir = 1;
// roughly i = 1 (so q = Q.begin()) and s1 = q1 so S[0] = q;
if(positive) {
auto q = Q.begin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.end();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.begin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
} else {
auto q = Q.rbegin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.rend();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
S.back().dir = -1;
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.rbegin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
}
// Step 4:
// "Let starting edge r1 be in position si in sequence"
// whaaat? I guess this means the following:
auto it = S.begin();
while(!it->eq(*R.begin())) ++it;
// "Set j = 1, next = 2, direction = 1, seq1 = si"
// we don't use j, seq is expanded dynamically.
dir = 1;
auto next = std::next(R.begin()); seq.emplace_back(*it);
// Step 5:
// "If all si edges have been allocated to seqj" should mean that
// we loop until seq has equal size with S
auto send = it; //it == S.begin() ? it : std::prev(it);
while(it != S.end()) {
++it; if(it == S.end()) it = S.begin();
if(it == send) break;
if(it->isFrom(Qcont)) {
seq.emplace_back(*it); // "If si is from Q, j = j + 1, seqj = si"
// "If si is a turning point in Q,
// direction = - direction, next = next + direction"
if(it->isTurningPoint()) {
dir = -dir;
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
if(it->eq(*next) /*&& dir == next->dir*/) { // "If si = direction.rnext"
// "j = j + 1, seqj = si, next = next + direction"
seq.emplace_back(*it);
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
return seq;
};
std::vector<EdgeRefList> seqlist;
seqlist.reserve(Bref.size());
EdgeRefList Bslope = Bref; // copy Bref, we will make a slope diagram
// make the slope diagram of B
std::sort(Bslope.begin(), Bslope.end(), sortfn);
auto slopeit = Bslope.begin(); // search for the first turning point
while(!slopeit->isTurningPoint() && slopeit != Bslope.end()) slopeit++;
if(slopeit == Bslope.end()) {
// no turning point means convex polygon.
seqlist.emplace_back(mink(Aref, Bref, true));
} else {
int dir = 1;
auto firstturn = Bref.begin();
while(!firstturn->eq(*slopeit)) ++firstturn;
assert(firstturn != Bref.end());
EdgeRefList bgroup; bgroup.reserve(Bref.size());
bgroup.emplace_back(*slopeit);
auto b_it = std::next(firstturn);
while(b_it != firstturn) {
if(b_it == Bref.end()) b_it = Bref.begin();
while(!slopeit->eq(*b_it)) {
__nfp::advance(slopeit, Bslope, dir > 0);
}
if(!slopeit->isTurningPoint()) {
bgroup.emplace_back(*slopeit);
} else {
if(!bgroup.empty()) {
if(dir > 0) bgroup.emplace_back(*slopeit);
for(auto& me : bgroup) {
std::cout << me.eref.get().label << ", ";
}
std::cout << std::endl;
seqlist.emplace_back(mink(Aref, bgroup, dir == 1 ? true : false));
bgroup.clear();
if(dir < 0) bgroup.emplace_back(*slopeit);
} else {
bgroup.emplace_back(*slopeit);
}
dir *= -1;
}
++b_it;
}
}
// while(it != Bref.end()) // This is step 3 and step 4 in one loop
// if(it->isTurningPoint()) {
// R = {R.last, it++};
// auto seq = mink(Q, R, orientation);
// // TODO step 6 (should be 5 shouldn't it?): linking edges from A
// // I don't get this step
// seqlist.insert(seqlist.end(), seq.begin(), seq.end());
// orientation = !orientation;
// } else ++it;
// if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true);
// /////////////////////////////////////////////////////////////////////////
// Algorithm 2: breaking Minkowski sums into track line trips
// /////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////
// Algorithm 3: finding the boundary of the NFP from track line trips
// /////////////////////////////////////////////////////////////////////////
for(auto& seq : seqlist) {
std::cout << "seqlist size: " << seq.size() << std::endl;
for(auto& s : seq) {
std::cout << (s.dir > 0 ? "" : "-") << s.eref.get().label << ", ";
}
std::cout << std::endl;
}
auto& seq = seqlist.front();
RawShape rsh;
Vertex top_nfp;
std::vector<Edge> edgelist; edgelist.reserve(seq.size());
for(auto& s : seq) {
edgelist.emplace_back(s.eref.get().e);
}
__nfp::buildPolygon(edgelist, rsh, top_nfp);
return Result(rsh, top_nfp);
}
// Specializable NFP implementation class. Specialize it if you have a faster
// or better NFP implementation
template<class RawShape, NfpLevel nfptype>

View file

@ -482,17 +482,40 @@ public:
template<class RawShape>
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) const {
return sl::isInside<RawShape>(boundingBox(), box);
return sl::isInside(boundingBox(), box);
}
template<class RawShape> inline bool
_Item<RawShape>::isInside(const _Circle<TPoint<RawShape>>& circ) const {
return sl::isInside<RawShape>(transformedShape(), circ);
return sl::isInside(transformedShape(), circ);
}
template<class RawShape> using _ItemRef = std::reference_wrapper<_Item<RawShape>>;
template<class RawShape> using _ItemGroup = std::vector<_ItemRef<RawShape>>;
template<class I> using _ItemRef = std::reference_wrapper<I>;
template<class I> using _ItemGroup = std::vector<_ItemRef<I>>;
/**
* \brief A list of packed item vectors. Each vector represents a bin.
*/
template<class RawShape>
using _PackGroup = std::vector<std::vector<_ItemRef<RawShape>>>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
_ItemRef<RawShape>
>
>
>;
template<class Iterator>
struct ConstItemRange {
@ -524,8 +547,10 @@ class PlacementStrategyLike {
PlacementStrategy impl_;
public:
using RawShape = typename PlacementStrategy::ShapeType;
/// The item type that the placer works with.
using Item = typename PlacementStrategy::Item;
using Item = _Item<RawShape>;
/// The placer's config type. Should be a simple struct but can be anything.
using Config = typename PlacementStrategy::Config;
@ -544,8 +569,7 @@ public:
*/
using PackResult = typename PlacementStrategy::PackResult;
using ItemRef = _ItemRef<Item>;
using ItemGroup = _ItemGroup<Item>;
using ItemGroup = _ItemGroup<RawShape>;
using DefaultIterator = typename ItemGroup::const_iterator;
/**
@ -619,6 +643,15 @@ public:
return impl_.pack(item, remaining);
}
/**
* This method makes possible to "preload" some items into the placer. It
* will not move these items but will consider them as already packed.
*/
inline void preload(const ItemGroup& packeditems)
{
impl_.preload(packeditems);
}
/// Unpack the last element (remove it from the list of packed items).
inline void unpackLast() { impl_.unpackLast(); }
@ -649,11 +682,11 @@ template<class SelectionStrategy>
class SelectionStrategyLike {
SelectionStrategy impl_;
public:
using Item = typename SelectionStrategy::Item;
using RawShape = typename SelectionStrategy::ShapeType;
using Item = _Item<RawShape>;
using PackGroup = _PackGroup<RawShape>;
using Config = typename SelectionStrategy::Config;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
/**
* @brief Provide a different configuration for the selection strategy.
@ -703,60 +736,29 @@ public:
std::forward<PConfig>(config));
}
/**
* \brief Get the number of bins opened by the selection algorithm.
*
* Initially it is zero and after the call to packItems it will return
* the number of bins opened by the packing procedure.
*
* \return The number of bins opened.
*/
inline size_t binCount() const { return impl_.binCount(); }
/**
* @brief Get the items for a particular bin.
* @param binIndex The index of the requested bin.
* @return Returns a list of all items packed into the requested bin.
*/
inline ItemGroup itemsForBin(size_t binIndex) {
return impl_.itemsForBin(binIndex);
inline const PackGroup& getResult() const {
return impl_.getResult();
}
/// Same as itemsForBin but for a const context.
inline const ItemGroup itemsForBin(size_t binIndex) const {
return impl_.itemsForBin(binIndex);
}
/**
* @brief Loading a group of already packed bins. It is best to use a result
* from a previous packing. The algorithm will consider this input as if the
* objects are already packed and not move them. If any of these items are
* outside the bin, it is up to the placer algorithm what will happen.
* Packing additional items can fail for the bottom-left and nfp placers.
* @param pckgrp A packgroup which is a vector of item vectors. Each item
* vector corresponds to a packed bin.
*/
inline void preload(const PackGroup& pckgrp) { impl_.preload(pckgrp); }
void clear() { impl_.clear(); }
};
/**
* \brief A list of packed item vectors. Each vector represents a bin.
*/
template<class RawShape>
using _PackGroup = std::vector<
std::vector<
std::reference_wrapper<_Item<RawShape>>
>
>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
std::reference_wrapper<_Item<RawShape>>
>
>
>;
/**
* The Arranger is the front-end class for the libnest2d library. It takes the
* input items and outputs the items with the proper transformations to be
@ -868,17 +870,29 @@ public:
}
/// Set a predicate to tell when to abort nesting.
inline Nester& stopCondition(StopCondition fn) {
inline Nester& stopCondition(StopCondition fn)
{
selector_.stopCondition(fn); return *this;
}
inline PackGroup lastResult() {
PackGroup ret;
for(size_t i = 0; i < selector_.binCount(); i++) {
auto items = selector_.itemsForBin(i);
ret.push_back(items);
inline const PackGroup& lastResult() const
{
return selector_.getResult();
}
inline void preload(const PackGroup& pgrp)
{
selector_.preload(pgrp);
}
inline void preload(const IndexedPackGroup& ipgrp)
{
PackGroup pgrp; pgrp.reserve(ipgrp.size());
for(auto& ig : ipgrp) {
pgrp.emplace_back(); pgrp.back().reserve(ig.size());
for(auto& r : ig) pgrp.back().emplace_back(r.second);
}
return ret;
preload(pgrp);
}
private:
@ -892,7 +906,7 @@ private:
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _execute(TIterator from, TIterator to, bool = false)
inline const PackGroup& _execute(TIterator from, TIterator to, bool = false)
{
__execute(from, to);
return lastResult();
@ -902,7 +916,7 @@ private:
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _execute(TIterator from, TIterator to, int = false)
inline const PackGroup& _execute(TIterator from, TIterator to, int = false)
{
item_cache_ = {from, to};
@ -946,10 +960,12 @@ private:
TSel& selector)
{
IndexedPackGroup pg;
pg.reserve(selector.binCount());
pg.reserve(selector.getResult().size());
for(size_t i = 0; i < selector.binCount(); i++) {
auto items = selector.itemsForBin(i);
const PackGroup& pckgrp = selector.getResult();
for(size_t i = 0; i < pckgrp.size(); i++) {
auto items = pckgrp[i];
pg.push_back({});
pg[i].reserve(items.size());

View file

@ -48,12 +48,12 @@ else()
target_link_libraries(NloptOptimizer INTERFACE Nlopt::Nlopt)
endif()
#target_sources( NloptOptimizer INTERFACE
#${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/nlopt_boilerplate.hpp
#)
target_sources( NloptOptimizer INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
${CMAKE_CURRENT_SOURCE_DIR}/nlopt_boilerplate.hpp
)
target_compile_definitions(NloptOptimizer INTERFACE LIBNEST2D_OPTIMIZER_NLOPT)

View file

@ -130,7 +130,7 @@ namespace placers {
template<class RawShape>
struct NfpPConfig {
using ItemGroup = _ItemGroup<_Item<RawShape>>;
using ItemGroup = _ItemGroup<RawShape>;
enum class Alignment {
CENTER,
@ -138,6 +138,8 @@ struct NfpPConfig {
BOTTOM_RIGHT,
TOP_LEFT,
TOP_RIGHT,
DONT_ALIGN //!> Warning: parts may end up outside the bin with the
//! default object function.
};
/// Which angles to try out for better results.
@ -545,8 +547,8 @@ public:
_NofitPolyPlacer& operator=(const _NofitPolyPlacer&) = default;
#ifndef BP2D_COMPILER_MSVC12 // MSVC2013 does not support default move ctors
_NofitPolyPlacer(_NofitPolyPlacer&&) /*BP2D_NOEXCEPT*/ = default;
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) /*BP2D_NOEXCEPT*/ = default;
_NofitPolyPlacer(_NofitPolyPlacer&&) = default;
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) = default;
#endif
static inline double overfit(const Box& bb, const RawShape& bin) {
@ -905,26 +907,44 @@ private:
// This is the kernel part of the object function that is
// customizable by the library client
auto _objfunc = config_.object_function?
config_.object_function :
[norm, bin, binbb, pbb](const Item& item)
{
auto ibb = item.boundingBox();
auto fullbb = boundingBox(pbb, ibb);
std::function<double(const Item&)> _objfunc;
if(config_.object_function) _objfunc = config_.object_function;
else {
double score = pl::distance(ibb.center(), binbb.center());
score /= norm;
// Inside check has to be strict if no alignment was enabled
std::function<double(const Box&)> ins_check;
if(config_.alignment == Config::Alignment::DONT_ALIGN)
ins_check = [&binbb, norm](const Box& fullbb) {
double ret = 0;
if(!sl::isInside(fullbb, binbb))
ret += norm;
return ret;
};
else
ins_check = [&bin](const Box& fullbb) {
double miss = overfit(fullbb, bin);
miss = miss > 0? miss : 0;
return std::pow(miss, 2);
};
double miss = overfit(fullbb, bin);
miss = miss > 0? miss : 0;
score += std::pow(miss, 2);
_objfunc = [norm, binbb, pbb, ins_check](const Item& item)
{
auto ibb = item.boundingBox();
auto fullbb = boundingBox(pbb, ibb);
return score;
};
double score = pl::distance(ibb.center(),
binbb.center());
score /= norm;
score += ins_check(fullbb);
return score;
};
}
// Our object function for placement
auto rawobjfunc =
[_objfunc, iv, startpos] (Vertex v, Item& itm)
auto rawobjfunc = [_objfunc, iv, startpos]
(Vertex v, Item& itm)
{
auto d = v - iv;
d += startpos;
@ -938,9 +958,10 @@ private:
ecache[opt.nfpidx].coords(opt.hidx, opt.relpos);
};
auto boundaryCheck =
[&merged_pile, &getNfpPoint, &item, &bin, &iv, &startpos]
(const Optimum& o)
auto alignment = config_.alignment;
auto boundaryCheck = [alignment, &merged_pile, &getNfpPoint,
&item, &bin, &iv, &startpos] (const Optimum& o)
{
auto v = getNfpPoint(o);
auto d = v - iv;
@ -951,7 +972,12 @@ private:
auto chull = sl::convexHull(merged_pile);
merged_pile.pop_back();
return overfit(chull, bin);
double miss = 0;
if(alignment == Config::Alignment::DONT_ALIGN)
miss = sl::isInside(chull, bin) ? -1.0 : 1.0;
else miss = overfit(chull, bin);
return miss;
};
Optimum optimum(0, 0);
@ -1101,7 +1127,9 @@ private:
}
inline void finalAlign(_Circle<TPoint<RawShape>> cbin) {
if(items_.empty()) return;
if(items_.empty() ||
config_.alignment == Config::Alignment::DONT_ALIGN) return;
nfp::Shapes<RawShape> m;
m.reserve(items_.size());
for(Item& item : items_) m.emplace_back(item.transformedShape());
@ -1113,7 +1141,9 @@ private:
}
inline void finalAlign(Box bbin) {
if(items_.empty()) return;
if(items_.empty() ||
config_.alignment == Config::Alignment::DONT_ALIGN) return;
nfp::Shapes<RawShape> m;
m.reserve(items_.size());
for(Item& item : items_) m.emplace_back(item.transformedShape());
@ -1147,6 +1177,7 @@ private:
cb = bbin.maxCorner();
break;
}
default: ; // DONT_ALIGN
}
auto d = cb - ci;
@ -1184,6 +1215,7 @@ private:
cb = bbin.maxCorner();
break;
}
default:;
}
auto d = cb - ci;

View file

@ -12,6 +12,7 @@ class PlacerBoilerplate {
mutable bool farea_valid_ = false;
mutable double farea_ = 0.0;
public:
using ShapeType = RawShape;
using Item = _Item<RawShape>;
using Vertex = TPoint<RawShape>;
using Segment = _Segment<Vertex>;
@ -19,7 +20,7 @@ public:
using Coord = TCoord<Vertex>;
using Unit = Coord;
using Config = Cfg;
using ItemGroup = _ItemGroup<Item>;
using ItemGroup = _ItemGroup<RawShape>;
using DefaultIter = typename ItemGroup::const_iterator;
class PackResult {
@ -59,8 +60,7 @@ public:
}
template<class Range = ConstItemRange<DefaultIter>>
bool pack(Item& item,
const Range& rem = Range()) {
bool pack(Item& item, const Range& rem = Range()) {
auto&& r = static_cast<Subclass*>(this)->trypack(item, rem);
if(r) {
items_.push_back(*(r.item_ptr_));
@ -69,6 +69,11 @@ public:
return r;
}
void preload(const ItemGroup& packeditems) {
items_.insert(items_.end(), packeditems.begin(), packeditems.end());
farea_valid_ = false;
}
void accept(PackResult& r) {
if(r) {
r.item_ptr_->translation(r.move_);
@ -117,6 +122,7 @@ using Base::bin_; \
using Base::items_; \
using Base::config_; \
public: \
using typename Base::ShapeType; \
using typename Base::Item; \
using typename Base::ItemGroup; \
using typename Base::BinType; \

View file

@ -33,7 +33,7 @@ class _DJDHeuristic: public SelectionBoilerplate<RawShape> {
public:
using typename Base::Item;
using typename Base::ItemRef;
using ItemRef = std::reference_wrapper<Item>;
/**
* @brief The Config for DJD heuristic.
@ -126,6 +126,8 @@ public:
store_.clear();
store_.reserve(last-first);
// TODO: support preloading
packed_bins_.clear();
std::copy(first, last, std::back_inserter(store_));

View file

@ -34,6 +34,10 @@ public:
store_.clear();
auto total = last-first;
store_.reserve(total);
// TODO: support preloading
packed_bins_.clear();
packed_bins_.emplace_back();
auto makeProgress = [this, &total](

View file

@ -36,11 +36,19 @@ public:
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::vector<Placer> placers;
placers.reserve(last-first);
// If the packed_items array is not empty we have to create as many
// placers as there are elements in packed bins and preload each item
// into the appropriate placer
for(ItemGroup& ig : packed_bins_) {
placers.emplace_back(bin);
placers.back().configure(pconfig);
placers.back().preload(ig);
}
std::copy(first, last, std::back_inserter(store_));
auto sortfunc = [](Item& i1, Item& i2) {

View file

@ -9,27 +9,23 @@ namespace libnest2d { namespace selections {
template<class RawShape>
class SelectionBoilerplate {
public:
using ShapeType = RawShape;
using Item = _Item<RawShape>;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
using PackGroup = std::vector<ItemGroup>;
using ItemGroup = _ItemGroup<RawShape>;
using PackGroup = _PackGroup<RawShape>;
size_t binCount() const { return packed_bins_.size(); }
ItemGroup itemsForBin(size_t binIndex) {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
}
inline const ItemGroup itemsForBin(size_t binIndex) const {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
inline const PackGroup& getResult() const {
return packed_bins_;
}
inline void progressIndicator(ProgressFunction fn) { progress_ = fn; }
inline void stopCondition(StopCondition cond) { stopcond_ = cond; }
inline void preload(const PackGroup& pckgrp) { packed_bins_ = pckgrp; }
inline void clear() { packed_bins_.clear(); }
protected:
PackGroup packed_bins_;

View file

@ -356,13 +356,15 @@ inline double area(const PolygonImpl& shape, const PolygonTag&)
#endif
template<>
inline bool isInside(const PointImpl& point, const PolygonImpl& shape)
inline bool isInside(const PointImpl& point, const PolygonImpl& shape,
const PointTag&, const PolygonTag&)
{
return boost::geometry::within(point, shape);
}
template<>
inline bool isInside(const PolygonImpl& sh1, const PolygonImpl& sh2)
inline bool isInside(const PolygonImpl& sh1, const PolygonImpl& sh2,
const PolygonTag&, const PolygonTag&)
{
return boost::geometry::within(sh1, sh2);
}

View file

@ -32,6 +32,7 @@ public:
}
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1));
}
void reset() { this->defined = false; this->min = PointClass::Zero(); this->max = PointClass::Zero(); }
void merge(const PointClass &point);
void merge(const std::vector<PointClass> &points);
void merge(const BoundingBoxBase<PointClass> &bb);

View file

@ -207,8 +207,7 @@ static bool sort_pointfs(const Vec3d& a, const Vec3d& b)
}
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
Polygon
convex_hull(Points points)
Polygon convex_hull(Points points)
{
assert(points.size() >= 3);
// sort input points
@ -1189,16 +1188,16 @@ Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>&
Vec3d angles2 = Vec3d::Zero();
if (is_approx(std::abs(rotation_matrix(2, 0)), 1.0))
{
angles1(0) = 0.0;
if (rotation_matrix(2, 0) > 0.0) // == +1.0
angles1(2) = 0.0;
if (rotation_matrix(2, 0) < 0.0) // == -1.0
{
angles1(1) = 0.5 * (double)PI;
angles1(2) = angles1(0) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
}
else // == -1.0
else // == 1.0
{
angles1(1) = 0.5 * (double)PI;
angles1(2) = -angles1(0) - ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
angles1(1) = - 0.5 * (double)PI;
angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2));
}
angles2 = angles1;
}

View file

@ -237,7 +237,7 @@ public:
void set_rotation(const Vec3d& rotation);
void set_rotation(Axis axis, double rotation);
Vec3d get_scaling_factor() const { return m_scaling_factor; }
const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor);

View file

@ -573,6 +573,8 @@ ModelObject& ModelObject::assign_copy(const ModelObject &rhs)
this->origin_translation = rhs.origin_translation;
m_bounding_box = rhs.m_bounding_box;
m_bounding_box_valid = rhs.m_bounding_box_valid;
m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box;
m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid;
this->clear_volumes();
this->volumes.reserve(rhs.volumes.size());
@ -604,6 +606,8 @@ ModelObject& ModelObject::assign_copy(ModelObject &&rhs)
this->origin_translation = std::move(rhs.origin_translation);
m_bounding_box = std::move(rhs.m_bounding_box);
m_bounding_box_valid = std::move(rhs.m_bounding_box_valid);
m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box;
m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid;
this->clear_volumes();
this->volumes = std::move(rhs.volumes);
@ -783,19 +787,11 @@ void ModelObject::clear_instances()
const BoundingBoxf3& ModelObject::bounding_box() const
{
if (! m_bounding_box_valid) {
BoundingBoxf3 raw_bbox;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
{
TriangleMesh m = v->mesh;
m.transform(v->get_matrix());
raw_bbox.merge(m.bounding_box());
}
BoundingBoxf3 bb;
for (const ModelInstance *i : this->instances)
bb.merge(i->transform_bounding_box(raw_bbox));
m_bounding_box = bb;
m_bounding_box_valid = true;
BoundingBoxf3 raw_bbox = this->raw_mesh_bounding_box();
m_bounding_box.reset();
for (const ModelInstance *i : this->instances)
m_bounding_box.merge(i->transform_bounding_box(raw_bbox));
}
return m_bounding_box;
}
@ -842,6 +838,26 @@ TriangleMesh ModelObject::full_raw_mesh() const
return mesh;
}
BoundingBoxf3 ModelObject::raw_mesh_bounding_box() const
{
if (! m_raw_mesh_bounding_box_valid) {
m_raw_mesh_bounding_box_valid = true;
m_raw_mesh_bounding_box.reset();
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
m_raw_mesh_bounding_box.merge(v->mesh.transformed_bounding_box(v->get_matrix()));
}
return m_raw_mesh_bounding_box;
}
BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const
{
BoundingBoxf3 bb;
for (const ModelVolume *v : this->volumes)
bb.merge(v->mesh.transformed_bounding_box(v->get_matrix()));
return bb;
}
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing.
BoundingBoxf3 ModelObject::raw_bounding_box() const
@ -896,19 +912,59 @@ BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_
return bb;
}
#if ENABLE_VOLUMES_CENTERING_FIXES
BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon ModelObject::convex_hull_2d(const Transform3d &trafo_instance)
{
BoundingBoxf3 bb;
Points pts;
for (const ModelVolume *v : this->volumes)
{
TriangleMesh vol_mesh(v->mesh);
vol_mesh.transform(v->get_matrix());
bb.merge(vol_mesh.bounding_box());
if (v->is_model_part()) {
const stl_file &stl = v->mesh.stl;
Transform3d trafo = trafo_instance * v->get_matrix();
if (stl.v_shared == nullptr) {
// Using the STL faces.
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++ i) {
const stl_facet &facet = stl.facet_start[i];
for (size_t j = 0; j < 3; ++ j) {
Vec3d p = trafo * facet.vertex[j].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
}
} else {
// Using the shared vertices should be a bit quicker than using the STL faces.
for (int i = 0; i < stl.stats.shared_vertices; ++ i) {
Vec3d p = trafo * stl.v_shared[i].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
}
}
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) < b(0) || (a(0) == b(0) && a(1) < b(1)); });
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) == b(0) && a(1) == b(1); }), pts.end());
Polygon hull;
int n = (int)pts.size();
if (n >= 3) {
int k = 0;
hull.points.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++ i) {
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
hull.points.resize(k);
assert(hull.points.front() == hull.points.back());
hull.points.pop_back();
}
return bb;
return hull;
}
#endif // ENABLE_VOLUMES_CENTERING_FIXES
void ModelObject::center_around_origin()
{
@ -1097,7 +1153,7 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b
// Perform cut
TriangleMeshSlicer tms(&volume->mesh);
tms.cut(z, &upper_mesh, &lower_mesh);
tms.cut(float(z), &upper_mesh, &lower_mesh);
// Reset volume transformation except for offset
const Vec3d offset = volume->get_offset();

View file

@ -205,7 +205,7 @@ public:
// This bounding box is approximate and not snug.
// This bounding box is being cached.
const BoundingBoxf3& bounding_box() const;
void invalidate_bounding_box() { m_bounding_box_valid = false; }
void invalidate_bounding_box() { m_bounding_box_valid = false; m_raw_mesh_bounding_box_valid = false; }
// A mesh containing all transformed instances of this object.
TriangleMesh mesh() const;
@ -219,10 +219,16 @@ public:
BoundingBoxf3 raw_bounding_box() const;
// A snug bounding box around the transformed non-modifier object volumes.
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
#if ENABLE_VOLUMES_CENTERING_FIXES
// Bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
BoundingBoxf3 raw_mesh_bounding_box() const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
BoundingBoxf3 full_raw_mesh_bounding_box() const;
#endif // ENABLE_VOLUMES_CENTERING_FIXES
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon convex_hull_2d(const Transform3d &trafo_instance);
void center_around_origin();
void ensure_on_bed();
void translate_instances(const Vec3d& vector);
@ -261,7 +267,8 @@ protected:
void set_model(Model *model) { m_model = model; }
private:
ModelObject(Model *model) : m_model(model), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false) {}
ModelObject(Model *model) : m_model(model), origin_translation(Vec3d::Zero()),
m_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false) {}
~ModelObject();
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
@ -280,6 +287,8 @@ private:
// Bounding box, cached.
mutable BoundingBoxf3 m_bounding_box;
mutable bool m_bounding_box_valid;
mutable BoundingBoxf3 m_raw_mesh_bounding_box;
mutable bool m_raw_mesh_bounding_box_valid;
};
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
@ -464,7 +473,7 @@ public:
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
const Vec3d& get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }

View file

@ -358,6 +358,29 @@ public:
m_rtree.clear();
return m_pck.executeIndexed(std::forward<Args>(args)...);
}
inline void preload(const PackGroup& pg) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
m_pconf.object_function = nullptr; // drop the special objectfunction
m_pck.preload(pg);
// Build the rtree for queries to work
for(const ItemGroup& grp : pg)
for(unsigned idx = 0; idx < grp.size(); ++idx) {
Item& itm = grp[idx];
m_rtree.insert({itm.boundingBox(), idx});
}
m_pck.configure(m_pconf);
}
bool is_colliding(const Item& item) {
if(m_rtree.empty()) return false;
std::vector<SpatElement> result;
m_rtree.query(bgi::intersects(item.boundingBox()),
std::back_inserter(result));
return !result.empty();
}
};
// Arranger specialization for a Box shaped bin.
@ -365,8 +388,8 @@ template<> class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<Box>(bin, dist, progressind, stopcond)
{
@ -411,8 +434,8 @@ template<> class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
public:
AutoArranger(const lnCircle& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
// As with the box, only the inside check is different.
@ -456,8 +479,8 @@ public:
template<> class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
{
m_pconf.object_function = [this, &bin] (const Item &item) {
@ -530,24 +553,47 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
for(ModelObject* objptr : model.objects) {
if(objptr) {
TriangleMesh rmesh = objptr->raw_mesh();
ModelInstance * finst = objptr->instances.front();
// Object instances should carry the same scaling and
// x, y rotation that is why we use the first instance.
// The next line will apply only the full mirroring and scaling
rmesh.transform(finst->get_matrix(true, true, false, false));
rmesh.rotate_x(float(finst->get_rotation()(X)));
rmesh.rotate_y(float(finst->get_rotation()(Y)));
// TODO export the exact 2D projection. Cannot do it as libnest2d
// does not support concave shapes (yet).
auto p = rmesh.convex_hull();
ClipperLib::Path clpath;
//WIP Vojtech's optimization of the calculation of the convex hull is not working correctly yet.
#if 1
{
TriangleMesh rmesh = objptr->raw_mesh();
p.make_clockwise();
p.append(p.first_point());
auto clpath = Slic3rMultiPoint_to_ClipperPath(p);
ModelInstance * finst = objptr->instances.front();
// Object instances should carry the same scaling and
// x, y rotation that is why we use the first instance.
// The next line will apply only the full mirroring and scaling
rmesh.transform(finst->get_matrix(true, true, false, false));
rmesh.rotate_x(float(finst->get_rotation()(X)));
rmesh.rotate_y(float(finst->get_rotation()(Y)));
// TODO export the exact 2D projection. Cannot do it as libnest2d
// does not support concave shapes (yet).
auto p = rmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
clpath = Slic3rMultiPoint_to_ClipperPath(p);
}
#else
// Object instances should carry the same scaling and
// x, y rotation that is why we use the first instance.
{
ModelInstance *finst = objptr->instances.front();
Vec3d rotation = finst->get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance = Geometry::assemble_transform(Vec3d::Zero(), rotation, finst->get_scaling_factor(), finst->get_mirror());
Polygon p = objptr->convex_hull_2d(trafo_instance);
assert(! p.points.empty());
p.reverse();
assert(! p.is_counter_clockwise());
p.append(p.first_point());
clpath = Slic3rMultiPoint_to_ClipperPath(p);
}
#endif
for(ModelInstance* objinst : objptr->instances) {
if(objinst) {
@ -791,5 +837,174 @@ bool arrange(Model &model, // The model with the geometries
return ret && result.size() == 1;
}
void find_new_position(const Model &model,
ModelInstancePtrs toadd,
coord_t min_obj_distance,
const Polyline &bed)
{
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
PackGroup preshapes; preshapes.emplace_back();
ItemGroup shapes;
preshapes.front().reserve(shapemap.size());
std::vector<ModelInstance*> shapes_ptr; shapes_ptr.reserve(toadd.size());
IndexedPackGroup result;
// If there is no hint about the shape, we will try to guess
BedShapeHint bedhint = bedShape(bed);
BoundingBox bbb(bed);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min(0)),
static_cast<libnest2d::Coord>(bbb.min(1))
},
{
static_cast<libnest2d::Coord>(bbb.max(0)),
static_cast<libnest2d::Coord>(bbb.max(1))
});
for(auto it = shapemap.begin(); it != shapemap.end(); ++it) {
if(std::find(toadd.begin(), toadd.end(), it->first) == toadd.end()) {
if(it->second.isInside(binbb)) // just ignore items which are outside
preshapes.front().emplace_back(std::ref(it->second));
}
else {
shapes_ptr.emplace_back(it->first);
shapes.emplace_back(std::ref(it->second));
}
}
auto try_first_to_center = [&shapes, &shapes_ptr, &binbb]
(std::function<bool(const Item&)> is_colliding,
std::function<void(Item&)> preload)
{
// Try to put the first item to the center, as the arranger will not
// do this for us.
auto shptrit = shapes_ptr.begin();
for(auto shit = shapes.begin(); shit != shapes.end(); ++shit, ++shptrit)
{
// Try to place items to the center
Item& itm = *shit;
auto ibb = itm.boundingBox();
auto d = binbb.center() - ibb.center();
itm.translate(d);
if(!is_colliding(itm)) {
preload(itm);
auto offset = itm.translation();
Radians rot = itm.rotation();
ModelInstance *minst = *shptrit;
Vec3d foffset(offset.X*SCALING_FACTOR,
offset.Y*SCALING_FACTOR,
minst->get_offset()(Z));
// write the transformation data into the model instance
minst->set_rotation(Z, rot);
minst->set_offset(foffset);
shit = shapes.erase(shit);
shptrit = shapes_ptr.erase(shptrit);
break;
}
}
};
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance);
if(!preshapes.front().empty()) { // If there is something on the plate
arrange.preload(preshapes);
try_first_to_center(
[&arrange](const Item& itm) {return arrange.is_colliding(itm);},
[&arrange](Item& itm) { arrange.preload({{itm}}); }
);
}
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
// Create the arranger for the box shaped bed
AutoArranger<lnCircle> arrange(cc, min_obj_distance);
if(!preshapes.front().empty()) { // If there is something on the plate
arrange.preload(preshapes);
try_first_to_center(
[&arrange](const Item& itm) {return arrange.is_colliding(itm);},
[&arrange](Item& itm) { arrange.preload({{itm}}); }
);
}
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
AutoArranger<P> arrange(irrbed, min_obj_distance);
if(!preshapes.front().empty()) { // If there is something on the plate
arrange.preload(preshapes);
try_first_to_center(
[&arrange](const Item& itm) {return arrange.is_colliding(itm);},
[&arrange](Item& itm) { arrange.preload({{itm}}); }
);
}
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
// Now we go through the result which will contain the fixed and the moving
// polygons as well. We will have to search for our item.
const auto STRIDE_PADDING = 1.2;
Coord stride = Coord(STRIDE_PADDING*binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
for(auto& r : group) if(r.first < shapes.size()) {
Item& resultitem = r.second;
unsigned idx = r.first;
auto offset = resultitem.translation();
Radians rot = resultitem.rotation();
ModelInstance *minst = shapes_ptr[idx];
Vec3d foffset(offset.X*SCALING_FACTOR + batch_offset,
offset.Y*SCALING_FACTOR,
minst->get_offset()(Z));
// write the transformation data into the model instance
minst->set_rotation(Z, rot);
minst->set_offset(foffset);
}
batch_offset += stride;
}
}
}
}

View file

@ -73,7 +73,13 @@ bool arrange(Model &model, coord_t min_obj_distance,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcondition);
}
/// This will find a suitable position for a new object instance and leave the
/// old items untouched.
void find_new_position(const Model& model,
ModelInstancePtrs instances_to_add,
coord_t min_obj_distance,
const Slic3r::Polyline& bed);
}
} // arr
} // Slic3r
#endif // MODELARRANGE_HPP

View file

@ -5,8 +5,8 @@
#include <functional>
#include <numeric>
#include "ExPolygon.hpp"
#include "TriangleMesh.hpp"
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/TriangleMesh.hpp>
namespace Slic3r {
namespace sla {
@ -53,7 +53,7 @@ struct Contour3D {
void merge(const Contour3D& ctr) {
auto s3 = coord_t(points.size());
auto s = coord_t(indices.size());
auto s = indices.size();
points.insert(points.end(), ctr.points.begin(), ctr.points.end());
indices.insert(indices.end(), ctr.indices.begin(), ctr.indices.end());
@ -62,6 +62,17 @@ struct Contour3D {
auto& idx = indices[n]; x(idx) += s3; y(idx) += s3; z(idx) += s3;
}
}
// Write the index triangle structure to OBJ file for debugging purposes.
void to_obj(std::ostream& stream) {
for(auto& p : points) {
stream << "v " << p.transpose() << "\n";
}
for(auto& f : indices) {
stream << "f " << (f + Vec3i(1, 1, 1)).transpose() << "\n";
}
}
};
//using PointSet = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign>; //Eigen::MatrixXd;

View file

@ -9,8 +9,8 @@
#include "SLASpatIndex.hpp"
#include "SLABasePool.hpp"
#include "ClipperUtils.hpp"
#include "Model.hpp"
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/Model.hpp>
#include <boost/log/trivial.hpp>
@ -176,6 +176,7 @@ Contour3D cylinder(double r, double h, size_t ssteps) {
Vec3d jp = {0, 0, 0};
Vec3d endp = {0, 0, h};
// Upper circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double ex = endp(X) + r*std::cos(phi);
@ -183,6 +184,7 @@ Contour3D cylinder(double r, double h, size_t ssteps) {
points.emplace_back(ex, ey, endp(Z));
}
// Lower circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double x = jp(X) + r*std::cos(phi);
@ -190,6 +192,7 @@ Contour3D cylinder(double r, double h, size_t ssteps) {
points.emplace_back(x, y, jp(Z));
}
// Now create long triangles connecting upper and lower circles
indices.reserve(2*ssteps);
auto offs = steps;
for(int i = 0; i < steps - 1; ++i) {
@ -197,10 +200,26 @@ Contour3D cylinder(double r, double h, size_t ssteps) {
indices.emplace_back(i, offs + i + 1, i + 1);
}
// Last triangle connecting the first and last vertices
auto last = steps - 1;
indices.emplace_back(0, last, offs);
indices.emplace_back(last, offs + last, offs);
// According to the slicing algorithms, we need to aid them with generating
// a watertight body. So we create a triangle fan for the upper and lower
// ending of the cylinder to close the geometry.
points.emplace_back(jp); size_t ci = points.size() - 1;
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(i + offs + 1, i + offs, ci);
indices.emplace_back(offs, steps + offs - 1, ci);
points.emplace_back(endp); ci = points.size() - 1;
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(ci, i, i + 1);
indices.emplace_back(steps - 1, 0, ci);
return ret;
}
@ -352,6 +371,8 @@ struct Pillar {
r(radius), steps(st), endpoint(endp), starts_from_head(false)
{
assert(steps > 0);
assert(jp(Z) > endp(Z)); // Endpoint is below the starting point
int steps_1 = int(steps - 1);
auto& points = mesh.points;
@ -382,6 +403,22 @@ struct Pillar {
indices.emplace_back(0, steps_1, offs);
indices.emplace_back(steps_1, offs + steps_1, offs);
// According to the slicing algorithms, we need to aid them with
// generating a watertight body. So we create a triangle fan for the
// upper and lower ending of the cylinder to close the geometry.
points.emplace_back(jp); size_t ci = points.size() - 1;
int stepsi = int(steps);
for(int i = 0; i < stepsi - 1; ++i)
indices.emplace_back(ci, i, i + 1);
indices.emplace_back(stepsi - 1, 0, ci);
points.emplace_back(endp); ci = points.size() - 1;
for(int i = 0; i < stepsi - 1; ++i)
indices.emplace_back(i + offs + 1, i + offs, ci);
indices.emplace_back(offs, stepsi + offs - 1, ci);
}
Pillar(const Junction& junc, const Vec3d& endp):
@ -461,6 +498,8 @@ struct Bridge {
Vec3d dir = (j2 - j1).normalized();
double d = distance(j2, j1);
assert(d > 0);
mesh = cylinder(r, d, steps);
auto quater = Quaternion::FromTwoVectors(Vec3d{0,0,1}, dir);

View file

@ -525,67 +525,22 @@ BoundingBoxf3 TriangleMesh::bounding_box() const
return bb;
}
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d& t) const
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d &trafo) const
{
bool has_shared = (stl.v_shared != nullptr);
if (!has_shared)
stl_generate_shared_vertices(const_cast<stl_file*>(&stl));
unsigned int vertices_count = (stl.stats.shared_vertices > 0) ? (unsigned int)stl.stats.shared_vertices : 3 * (unsigned int)stl.stats.number_of_facets;
if (vertices_count == 0)
return BoundingBoxf3();
Eigen::MatrixXd src_vertices(3, vertices_count);
if (stl.stats.shared_vertices > 0)
{
assert(stl.v_shared != nullptr);
stl_vertex* vertex_ptr = stl.v_shared;
for (int i = 0; i < stl.stats.shared_vertices; ++i)
{
src_vertices(0, i) = (double)(*vertex_ptr)(0);
src_vertices(1, i) = (double)(*vertex_ptr)(1);
src_vertices(2, i) = (double)(*vertex_ptr)(2);
vertex_ptr += 1;
BoundingBoxf3 bbox;
if (stl.v_shared == nullptr) {
// Using the STL faces.
for (int i = 0; i < this->facets_count(); ++ i) {
const stl_facet &facet = this->stl.facet_start[i];
for (size_t j = 0; j < 3; ++ j)
bbox.merge(trafo * facet.vertex[j].cast<double>());
}
} else {
// Using the shared vertices should be a bit quicker than using the STL faces.
for (int i = 0; i < stl.stats.shared_vertices; ++ i)
bbox.merge(trafo * this->stl.v_shared[i].cast<double>());
}
else
{
stl_facet* facet_ptr = stl.facet_start;
unsigned int v_id = 0;
while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
{
for (int i = 0; i < 3; ++i)
{
src_vertices(0, v_id) = (double)facet_ptr->vertex[i](0);
src_vertices(1, v_id) = (double)facet_ptr->vertex[i](1);
src_vertices(2, v_id) = (double)facet_ptr->vertex[i](2);
++v_id;
}
facet_ptr += 1;
}
}
if (!has_shared && (stl.stats.shared_vertices > 0))
stl_invalidate_shared_vertices(const_cast<stl_file*>(&stl));
Eigen::MatrixXd dst_vertices(3, vertices_count);
dst_vertices = t * src_vertices.colwise().homogeneous();
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
Vec3d v_max = v_min;
for (int i = 1; i < vertices_count; ++i)
{
for (int j = 0; j < 3; ++j)
{
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
}
}
return BoundingBoxf3(v_min, v_max);
return bbox;
}
TriangleMesh TriangleMesh::convex_hull_3d() const
@ -2010,4 +1965,5 @@ TriangleMesh make_sphere(double rho, double fa) {
TriangleMesh mesh(vertices, facets);
return mesh;
}
}

View file

@ -60,7 +60,7 @@ public:
Polygon convex_hull();
BoundingBoxf3 bounding_box() const;
// Returns the bbox of this TriangleMesh transformed by the given transformation
BoundingBoxf3 transformed_bounding_box(const Transform3d& t) const;
BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
// Returns the convex hull of this TriangleMesh
TriangleMesh convex_hull_3d() const;
void reset_repair_stats();

View file

@ -3,7 +3,7 @@ cmake_minimum_required(VERSION 2.6)
include(PrecompiledHeader)
add_library(libslic3r_gui STATIC
set(SLIC3R_GUI_SOURCES
pchheader.cpp
pchheader.hpp
GUI/AboutDialog.cpp
@ -127,6 +127,12 @@ add_library(libslic3r_gui STATIC
Utils/HexFile.hpp
)
if (APPLE)
list(APPEND SLIC3R_GUI_SOURCES Utils/RetinaHelperImpl.mm)
endif ()
add_library(libslic3r_gui STATIC ${SLIC3R_GUI_SOURCES})
target_link_libraries(libslic3r_gui libslic3r avrdude imgui)
if (SLIC3R_PCH AND NOT SLIC3R_SYNTAXONLY)
add_precompiled_header(libslic3r_gui pchheader.hpp FORCEINCLUDE)

View file

@ -59,6 +59,11 @@ void AppConfig::set_defaults()
if (get("use_legacy_opengl").empty())
set("use_legacy_opengl", "0");
#if __APPLE__
if (get("use_retina_opengl").empty())
set("use_retina_opengl", "1");
#endif
if (get("remember_output_path").empty())
set("remember_output_path", "1");

View file

@ -9,6 +9,7 @@
#include "libslic3r/GCode/PreviewData.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Technologies.hpp"
#include "slic3r/GUI/3DScene.hpp"
#include "slic3r/GUI/BackgroundSlicingProcess.hpp"
#include "slic3r/GUI/GLShader.hpp"
@ -20,6 +21,10 @@
#include "GUI_ObjectManipulation.hpp"
#include "I18N.hpp"
#if ENABLE_RETINA_GL
#include "slic3r/Utils/RetinaHelper.hpp"
#endif
#include <GL/glew.h>
#include <wx/glcanvas.h>
@ -45,6 +50,7 @@
#include <iostream>
#include <float.h>
#include <algorithm>
#include <cmath>
static const float TRACKBALLSIZE = 0.8f;
static const float GIMBALL_LOCK_THETA_MAX = 180.0f;
@ -59,8 +65,6 @@ static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f };
static const float VIEW_FRONT[2] = { 0.0f, 90.0f };
static const float VIEW_REAR[2] = { 180.0f, 90.0f };
static const float VARIABLE_LAYER_THICKNESS_BAR_WIDTH = 70.0f;
static const float VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT = 22.0f;
static const float GIZMO_RESET_BUTTON_HEIGHT = 22.0f;
static const float GIZMO_RESET_BUTTON_WIDTH = 70.f;
@ -191,9 +195,10 @@ Size::Size()
{
}
Size::Size(int width, int height)
Size::Size(int width, int height, float scale_factor)
: m_width(width)
, m_height(height)
, m_scale_factor(scale_factor)
{
}
@ -217,6 +222,16 @@ void Size::set_height(int height)
m_height = height;
}
int Size::get_scale_factor() const
{
return m_scale_factor;
}
void Size::set_scale_factor(int scale_factor)
{
m_scale_factor = scale_factor;
}
Rect::Rect()
: m_left(0.0f)
, m_top(0.0f)
@ -330,6 +345,7 @@ void GLCanvas3D::Camera::set_scene_box(const BoundingBoxf3& box, GLCanvas3D& can
GLCanvas3D::Bed::Bed()
: m_type(Custom)
, m_scale_factor(1.0f)
{
}
@ -392,8 +408,10 @@ Point GLCanvas3D::Bed::point_projection(const Point& point) const
}
#if ENABLE_PRINT_BED_MODELS
void GLCanvas3D::Bed::render(float theta, bool useVBOs) const
void GLCanvas3D::Bed::render(float theta, bool useVBOs, float scale_factor) const
{
m_scale_factor = scale_factor;
switch (m_type)
{
case MK2:
@ -420,8 +438,10 @@ void GLCanvas3D::Bed::render(float theta, bool useVBOs) const
}
}
#else
void GLCanvas3D::Bed::render(float theta) const
void GLCanvas3D::Bed::render(float theta, float scale_factor) const
{
m_scale_factor = scale_factor;
switch (m_type)
{
case MK2:
@ -675,7 +695,7 @@ void GLCanvas3D::Bed::_render_custom() const
// we need depth test for grid, otherwise it would disappear when looking the object from below
::glEnable(GL_DEPTH_TEST);
::glLineWidth(3.0f);
::glLineWidth(3.0f * m_scale_factor);
::glColor4f(0.2f, 0.2f, 0.2f, 0.4f);
::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_gridlines.get_vertices());
::glDrawArrays(GL_LINES, 0, (GLsizei)gridlines_vcount);
@ -873,6 +893,9 @@ GLCanvas3D::LayersEditing::~LayersEditing()
delete m_slicing_parameters;
}
const float GLCanvas3D::LayersEditing::THICKNESS_BAR_WIDTH = 70.0f;
const float GLCanvas3D::LayersEditing::THICKNESS_RESET_BUTTON_HEIGHT = 22.0f;
bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename)
{
if (!m_shader.init(vertex_shader_filename, fragment_shader_filename))
@ -993,7 +1016,7 @@ Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas)
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0.0f, w, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT);
return Rect(w - thickness_bar_width(canvas), 0.0f, w, h - reset_button_height(canvas));
}
Rect GLCanvas3D::LayersEditing::get_reset_rect_screen(const GLCanvas3D& canvas)
@ -1002,7 +1025,7 @@ Rect GLCanvas3D::LayersEditing::get_reset_rect_screen(const GLCanvas3D& canvas)
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, w, h);
return Rect(w - thickness_bar_width(canvas), h - reset_button_height(canvas), w, h);
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas)
@ -1014,7 +1037,7 @@ Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas)
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom);
return Rect((half_w - thickness_bar_width(canvas)) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, (-half_h + reset_button_height(canvas)) * inv_zoom);
}
Rect GLCanvas3D::LayersEditing::get_reset_rect_viewport(const GLCanvas3D& canvas)
@ -1026,7 +1049,7 @@ Rect GLCanvas3D::LayersEditing::get_reset_rect_viewport(const GLCanvas3D& canvas
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom);
return Rect((half_w - thickness_bar_width(canvas)) * inv_zoom, (-half_h + reset_button_height(canvas)) * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom);
}
@ -1037,6 +1060,8 @@ bool GLCanvas3D::LayersEditing::_is_initialized() const
void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas, const Rect& bar_rect, const Rect& reset_rect) const
{
// TODO: do this with ImGui
if (m_tooltip_texture.get_id() == 0)
{
std::string filename = resources_dir() + "/icons/variable_layer_height_tooltip.png";
@ -1044,6 +1069,15 @@ void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas
return;
}
#if ENABLE_RETINA_GL
const float scale = canvas.get_canvas_size().get_scale_factor();
const float width = (float)m_tooltip_texture.get_width() * scale;
const float height = (float)m_tooltip_texture.get_height() * scale;
#else
const float width = (float)m_tooltip_texture.get_width();
const float height = (float)m_tooltip_texture.get_height();
#endif
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float gap = 10.0f * inv_zoom;
@ -1051,9 +1085,9 @@ void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas
float bar_left = bar_rect.get_left();
float reset_bottom = reset_rect.get_bottom();
float l = bar_left - (float)m_tooltip_texture.get_width() * inv_zoom - gap;
float l = bar_left - width * inv_zoom - gap;
float r = bar_left - gap;
float t = reset_bottom + (float)m_tooltip_texture.get_height() * inv_zoom + gap;
float t = reset_bottom + height * inv_zoom + gap;
float b = reset_bottom + gap;
GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t);
@ -1082,11 +1116,6 @@ void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas
// The shader requires the original model coordinates when rendering to the texture, so we pass it the unit matrix
m_shader.set_uniform("volume_world_matrix", UNIT_MATRIX);
GLsizei w = (GLsizei)m_layers_texture.width;
GLsizei h = (GLsizei)m_layers_texture.height;
GLsizei half_w = w / 2;
GLsizei half_h = h / 2;
::glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
::glBindTexture(GL_TEXTURE_2D, m_z_texture_id);
@ -1267,6 +1296,25 @@ void GLCanvas3D::LayersEditing::update_slicing_parameters()
}
}
float GLCanvas3D::LayersEditing::thickness_bar_width(const GLCanvas3D &canvas)
{
#if ENABLE_RETINA_GL
return canvas.get_canvas_size().get_scale_factor() * THICKNESS_BAR_WIDTH;
#else
return THICKNESS_BAR_WIDTH;
#endif
}
float GLCanvas3D::LayersEditing::reset_button_height(const GLCanvas3D &canvas)
{
#if ENABLE_RETINA_GL
return canvas.get_canvas_size().get_scale_factor() * THICKNESS_RESET_BUTTON_HEIGHT;
#else
return THICKNESS_RESET_BUTTON_HEIGHT;
#endif
}
const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX);
const Vec3d GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX);
#if ENABLE_MOVE_MIN_THRESHOLD
@ -1329,6 +1377,7 @@ GLCanvas3D::Selection::Selection()
, m_valid(false)
, m_bounding_box_dirty(true)
, m_curved_arrow(16)
, m_scale_factor(1.0f)
{
#if ENABLE_RENDER_SELECTION_CENTER
m_quadric = ::gluNewQuadric();
@ -1721,7 +1770,7 @@ void GLCanvas3D::Selection::translate(const Vec3d& displacement, bool local)
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
_synchronize_unselected_instances();
_synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
_synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
@ -1729,64 +1778,100 @@ void GLCanvas3D::Selection::translate(const Vec3d& displacement, bool local)
m_bounding_box_dirty = true;
}
static Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
return
// From the current coordinate system to world.
Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) *
// From world to the initial coordinate system.
Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ());
}
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
static double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
Vec3d axis = angle_axis.axis();
double angle = angle_axis.angle();
#ifdef _DEBUG
if (std::abs(angle) > 1e-8) {
assert(std::abs(axis.x()) < 1e-8);
assert(std::abs(axis.y()) < 1e-8);
}
#endif /* _DEBUG */
return (axis.z() < 0) ? -angle : angle;
}
void GLCanvas3D::Selection::rotate(const Vec3d& rotation, bool local)
{
if (!m_valid)
return;
int rot_axis_max;
rotation.cwiseAbs().maxCoeff(&rot_axis_max);
// For generic rotation, we want to rotate the first volume in selection, and then to synchronize the other volumes with it.
std::vector<int> object_instance_first(m_model->objects.size(), -1);
auto rotate_instance = [this, &rotation, &object_instance_first, rot_axis_max, local](GLVolume &volume, int i) {
int first_volume_idx = object_instance_first[volume.object_idx()];
if (rot_axis_max != 2 && first_volume_idx != -1) {
// Generic rotation, but no rotation around the Z axis.
// Always do a local rotation (do not consider the selection to be a rigid body).
assert(rotation.z() == 0);
const GLVolume &first_volume = *(*m_volumes)[first_volume_idx];
const Vec3d &rotation = first_volume.get_instance_rotation();
double z_diff = rotation_diff_z(m_cache.volumes_data[first_volume_idx].get_instance_rotation(), m_cache.volumes_data[i].get_instance_rotation());
volume.set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
} else {
// extracts rotations from the composed transformation
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_instance_rotation_matrix());
if (rot_axis_max == 2 && !local)
// Only allow rotation of multiple instances as a single rigid body when rotating around the Z axis.
volume.set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
volume.set_instance_rotation(new_rotation);
object_instance_first[volume.object_idx()] = i;
}
};
for (unsigned int i : m_list)
{
GLVolume &volume = *(*m_volumes)[i];
if (is_single_full_instance())
{
if (local)
(*m_volumes)[i]->set_instance_rotation(rotation);
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_instance_rotation_matrix());
(*m_volumes)[i]->set_instance_rotation(new_rotation);
}
}
rotate_instance(volume, i);
else if (is_single_volume() || is_single_modifier())
{
if (local)
(*m_volumes)[i]->set_volume_rotation(rotation);
volume.set_volume_rotation(rotation);
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix());
(*m_volumes)[i]->set_volume_rotation(new_rotation);
volume.set_volume_rotation(new_rotation);
}
}
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
if (m_mode == Instance)
{
// extracts rotations from the composed transformation
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_instance_rotation_matrix());
if (!local)
(*m_volumes)[i]->set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
(*m_volumes)[i]->set_instance_rotation(new_rotation);
}
rotate_instance(volume, i);
else if (m_mode == Volume)
{
// extracts rotations from the composed transformation
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix());
if (!local)
{
Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() + m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center);
(*m_volumes)[i]->set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset);
volume.set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset);
}
(*m_volumes)[i]->set_volume_rotation(new_rotation);
volume.set_volume_rotation(new_rotation);
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
_synchronize_unselected_instances();
_synchronize_unselected_instances((rot_axis_max == 2) ? SYNC_ROTATION_NONE : SYNC_ROTATION_GENERAL);
else if (m_mode == Volume)
_synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
@ -1829,7 +1914,7 @@ void GLCanvas3D::Selection::flattening_rotate(const Vec3d& normal)
// we want to synchronize z-rotation as well, otherwise the flattening behaves funny
// when applied on one of several identical instances
if (m_mode == Instance)
_synchronize_unselected_instances(true);
_synchronize_unselected_instances(SYNC_ROTATION_FULL);
#endif // !DISABLE_INSTANCES_SYNCH
m_bounding_box_dirty = true;
@ -1876,7 +1961,7 @@ void GLCanvas3D::Selection::scale(const Vec3d& scale, bool local)
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
_synchronize_unselected_instances();
_synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
_synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
@ -1903,7 +1988,7 @@ void GLCanvas3D::Selection::mirror(Axis axis)
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
_synchronize_unselected_instances();
_synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
_synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
@ -2115,11 +2200,13 @@ void GLCanvas3D::Selection::erase()
}
}
void GLCanvas3D::Selection::render() const
void GLCanvas3D::Selection::render(float scale_factor) const
{
if (!m_valid || is_empty())
return;
m_scale_factor = scale_factor;
// render cumulative bounding box of selected volumes
_render_selected_volumes();
_render_synchronized_volumes();
@ -2564,7 +2651,7 @@ void GLCanvas3D::Selection::_render_bounding_box(const BoundingBoxf3& box, float
::glEnable(GL_DEPTH_TEST);
::glColor3fv(color);
::glLineWidth(2.0f);
::glLineWidth(2.0f * m_scale_factor);
::glBegin(GL_LINES);
@ -2699,7 +2786,43 @@ void GLCanvas3D::Selection::_render_sidebar_size_hint(Axis axis, double length)
{
}
void GLCanvas3D::Selection::_synchronize_unselected_instances(bool including_z)
#ifdef _DEBUG
static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
Vec3d axis = angle_axis.axis();
double angle = angle_axis.angle();
if (std::abs(angle) < 1e-8)
return true;
assert(std::abs(axis.x()) < 1e-8);
assert(std::abs(axis.y()) < 1e-8);
assert(std::abs(std::abs(axis.z()) - 1.) < 1e-8);
return std::abs(axis.x()) < 1e-8 && std::abs(axis.y()) < 1e-8 && std::abs(std::abs(axis.z()) - 1.) < 1e-8;
}
static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes)
{
for (size_t idx_object = 0; idx_object < model.objects.size(); ++ idx_object) {
int idx_volume_first = -1;
for (int i = 0; i < (int)volumes.size(); ++ i) {
if (volumes[i]->object_idx() == idx_object) {
idx_volume_first = i;
break;
}
}
assert(idx_volume_first != -1); // object without instances?
if (idx_volume_first == -1)
continue;
const Vec3d &rotation0 = volumes[idx_volume_first]->get_instance_rotation();
for (int i = idx_volume_first + 1; i < (int)volumes.size(); ++ i)
if (volumes[i]->object_idx() == idx_object) {
const Vec3d &rotation = volumes[i]->get_instance_rotation();
assert(is_rotation_xy_synchronized(rotation, rotation0));
}
}
}
#endif /* _DEBUG */
void GLCanvas3D::Selection::_synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
@ -2715,7 +2838,7 @@ void GLCanvas3D::Selection::_synchronize_unselected_instances(bool including_z)
continue;
int instance_idx = volume->instance_idx();
const Vec3d& rotation = volume->get_instance_rotation();
const Vec3d& rotation = volume->get_instance_rotation();
const Vec3d& scaling_factor = volume->get_instance_scaling_factor();
const Vec3d& mirror = volume->get_instance_mirror();
@ -2732,26 +2855,34 @@ void GLCanvas3D::Selection::_synchronize_unselected_instances(bool including_z)
if ((v->object_idx() != object_idx) || (v->instance_idx() == instance_idx))
continue;
auto is_approx = [](double value, double test_value) -> bool { return std::abs(value - test_value) < EPSILON; };
double z;
if (including_z)
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
switch (sync_rotation_type) {
case SYNC_ROTATION_NONE:
// z only rotation -> keep instance z
// The X,Y rotations should be synchronized from start to end of the rotation.
assert(is_rotation_xy_synchronized(rotation, v->get_instance_rotation()));
break;
case SYNC_ROTATION_FULL:
// rotation comes from place on face -> force given z
z = rotation(2);
else if (is_approx(rotation(0), m_cache.volumes_data[j].get_instance_rotation()(0)) && is_approx(rotation(1), m_cache.volumes_data[j].get_instance_rotation()(1)))
// z only rotation -> keep instance z
z = v->get_instance_rotation()(2);
else
// generic rotation -> update instance z
z = m_cache.volumes_data[j].get_instance_rotation()(2) + rotation(2);
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2)));
break;
case SYNC_ROTATION_GENERAL:
// generic rotation -> update instance z with the delta of the rotation.
double z_diff = rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
break;
}
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), z));
v->set_instance_scaling_factor(scaling_factor);
v->set_instance_mirror(mirror);
done.insert(j);
}
}
#ifdef _DEBUG
verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* _DEBUG */
}
void GLCanvas3D::Selection::_synchronize_unselected_volumes()
@ -2815,14 +2946,11 @@ void GLCanvas3D::Selection::_ensure_on_bed()
}
}
const float GLCanvas3D::Gizmos::OverlayIconsScale = 1.0f;
const float GLCanvas3D::Gizmos::OverlayBorder = 5.0f;
const float GLCanvas3D::Gizmos::OverlayGapY = 5.0f * OverlayIconsScale;
GLCanvas3D::Gizmos::Gizmos()
: m_enabled(false)
, m_current(Undefined)
{
set_overlay_scale(1.0);
}
GLCanvas3D::Gizmos::~Gizmos()
@ -2926,6 +3054,13 @@ void GLCanvas3D::Gizmos::set_enabled(bool enable)
m_enabled = enable;
}
void GLCanvas3D::Gizmos::set_overlay_scale(float scale)
{
m_overlay_icons_scale = scale;
m_overlay_border = 5.0f * scale;
m_overlay_gap_y = 5.0f * scale;
}
std::string GLCanvas3D::Gizmos::update_hover_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos, const GLCanvas3D::Selection& selection)
{
std::string name = "";
@ -2935,22 +3070,22 @@ std::string GLCanvas3D::Gizmos::update_hover_state(const GLCanvas3D& canvas, con
float cnv_h = (float)canvas.get_canvas_size().get_height();
float height = _get_total_overlay_height();
float top_y = 0.5f * (cnv_h - height) + OverlayBorder;
float top_y = 0.5f * (cnv_h - height) + m_overlay_border;
for (GizmosMap::iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if ((it->second == nullptr) || !it->second->is_selectable())
continue;
float icon_size = (float)it->second->get_textures_size() * OverlayIconsScale;
float icon_size = (float)it->second->get_textures_size() * m_overlay_icons_scale;
bool inside = (OverlayBorder <= (float)mouse_pos(0)) && ((float)mouse_pos(0) <= OverlayBorder + icon_size) && (top_y <= (float)mouse_pos(1)) && ((float)mouse_pos(1) <= top_y + icon_size);
bool inside = (m_overlay_border <= (float)mouse_pos(0)) && ((float)mouse_pos(0) <= m_overlay_border + icon_size) && (top_y <= (float)mouse_pos(1)) && ((float)mouse_pos(1) <= top_y + icon_size);
if (inside)
name = it->second->get_name();
if (it->second->is_activable(selection) && (it->second->get_state() != GLGizmoBase::On))
it->second->set_state(inside ? GLGizmoBase::Hover : GLGizmoBase::Off);
top_y += (icon_size + OverlayGapY);
top_y += (icon_size + m_overlay_gap_y);
}
return name;
@ -2963,15 +3098,15 @@ void GLCanvas3D::Gizmos::update_on_off_state(const GLCanvas3D& canvas, const Vec
float cnv_h = (float)canvas.get_canvas_size().get_height();
float height = _get_total_overlay_height();
float top_y = 0.5f * (cnv_h - height) + OverlayBorder;
float top_y = 0.5f * (cnv_h - height) + m_overlay_border;
for (GizmosMap::iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if ((it->second == nullptr) || !it->second->is_selectable())
continue;
float icon_size = (float)it->second->get_textures_size() * OverlayIconsScale;
float icon_size = (float)it->second->get_textures_size() * m_overlay_icons_scale;
bool inside = (OverlayBorder <= (float)mouse_pos(0)) && ((float)mouse_pos(0) <= OverlayBorder + icon_size) && (top_y <= (float)mouse_pos(1)) && ((float)mouse_pos(1) <= top_y + icon_size);
bool inside = (m_overlay_border <= (float)mouse_pos(0)) && ((float)mouse_pos(0) <= m_overlay_border + icon_size) && (top_y <= (float)mouse_pos(1)) && ((float)mouse_pos(1) <= top_y + icon_size);
if (it->second->is_activable(selection) && inside)
{
if ((it->second->get_state() == GLGizmoBase::On))
@ -2988,7 +3123,7 @@ void GLCanvas3D::Gizmos::update_on_off_state(const GLCanvas3D& canvas, const Vec
else
it->second->set_state(GLGizmoBase::Off);
top_y += (icon_size + OverlayGapY);
top_y += (icon_size + m_overlay_gap_y);
}
GizmosMap::iterator it = m_gizmos.find(m_current);
@ -3060,18 +3195,18 @@ bool GLCanvas3D::Gizmos::overlay_contains_mouse(const GLCanvas3D& canvas, const
float cnv_h = (float)canvas.get_canvas_size().get_height();
float height = _get_total_overlay_height();
float top_y = 0.5f * (cnv_h - height) + OverlayBorder;
float top_y = 0.5f * (cnv_h - height) + m_overlay_border;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if ((it->second == nullptr) || !it->second->is_selectable())
continue;
float icon_size = (float)it->second->get_textures_size() * OverlayIconsScale;
float icon_size = (float)it->second->get_textures_size() * m_overlay_icons_scale;
if ((OverlayBorder <= (float)mouse_pos(0)) && ((float)mouse_pos(0) <= OverlayBorder + icon_size) && (top_y <= (float)mouse_pos(1)) && ((float)mouse_pos(1) <= top_y + icon_size))
if ((m_overlay_border <= (float)mouse_pos(0)) && ((float)mouse_pos(0) <= m_overlay_border + icon_size) && (top_y <= (float)mouse_pos(1)) && ((float)mouse_pos(1) <= top_y + icon_size))
return true;
top_y += (icon_size + OverlayGapY);
top_y += (icon_size + m_overlay_gap_y);
}
return false;
@ -3344,7 +3479,7 @@ void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas, const GLCanva
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float height = _get_total_overlay_height();
float scaled_border = OverlayBorder * inv_zoom;
float scaled_border = m_overlay_border * inv_zoom;
float top_x = (-0.5f * cnv_w) * inv_zoom;
float top_y = (0.5f * height) * inv_zoom;
@ -3389,7 +3524,7 @@ void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas, const GLCanva
bg_uv_left = bg_uv_i_left;
bg_i_left = bg_left;
if ((OverlayBorder > 0) && (bg_uv_top != bg_uv_i_top))
if ((m_overlay_border > 0) && (bg_uv_top != bg_uv_i_top))
{
if (bg_uv_left != bg_uv_i_left)
GLTexture::render_sub_texture(bg_tex_id, bg_left, bg_i_left, bg_i_top, bg_top, { { bg_uv_left, bg_uv_i_top }, { bg_uv_i_left, bg_uv_i_top }, { bg_uv_i_left, bg_uv_top }, { bg_uv_left, bg_uv_top } });
@ -3400,15 +3535,15 @@ void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas, const GLCanva
GLTexture::render_sub_texture(bg_tex_id, bg_i_right, bg_right, bg_i_top, bg_top, { { bg_uv_i_right, bg_uv_i_top }, { bg_uv_right, bg_uv_i_top }, { bg_uv_right, bg_uv_top }, { bg_uv_i_right, bg_uv_top } });
}
if ((OverlayBorder > 0) && (bg_uv_left != bg_uv_i_left))
if ((m_overlay_border > 0) && (bg_uv_left != bg_uv_i_left))
GLTexture::render_sub_texture(bg_tex_id, bg_left, bg_i_left, bg_i_bottom, bg_i_top, { { bg_uv_left, bg_uv_i_bottom }, { bg_uv_i_left, bg_uv_i_bottom }, { bg_uv_i_left, bg_uv_i_top }, { bg_uv_left, bg_uv_i_top } });
GLTexture::render_sub_texture(bg_tex_id, bg_i_left, bg_i_right, bg_i_bottom, bg_i_top, { { bg_uv_i_left, bg_uv_i_bottom }, { bg_uv_i_right, bg_uv_i_bottom }, { bg_uv_i_right, bg_uv_i_top }, { bg_uv_i_left, bg_uv_i_top } });
if ((OverlayBorder > 0) && (bg_uv_right != bg_uv_i_right))
if ((m_overlay_border > 0) && (bg_uv_right != bg_uv_i_right))
GLTexture::render_sub_texture(bg_tex_id, bg_i_right, bg_right, bg_i_bottom, bg_i_top, { { bg_uv_i_right, bg_uv_i_bottom }, { bg_uv_right, bg_uv_i_bottom }, { bg_uv_right, bg_uv_i_top }, { bg_uv_i_right, bg_uv_i_top } });
if ((OverlayBorder > 0) && (bg_uv_bottom != bg_uv_i_bottom))
if ((m_overlay_border > 0) && (bg_uv_bottom != bg_uv_i_bottom))
{
if (bg_uv_left != bg_uv_i_left)
GLTexture::render_sub_texture(bg_tex_id, bg_left, bg_i_left, bg_bottom, bg_i_bottom, { { bg_uv_left, bg_uv_bottom }, { bg_uv_i_left, bg_uv_bottom }, { bg_uv_i_left, bg_uv_i_bottom }, { bg_uv_left, bg_uv_i_bottom } });
@ -3420,19 +3555,19 @@ void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas, const GLCanva
}
}
top_x += OverlayBorder * inv_zoom;
top_y -= OverlayBorder * inv_zoom;
float scaled_gap_y = OverlayGapY * inv_zoom;
top_x += m_overlay_border * inv_zoom;
top_y -= m_overlay_border * inv_zoom;
float scaled_gap_y = m_overlay_gap_y * inv_zoom;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if ((it->second == nullptr) || !it->second->is_selectable())
continue;
float icon_size = (float)it->second->get_textures_size() * OverlayIconsScale * inv_zoom;
float icon_size = (float)it->second->get_textures_size() * m_overlay_icons_scale * inv_zoom;
GLTexture::render_texture(it->second->get_texture_id(), top_x, top_x + icon_size, top_y - icon_size, top_y);
#if ENABLE_IMGUI
if (it->second->get_state() == GLGizmoBase::On)
it->second->render_input_window(2.0f * OverlayBorder + icon_size * zoom, 0.5f * cnv_h - top_y * zoom, selection);
it->second->render_input_window(2.0f * m_overlay_border + icon_size * zoom, 0.5f * cnv_h - top_y * zoom, selection);
#endif // ENABLE_IMGUI
top_y -= (icon_size + scaled_gap_y);
}
@ -3447,17 +3582,17 @@ void GLCanvas3D::Gizmos::_render_current_gizmo(const GLCanvas3D::Selection& sele
float GLCanvas3D::Gizmos::_get_total_overlay_height() const
{
float height = 2.0f * OverlayBorder;
float height = 2.0f * m_overlay_border;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if ((it->second == nullptr) || !it->second->is_selectable())
continue;
height += (float)it->second->get_textures_size() * OverlayIconsScale + OverlayGapY;
height += (float)it->second->get_textures_size() * m_overlay_icons_scale + m_overlay_gap_y;
}
return height - OverlayGapY;
return height - m_overlay_gap_y;
}
float GLCanvas3D::Gizmos::_get_total_overlay_width() const
@ -3468,10 +3603,10 @@ float GLCanvas3D::Gizmos::_get_total_overlay_width() const
if ((it->second == nullptr) || !it->second->is_selectable())
continue;
max_icon_width = std::max(max_icon_width, (float)it->second->get_textures_size() * OverlayIconsScale);
max_icon_width = std::max(max_icon_width, (float)it->second->get_textures_size() * m_overlay_icons_scale);
}
return max_icon_width + 2.0f * OverlayBorder;
return max_icon_width + 2.0f * m_overlay_border;
}
GLGizmoBase* GLCanvas3D::Gizmos::_get_current() const
@ -3490,7 +3625,7 @@ GLCanvas3D::WarningTexture::WarningTexture()
{
}
bool GLCanvas3D::WarningTexture::generate(const std::string& msg)
bool GLCanvas3D::WarningTexture::generate(const std::string& msg, const GLCanvas3D& canvas)
{
reset();
@ -3499,7 +3634,8 @@ bool GLCanvas3D::WarningTexture::generate(const std::string& msg)
wxMemoryDC memDC;
// select default font
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT);
const float scale = canvas.get_canvas_size().get_scale_factor();
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale);
font.MakeLarger();
font.MakeBold();
memDC.SetFont(font);
@ -3647,9 +3783,18 @@ bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, c
wxMemoryDC memDC;
wxMemoryDC mask_memDC;
// calculate scaling
const float scale = canvas.get_canvas_size().get_scale_factor();
const int scaled_square = std::floor((float)Px_Square * scale);
const int scaled_title_offset = Px_Title_Offset * scale;
const int scaled_text_offset = Px_Text_Offset * scale;
const int scaled_square_contour = Px_Square_Contour * scale;
const int scaled_border = Px_Border * scale;
// select default font
memDC.SetFont(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT));
mask_memDC.SetFont(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT));
const wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale);
memDC.SetFont(font);
mask_memDC.SetFont(font);
// calculates texture size
wxCoord w, h;
@ -3666,10 +3811,10 @@ bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, c
max_text_height = std::max(max_text_height, (int)h);
}
m_original_width = std::max(2 * Px_Border + title_width, 2 * (Px_Border + Px_Square_Contour) + Px_Square + Px_Text_Offset + max_text_width);
m_original_height = 2 * (Px_Border + Px_Square_Contour) + title_height + Px_Title_Offset + items_count * Px_Square;
m_original_width = std::max(2 * scaled_border + title_width, 2 * (scaled_border + scaled_square_contour) + scaled_square + scaled_text_offset + max_text_width);
m_original_height = 2 * (scaled_border + scaled_square_contour) + title_height + scaled_title_offset + items_count * scaled_square;
if (items_count > 1)
m_original_height += (items_count - 1) * Px_Square_Contour;
m_original_height += (items_count - 1) * scaled_square_contour;
int pow_of_two_size = (int)next_highest_power_of_2(std::max<uint32_t>(m_original_width, m_original_height));
@ -3693,8 +3838,8 @@ bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, c
memDC.SetTextForeground(use_error_colors ? *wxWHITE : *wxBLACK);
mask_memDC.SetTextForeground(*wxWHITE);
int title_x = Px_Border;
int title_y = Px_Border;
int title_x = scaled_border;
int title_y = scaled_border;
memDC.DrawText(title, title_x, title_y);
mask_memDC.DrawText(title, title_x, title_y);
@ -3702,12 +3847,12 @@ bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, c
mask_memDC.SetBrush(wxBrush(*wxWHITE));
// draw icons contours as background
int squares_contour_x = Px_Border;
int squares_contour_y = Px_Border + title_height + Px_Title_Offset;
int squares_contour_width = Px_Square + 2 * Px_Square_Contour;
int squares_contour_height = items_count * Px_Square + 2 * Px_Square_Contour;
int squares_contour_x = scaled_border;
int squares_contour_y = scaled_border + title_height + scaled_title_offset;
int squares_contour_width = scaled_square + 2 * scaled_square_contour;
int squares_contour_height = items_count * scaled_square + 2 * scaled_square_contour;
if (items_count > 1)
squares_contour_height += (items_count - 1) * Px_Square_Contour;
squares_contour_height += (items_count - 1) * scaled_square_contour;
wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]);
wxPen pen(color);
@ -3718,15 +3863,15 @@ bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, c
mask_memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height));
// draw items (colored icon + text)
int icon_x = squares_contour_x + Px_Square_Contour;
int icon_x = squares_contour_x + scaled_square_contour;
int icon_x_inner = icon_x + 1;
int icon_y = squares_contour_y + Px_Square_Contour;
int icon_y_step = Px_Square + Px_Square_Contour;
int icon_y = squares_contour_y + scaled_square_contour;
int icon_y_step = scaled_square + scaled_square_contour;
int text_x = icon_x + Px_Square + Px_Text_Offset;
int text_y_offset = (Px_Square - max_text_height) / 2;
int text_x = icon_x + scaled_square + scaled_text_offset;
int text_y_offset = (scaled_square - max_text_height) / 2;
int px_inner_square = Px_Square - 2;
int px_inner_square = scaled_square - 2;
for (const GCodePreviewData::LegendItem& item : items)
{
@ -3740,7 +3885,7 @@ bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, c
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x, icon_y, Px_Square, Px_Square));
memDC.DrawRectangle(wxRect(icon_x, icon_y, scaled_square, scaled_square));
// draw icon interior
color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]);
@ -3849,6 +3994,9 @@ wxDEFINE_EVENT(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED, SimpleEvent);
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas)
: m_canvas(canvas)
, m_context(nullptr)
#if ENABLE_RETINA_GL
, m_retina_helper(nullptr)
#endif
, m_in_render(false)
, m_toolbar(GLToolbar::Normal)
, m_view_toolbar(nullptr)
@ -3882,8 +4030,12 @@ GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas)
, m_external_gizmo_widgets_parent(nullptr)
#endif // not ENABLE_IMGUI
{
if (m_canvas != nullptr)
if (m_canvas != nullptr) {
m_timer.SetOwner(m_canvas);
#if ENABLE_RETINA_GL
m_retina_helper.reset(new RetinaHelper(canvas));
#endif
}
m_selection.set_volumes(&m_volumes.volumes);
}
@ -4238,9 +4390,6 @@ void GLCanvas3D::set_viewport_from_scene(const GLCanvas3D& other)
m_camera.set_scene_box(other.m_camera.get_scene_box(), *this);
m_camera.set_target(other.m_camera.get_target(), *this);
m_camera.zoom = other.m_camera.zoom;
#if ENABLE_REWORKED_BED_SHAPE_CHANGE
m_requires_zoom_to_bed = false;
#endif // ENABLE_REWORKED_BED_SHAPE_CHANGE
m_dirty = true;
}
@ -4519,7 +4668,7 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
}
if (printer_technology == ptSLA) {
const SLAPrint *sla_print = this->sla_print();
#ifdef _DEBUG
#ifdef _DEBUG
// Verify that the SLAPrint object is synchronized with m_model.
check_model_ids_equal(*m_model, sla_print->model());
#endif /* _DEBUG */
@ -5010,6 +5159,12 @@ void GLCanvas3D::on_timer(wxTimerEvent& evt)
void GLCanvas3D::on_mouse(wxMouseEvent& evt)
{
#if ENABLE_RETINA_GL
const float scale = m_retina_helper->get_scale_factor();
evt.SetX(evt.GetX() * scale);
evt.SetY(evt.GetY() * scale);
#endif
#if ENABLE_IMGUI
auto imgui = wxGetApp().imgui();
if (imgui->update_mouse_data(evt)) {
@ -5232,7 +5387,13 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
wxGetApp().obj_manipul()->update_settings_value(m_selection);
// forces a frame render to update the view before the context menu is shown
render();
post_event(Vec2dEvent(EVT_GLCANVAS_RIGHT_CLICK, pos.cast<double>()));
Vec2d logical_pos = pos.cast<double>();
#if ENABLE_RETINA_GL
const float factor = m_retina_helper->get_scale_factor();
logical_pos = logical_pos.cwiseQuotient(Vec2d(factor, factor));
#endif
post_event(Vec2dEvent(EVT_GLCANVAS_RIGHT_CLICK, logical_pos));
}
}
}
@ -5498,7 +5659,15 @@ Size GLCanvas3D::get_canvas_size() const
if (m_canvas != nullptr)
m_canvas->GetSize(&w, &h);
return Size(w, h);
#if ENABLE_RETINA_GL
const float factor = m_retina_helper->get_scale_factor();
w *= factor;
h *= factor;
#else
const float factor = 1.0;
#endif
return Size(w, h, factor);
}
Point GLCanvas3D::get_local_mouse_position() const
@ -5805,6 +5974,26 @@ void GLCanvas3D::handle_sidebar_focus_event(const std::string& opt_key, bool foc
}
}
void GLCanvas3D::update_ui_from_settings()
{
#if ENABLE_RETINA_GL
const float orig_scaling = m_retina_helper->get_scale_factor();
const bool use_retina = wxGetApp().app_config->get("use_retina_opengl") == "1";
BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Use Retina OpenGL: " << use_retina;
m_retina_helper->set_use_retina(use_retina);
const float new_scaling = m_retina_helper->get_scale_factor();
if (new_scaling != orig_scaling) {
BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Scaling factor: " << new_scaling;
m_camera.zoom /= orig_scaling;
m_camera.zoom *= new_scaling;
_refresh_if_shown_on_screen();
}
#endif
}
bool GLCanvas3D::_is_shown_on_screen() const
{
return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false;
@ -5958,6 +6147,9 @@ void GLCanvas3D::_resize(unsigned int w, unsigned int h)
#if ENABLE_IMGUI
wxGetApp().imgui()->set_display_size((float)w, (float)h);
#if ENABLE_RETINA_GL
wxGetApp().imgui()->set_style_scaling(m_retina_helper->get_scale_factor());
#endif // ENABLE_RETINA_GL
#endif // ENABLE_IMGUI
// ensures that this canvas is current
@ -6238,10 +6430,15 @@ void GLCanvas3D::_render_background() const
void GLCanvas3D::_render_bed(float theta) const
{
float scale_factor = 1.0;
#if ENABLE_RETINA_GL
scale_factor = m_retina_helper->get_scale_factor();
#endif
#if ENABLE_PRINT_BED_MODELS
m_bed.render(theta, m_use_VBOs);
m_bed.render(theta, m_use_VBOs, scale_factor);
#else
m_bed.render(theta);
m_bed.render(theta, scale_factor);
#endif // ENABLE_PRINT_BED_MODELS
}
@ -6320,8 +6517,13 @@ void GLCanvas3D::_render_objects() const
void GLCanvas3D::_render_selection() const
{
float scale_factor = 1.0;
#if ENABLE_RETINA_GL
scale_factor = m_retina_helper->get_scale_factor();
#endif
if (!m_gizmos.is_running())
m_selection.render();
m_selection.render(scale_factor);
}
#if ENABLE_RENDER_SELECTION_CENTER
@ -6404,18 +6606,28 @@ void GLCanvas3D::_render_current_gizmo() const
void GLCanvas3D::_render_gizmos_overlay() const
{
#if ENABLE_RETINA_GL
m_gizmos.set_overlay_scale(m_retina_helper->get_scale_factor());
#endif
m_gizmos.render_overlay(*this, m_selection);
}
void GLCanvas3D::_render_toolbar() const
{
#if ENABLE_RETINA_GL
m_toolbar.set_icons_scale(m_retina_helper->get_scale_factor());
#endif
m_toolbar.render(*this);
}
void GLCanvas3D::_render_view_toolbar() const
{
if (m_view_toolbar != nullptr)
if (m_view_toolbar != nullptr) {
#if ENABLE_RETINA_GL
m_view_toolbar->set_icons_scale(m_retina_helper->get_scale_factor());
#endif
m_view_toolbar->render(*this);
}
}
#if ENABLE_SHOW_CAMERA_TARGET
@ -8116,7 +8328,7 @@ void GLCanvas3D::_generate_legend_texture(const GCodePreviewData& preview_data,
void GLCanvas3D::_generate_warning_texture(const std::string& msg)
{
m_warning_texture.generate(msg);
m_warning_texture.generate(msg, *this);
}
void GLCanvas3D::_reset_warning_texture()
@ -8141,6 +8353,10 @@ void GLCanvas3D::_resize_toolbars() const
float zoom = get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
#if ENABLE_RETINA_GL
m_toolbar.set_icons_scale(m_retina_helper->get_scale_factor());
#endif
GLToolbar::Layout::EOrientation orientation = m_toolbar.get_layout_orientation();
switch (m_toolbar.get_layout_type())
@ -8184,6 +8400,10 @@ void GLCanvas3D::_resize_toolbars() const
if (m_view_toolbar != nullptr)
{
#if ENABLE_RETINA_GL
m_view_toolbar->set_icons_scale(m_retina_helper->get_scale_factor());
#endif
// places the toolbar on the bottom-left corner of the 3d scene
float top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar->get_height()) * inv_zoom;
float left = -0.5f * (float)cnv_size.get_width() * inv_zoom;

View file

@ -2,7 +2,9 @@
#define slic3r_GLCanvas3D_hpp_
#include <stddef.h>
#include <memory>
#include "libslic3r/Technologies.hpp"
#include "3DScene.hpp"
#include "GLToolbar.hpp"
#include "Event.hpp"
@ -20,6 +22,9 @@ class wxTimerEvent;
class wxPaintEvent;
class wxGLCanvas;
// Support for Retina OpenGL on Mac OS
#define ENABLE_RETINA_GL __APPLE__
class GLUquadric;
typedef class GLUquadric GLUquadricObj;
@ -36,6 +41,10 @@ namespace GUI {
class GLGizmoBase;
#if ENABLE_RETINA_GL
class RetinaHelper;
#endif
class GeometryBuffer
{
std::vector<float> m_vertices;
@ -55,16 +64,20 @@ class Size
{
int m_width;
int m_height;
float m_scale_factor;
public:
Size();
Size(int width, int height);
Size(int width, int height, float scale_factor = 1.0);
int get_width() const;
void set_width(int width);
int get_height() const;
void set_height(int height);
int get_scale_factor() const;
void set_scale_factor(int height);
};
class Rect
@ -209,6 +222,8 @@ class GLCanvas3D
mutable GLBed m_model;
#endif // ENABLE_PRINT_BED_MODELS
mutable float m_scale_factor;
public:
Bed();
@ -224,9 +239,9 @@ class GLCanvas3D
Point point_projection(const Point& point) const;
#if ENABLE_PRINT_BED_MODELS
void render(float theta, bool useVBOs) const;
void render(float theta, bool useVBOs, float scale_factor) const;
#else
void render(float theta) const;
void render(float theta, float scale_factor) const;
#endif // ENABLE_PRINT_BED_MODELS
private:
@ -297,6 +312,9 @@ class GLCanvas3D
};
private:
static const float THICKNESS_BAR_WIDTH;
static const float THICKNESS_RESET_BUTTON_HEIGHT;
bool m_use_legacy_opengl;
bool m_enabled;
Shader m_shader;
@ -380,6 +398,9 @@ class GLCanvas3D
void _render_active_object_annotations(const GLCanvas3D& canvas, const Rect& bar_rect) const;
void _render_profile(const Rect& bar_rect) const;
void update_slicing_parameters();
static float thickness_bar_width(const GLCanvas3D &canvas);
static float reset_button_height(const GLCanvas3D &canvas);
};
struct Mouse
@ -536,6 +557,8 @@ public:
mutable GLArrow m_arrow;
mutable GLCurvedArrow m_curved_arrow;
mutable float m_scale_factor;
public:
Selection();
#if ENABLE_RENDER_SELECTION_CENTER
@ -617,7 +640,7 @@ public:
void erase();
void render() const;
void render(float scale_factor = 1.0) const;
#if ENABLE_RENDER_SELECTION_CENTER
void render_center() const;
#endif // ENABLE_RENDER_SELECTION_CENTER
@ -647,7 +670,15 @@ public:
void _render_sidebar_rotation_hint(Axis axis) const;
void _render_sidebar_scale_hint(Axis axis) const;
void _render_sidebar_size_hint(Axis axis, double length) const;
void _synchronize_unselected_instances(bool including_z = false);
enum SyncRotationType {
// Do not synchronize rotation. Either not rotating at all, or rotating by world Z axis.
SYNC_ROTATION_NONE = 0,
// Synchronize fully. Used from "place on bed" feature.
SYNC_ROTATION_FULL = 1,
// Synchronize after rotation by an axis not parallel with Z.
SYNC_ROTATION_GENERAL = 2,
};
void _synchronize_unselected_instances(SyncRotationType sync_rotation_type);
void _synchronize_unselected_volumes();
void _ensure_on_bed();
};
@ -680,10 +711,6 @@ public:
private:
class Gizmos
{
static const float OverlayIconsScale;
static const float OverlayBorder;
static const float OverlayGapY;
public:
enum EType : unsigned char
{
@ -704,6 +731,10 @@ private:
BackgroundTexture m_background_texture;
EType m_current;
float m_overlay_icons_scale;
float m_overlay_border;
float m_overlay_gap_y;
public:
Gizmos();
~Gizmos();
@ -713,6 +744,8 @@ private:
bool is_enabled() const;
void set_enabled(bool enable);
void set_overlay_scale(float scale);
std::string update_hover_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos, const Selection& selection);
void update_on_off_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos, const Selection& selection);
void update_on_off_state(const Selection& selection);
@ -802,7 +835,7 @@ private:
public:
WarningTexture();
bool generate(const std::string& msg);
bool generate(const std::string& msg, const GLCanvas3D& canvas);
void render(const GLCanvas3D& canvas) const;
};
@ -832,6 +865,9 @@ private:
wxGLCanvas* m_canvas;
wxGLContext* m_context;
#if ENABLE_RETINA_GL
std::unique_ptr<RetinaHelper> m_retina_helper;
#endif
bool m_in_render;
LegendTexture m_legend_texture;
WarningTexture m_warning_texture;
@ -1030,6 +1066,8 @@ public:
void handle_sidebar_focus_event(const std::string& opt_key, bool focus_on);
void update_ui_from_settings();
private:
bool _is_shown_on_screen() const;
#if !ENABLE_REWORKED_BED_SHAPE_CHANGE

View file

@ -1428,6 +1428,7 @@ void GLGizmoFlatten::on_start_dragging(const GLCanvas3D::Selection& selection)
{
if (m_hover_id != -1)
{
assert(m_planes_valid);
m_normal = m_planes[m_hover_id].normal;
m_starting_center = selection.get_bounding_box().center();
}
@ -1446,6 +1447,8 @@ void GLGizmoFlatten::on_render(const GLCanvas3D::Selection& selection) const
::glPushMatrix();
::glMultMatrixd(m.data());
::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z());
if (this->is_plane_update_necessary())
const_cast<GLGizmoFlatten*>(this)->update_planes();
for (int i = 0; i < (int)m_planes.size(); ++i)
{
if (i == m_hover_id)
@ -1478,6 +1481,8 @@ void GLGizmoFlatten::on_render_for_picking(const GLCanvas3D::Selection& selectio
::glPushMatrix();
::glMultMatrixd(m.data());
::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z());
if (this->is_plane_update_necessary())
const_cast<GLGizmoFlatten*>(this)->update_planes();
for (int i = 0; i < (int)m_planes.size(); ++i)
{
::glColor3f(1.0f, 1.0f, picking_color_component(i));
@ -1497,11 +1502,11 @@ void GLGizmoFlatten::on_render_for_picking(const GLCanvas3D::Selection& selectio
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_starting_center = Vec3d::Zero();
bool object_changed = m_model_object != model_object;
if (m_model_object != model_object) {
m_planes.clear();
m_planes_valid = false;
}
m_model_object = model_object;
if (model_object && (object_changed || is_plane_update_necessary()))
update_planes();
}
void GLGizmoFlatten::update_planes()
@ -1701,6 +1706,8 @@ void GLGizmoFlatten::update_planes()
}
m_first_instance_scale = m_model_object->instances.front()->get_scaling_factor();
m_first_instance_mirror = m_model_object->instances.front()->get_mirror();
m_planes_valid = true;
}
@ -1709,7 +1716,7 @@ bool GLGizmoFlatten::is_plane_update_necessary() const
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if (m_model_object->volumes.size() != m_volumes_matrices.size())
if (! m_planes_valid || m_model_object->volumes.size() != m_volumes_matrices.size())
return true;
// We want to recalculate when the scale changes - some planes could (dis)appear.

View file

@ -408,6 +408,7 @@ private:
Vec3d m_first_instance_mirror;
std::vector<PlaneData> m_planes;
bool m_planes_valid = false;
mutable Vec3d m_starting_center;
const ModelObject* m_model_object = nullptr;
std::vector<const Transform3d*> instances_matrices;

View file

@ -468,12 +468,12 @@ float GLToolbar::get_width_horizontal() const
float GLToolbar::get_width_vertical() const
{
return 2.0f * m_layout.border + m_icons_texture.metadata.icon_size * m_layout.icons_scale;
return 2.0f * m_layout.border * m_layout.icons_scale + m_icons_texture.metadata.icon_size * m_layout.icons_scale;
}
float GLToolbar::get_height_horizontal() const
{
return 2.0f * m_layout.border + m_icons_texture.metadata.icon_size * m_layout.icons_scale;
return 2.0f * m_layout.border * m_layout.icons_scale + m_icons_texture.metadata.icon_size * m_layout.icons_scale;
}
float GLToolbar::get_height_vertical() const
@ -483,33 +483,36 @@ float GLToolbar::get_height_vertical() const
float GLToolbar::get_main_size() const
{
float size = 2.0f * m_layout.border;
float size = 2.0f * m_layout.border * m_layout.icons_scale;
for (unsigned int i = 0; i < (unsigned int)m_items.size(); ++i)
{
if (m_items[i]->is_separator())
size += m_layout.separator_size;
size += m_layout.separator_size * m_layout.icons_scale;
else
size += (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale;
}
if (m_items.size() > 1)
size += ((float)m_items.size() - 1.0f) * m_layout.gap_size;
size += ((float)m_items.size() - 1.0f) * m_layout.gap_size * m_layout.icons_scale;
return size;
}
std::string GLToolbar::update_hover_state_horizontal(const Vec2d& mouse_pos, GLCanvas3D& parent)
{
// NB: mouse_pos is already scaled appropriately
float zoom = parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float factor = m_layout.icons_scale * inv_zoom;
Size cnv_size = parent.get_canvas_size();
Vec2d scaled_mouse_pos((mouse_pos(0) - 0.5 * (double)cnv_size.get_width()) * inv_zoom, (0.5 * (double)cnv_size.get_height() - mouse_pos(1)) * inv_zoom);
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * inv_zoom;
float scaled_separator_size = m_layout.separator_size * inv_zoom;
float scaled_gap_size = m_layout.gap_size * inv_zoom;
float scaled_border = m_layout.border * inv_zoom;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * factor;
float scaled_separator_size = m_layout.separator_size * factor;
float scaled_gap_size = m_layout.gap_size * factor;
float scaled_border = m_layout.border * factor;
float separator_stride = scaled_separator_size + scaled_gap_size;
float icon_stride = scaled_icons_size + scaled_gap_size;
@ -591,16 +594,19 @@ std::string GLToolbar::update_hover_state_horizontal(const Vec2d& mouse_pos, GLC
std::string GLToolbar::update_hover_state_vertical(const Vec2d& mouse_pos, GLCanvas3D& parent)
{
// NB: mouse_pos is already scaled appropriately
float zoom = parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float factor = m_layout.icons_scale * inv_zoom;
Size cnv_size = parent.get_canvas_size();
Vec2d scaled_mouse_pos((mouse_pos(0) - 0.5 * (double)cnv_size.get_width()) * inv_zoom, (0.5 * (double)cnv_size.get_height() - mouse_pos(1)) * inv_zoom);
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * inv_zoom;
float scaled_separator_size = m_layout.separator_size * inv_zoom;
float scaled_gap_size = m_layout.gap_size * inv_zoom;
float scaled_border = m_layout.border * inv_zoom;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * factor;
float scaled_separator_size = m_layout.separator_size * factor;
float scaled_gap_size = m_layout.gap_size * factor;
float scaled_border = m_layout.border * factor;
float separator_stride = scaled_separator_size + scaled_gap_size;
float icon_stride = scaled_icons_size + scaled_gap_size;
@ -682,16 +688,19 @@ std::string GLToolbar::update_hover_state_vertical(const Vec2d& mouse_pos, GLCan
int GLToolbar::contains_mouse_horizontal(const Vec2d& mouse_pos, const GLCanvas3D& parent) const
{
// NB: mouse_pos is already scaled appropriately
float zoom = parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float factor = m_layout.icons_scale * inv_zoom;
Size cnv_size = parent.get_canvas_size();
Vec2d scaled_mouse_pos((mouse_pos(0) - 0.5 * (double)cnv_size.get_width()) * inv_zoom, (0.5 * (double)cnv_size.get_height() - mouse_pos(1)) * inv_zoom);
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * inv_zoom;
float scaled_separator_size = m_layout.separator_size * inv_zoom;
float scaled_gap_size = m_layout.gap_size * inv_zoom;
float scaled_border = m_layout.border * inv_zoom;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * factor;
float scaled_separator_size = m_layout.separator_size * factor;
float scaled_gap_size = m_layout.gap_size * factor;
float scaled_border = m_layout.border * factor;
float separator_stride = scaled_separator_size + scaled_gap_size;
float icon_stride = scaled_icons_size + scaled_gap_size;
@ -724,16 +733,19 @@ int GLToolbar::contains_mouse_horizontal(const Vec2d& mouse_pos, const GLCanvas3
int GLToolbar::contains_mouse_vertical(const Vec2d& mouse_pos, const GLCanvas3D& parent) const
{
// NB: mouse_pos is already scaled appropriately
float zoom = parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float factor = m_layout.icons_scale * inv_zoom;
Size cnv_size = parent.get_canvas_size();
Vec2d scaled_mouse_pos((mouse_pos(0) - 0.5 * (double)cnv_size.get_width()) * inv_zoom, (0.5 * (double)cnv_size.get_height() - mouse_pos(1)) * inv_zoom);
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * inv_zoom;
float scaled_separator_size = m_layout.separator_size * inv_zoom;
float scaled_gap_size = m_layout.gap_size * inv_zoom;
float scaled_border = m_layout.border * inv_zoom;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * factor;
float scaled_separator_size = m_layout.separator_size * factor;
float scaled_gap_size = m_layout.gap_size * factor;
float scaled_border = m_layout.border * factor;
float separator_stride = scaled_separator_size + scaled_gap_size;
float icon_stride = scaled_icons_size + scaled_gap_size;
@ -774,11 +786,12 @@ void GLToolbar::render_horizontal(const GLCanvas3D& parent) const
float zoom = parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float factor = inv_zoom * m_layout.icons_scale;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * inv_zoom;
float scaled_separator_size = m_layout.separator_size * inv_zoom;
float scaled_gap_size = m_layout.gap_size * inv_zoom;
float scaled_border = m_layout.border * inv_zoom;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * factor;
float scaled_separator_size = m_layout.separator_size * factor;
float scaled_gap_size = m_layout.gap_size * factor;
float scaled_border = m_layout.border * factor;
float scaled_width = get_width() * inv_zoom;
float scaled_height = get_height() * inv_zoom;
@ -899,11 +912,12 @@ void GLToolbar::render_vertical(const GLCanvas3D& parent) const
float zoom = parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float factor = inv_zoom * m_layout.icons_scale;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * inv_zoom;
float scaled_separator_size = m_layout.separator_size * inv_zoom;
float scaled_gap_size = m_layout.gap_size * inv_zoom;
float scaled_border = m_layout.border * inv_zoom;
float scaled_icons_size = (float)m_icons_texture.metadata.icon_size * m_layout.icons_scale * factor;
float scaled_separator_size = m_layout.separator_size * factor;
float scaled_gap_size = m_layout.gap_size * factor;
float scaled_border = m_layout.border * factor;
float scaled_width = get_width() * inv_zoom;
float scaled_height = get_height() * inv_zoom;

View file

@ -270,16 +270,11 @@ void GUI_App::set_label_clr_sys(const wxColour& clr) {
void GUI_App::recreate_GUI()
{
std::cerr << "recreate_GUI" << std::endl;
// to make sure nobody accesses data from the soon-to-be-destroyed widgets:
tabs_list.clear();
plater_ = nullptr;
clear_tabs_list();
if (plater_) {
// before creating a new plater let's delete old one
plater_->Destroy();
plater_ = nullptr;
}
MainFrame* topwindow = dynamic_cast<MainFrame*>(GetTopWindow());
MainFrame* topwindow = mainframe;
mainframe = new MainFrame();
sidebar().obj_list()->init_objects(); // propagate model objects to object list
@ -691,15 +686,6 @@ void GUI_App::load_current_presets()
}
}
void GUI_App::clear_tabs_list()
{
for (auto tab : tabs_list) {
tab->Destroy();
tab = nullptr;
}
tabs_list.clear();
}
#ifdef __APPLE__
// wxWidgets override to get an event on open files.
void GUI_App::MacOpenFiles(const wxArrayString &fileNames)

View file

@ -134,7 +134,6 @@ public:
bool check_unsaved_changes();
bool checked_tab(Tab* tab);
void load_current_presets();
void clear_tabs_list();
#ifdef __APPLE__
// wxWidgets override to get an event on open files.

View file

@ -626,7 +626,8 @@ const std::vector<std::string>& ObjectList::get_options_for_bundle(const wxStrin
}
#endif
return std::vector<std::string> {};
static std::vector<std::string> empty;
return empty;
}
void ObjectList::get_options_menu(settings_menu_hierarchy& settings_menu, const bool is_part)
@ -1370,15 +1371,12 @@ bool ObjectList::is_splittable()
if (!get_volume_by_item(item, volume) || !volume)
return false;
if (volume->is_splittable() != -1) // if is_splittable value is already known
return volume->is_splittable() == 0 ? false : true;
TriangleMeshPtrs meshptrs = volume->mesh.split();
bool splittable = meshptrs.size() > 1;
for (TriangleMesh* m : meshptrs) { delete m; }
volume->set_splittable(splittable ? 1 : 0);
return splittable;
int splittable = volume->is_splittable();
if (splittable == -1) {
splittable = (int)volume->mesh.has_multiple_patches();
volume->set_splittable(splittable);
}
return splittable != 0;
}
bool ObjectList::selected_instances_of_same_object()

View file

@ -267,7 +267,7 @@ void ObjectManipulation::update_settings_value(const GLCanvas3D::Selection& sele
bool changed_box = false;
if (!m_cache.instance.matches_object(obj_idx))
{
m_cache.instance.set(obj_idx, instance_idx, (*wxGetApp().model_objects())[obj_idx]->raw_mesh().bounding_box().size());
m_cache.instance.set(obj_idx, instance_idx, (*wxGetApp().model_objects())[obj_idx]->raw_mesh_bounding_box().size());
changed_box = true;
}
if (changed_box || !m_cache.instance.matches_instance(instance_idx) || !m_cache.scale.isApprox(100.0 * m_new_scale))
@ -278,7 +278,7 @@ void ObjectManipulation::update_settings_value(const GLCanvas3D::Selection& sele
m_new_size = Vec3d::Zero();
#else
if ((0 <= obj_idx) && (obj_idx < (int)wxGetApp().model_objects()->size()))
m_new_size = volume->get_instance_transformation().get_matrix(true, true) * (*wxGetApp().model_objects())[obj_idx]->raw_mesh().bounding_box().size();
m_new_size = volume->get_instance_transformation().get_matrix(true, true) * (*wxGetApp().model_objects())[obj_idx]->raw_mesh_bounding_box().size();
else
// this should never happen
m_new_size = Vec3d::Zero();

View file

@ -109,6 +109,7 @@ public:
virtual ~Preview();
wxGLCanvas* get_wxglcanvas() { return m_canvas_widget; }
GLCanvas3D* get_canvas3d() { return m_canvas; }
void set_view_toolbar(GLToolbar* toolbar);

View file

@ -2,6 +2,8 @@
#include <cstdio>
#include <vector>
#include <cmath>
#include <stdexcept>
#include <boost/format.hpp>
#include <boost/log/trivial.hpp>
@ -24,6 +26,7 @@ namespace GUI {
ImGuiWrapper::ImGuiWrapper()
: m_font_texture(0)
, m_style_scaling(1.0)
, m_mouse_buttons(0)
, m_disabled(false)
{
@ -39,18 +42,9 @@ bool ImGuiWrapper::init()
{
ImGui::CreateContext();
ImGuiIO& io = ImGui::GetIO();
ImFont* font = io.Fonts->AddFontFromFileTTF((Slic3r::resources_dir() + "/fonts/NotoSans-Regular.ttf").c_str(), 18.0f);
if (font == nullptr) {
font = io.Fonts->AddFontDefault();
if (font == nullptr)
return false;
}
else {
m_fonts.insert(FontsMap::value_type("Noto Sans Regular 18", font));
}
init_default_font(m_style_scaling);
io.IniFilename = nullptr;
ImGui::GetIO().IniFilename = nullptr;
return true;
}
@ -62,6 +56,15 @@ void ImGuiWrapper::set_display_size(float w, float h)
io.DisplayFramebufferScale = ImVec2(1.0f, 1.0f);
}
void ImGuiWrapper::set_style_scaling(float scaling)
{
if (!std::isnan(scaling) && !std::isinf(scaling) && scaling != m_style_scaling) {
ImGui::GetStyle().ScaleAllSizes(scaling / m_style_scaling);
init_default_font(scaling);
m_style_scaling = scaling;
}
}
bool ImGuiWrapper::update_mouse_data(wxMouseEvent& evt)
{
ImGuiIO& io = ImGui::GetIO();
@ -93,6 +96,7 @@ void ImGuiWrapper::render()
void ImGuiWrapper::set_next_window_pos(float x, float y, int flag)
{
ImGui::SetNextWindowPos(ImVec2(x, y), (ImGuiCond)flag);
ImGui::SetNextWindowSize(ImVec2(0.0, 0.0));
}
void ImGuiWrapper::set_next_window_bg_alpha(float alpha)
@ -198,6 +202,23 @@ bool ImGuiWrapper::want_any_input() const
return io.WantCaptureMouse || io.WantCaptureKeyboard || io.WantTextInput;
}
void ImGuiWrapper::init_default_font(float scaling)
{
static const float font_size = 18.0f;
destroy_fonts_texture();
ImGuiIO& io = ImGui::GetIO();
io.Fonts->Clear();
ImFont* font = io.Fonts->AddFontFromFileTTF((Slic3r::resources_dir() + "/fonts/NotoSans-Regular.ttf").c_str(), font_size * scaling);
if (font == nullptr) {
font = io.Fonts->AddFontDefault();
if (font == nullptr) {
throw std::runtime_error("ImGui: Could not load deafult font");
}
}
}
void ImGuiWrapper::create_device_objects()
{
create_fonts_texture();

View file

@ -21,6 +21,7 @@ class ImGuiWrapper
FontsMap m_fonts;
unsigned m_font_texture;
float m_style_scaling;
unsigned m_mouse_buttons;
bool m_disabled;
@ -32,6 +33,7 @@ public:
void read_glsl_version();
void set_display_size(float w, float h);
void set_style_scaling(float scaling);
bool update_mouse_data(wxMouseEvent &evt);
void new_frame();
@ -58,6 +60,7 @@ public:
bool want_text_input() const;
bool want_any_input() const;
private:
void init_default_font(float scaling);
void create_device_objects();
void create_fonts_texture();
void render_draw_data(ImDrawData *draw_data);

View file

@ -95,14 +95,10 @@ wxFrame(NULL, wxID_ANY, SLIC3R_BUILD, wxDefaultPosition, wxDefaultSize, wxDEFAUL
_3DScene::remove_all_canvases();
// Slic3r::GUI::deregister_on_request_update_callback();
// destroy and set to null tabs and a platter
// set to null tabs and a platter
// to avoid any manipulations with them from App->wxEVT_IDLE after of the mainframe closing
wxGetApp().clear_tabs_list();
if (wxGetApp().plater_) {
// before creating a new plater let's delete old one
wxGetApp().plater_->Destroy();
wxGetApp().plater_ = nullptr;
}
wxGetApp().tabs_list.clear();
wxGetApp().plater_ = nullptr;
// propagate event
event.Skip();
@ -113,6 +109,7 @@ wxFrame(NULL, wxID_ANY, SLIC3R_BUILD, wxDefaultPosition, wxDefaultSize, wxDEFAUL
update_ui_from_settings(); // FIXME (?)
}
void MainFrame::init_tabpanel()
{
m_tabpanel = new wxNotebook(this, wxID_ANY, wxDefaultPosition, wxDefaultSize, wxNB_TOP | wxTAB_TRAVERSAL);

View file

@ -1272,6 +1272,11 @@ void Plater::priv::update_ui_from_settings()
// $self->{buttons_sizer}->Show($self->{btn_reslice}, ! wxTheApp->{app_config}->get("background_processing"));
// $self->{buttons_sizer}->Layout;
// }
#if ENABLE_RETINA_GL
view3D->get_canvas3d()->update_ui_from_settings();
preview->get_canvas3d()->update_ui_from_settings();
#endif
}
ProgressStatusBar* Plater::priv::statusbar()
@ -1463,29 +1468,40 @@ std::vector<size_t> Plater::priv::load_files(const std::vector<fs::path>& input_
return obj_idxs;
}
// #define AUTOPLACEMENT_ON_LOAD
std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &model_objects)
{
const BoundingBoxf bed_shape = bed_shape_bb();
const Vec3d bed_size = Slic3r::to_3d(bed_shape.size().cast<double>(), 1.0) - 2.0 * Vec3d::Ones();
#ifndef AUTOPLACEMENT_ON_LOAD
bool need_arrange = false;
#endif /* AUTOPLACEMENT_ON_LOAD */
bool scaled_down = false;
std::vector<size_t> obj_idxs;
unsigned int obj_count = model.objects.size();
#ifdef AUTOPLACEMENT_ON_LOAD
ModelInstancePtrs new_instances;
#endif /* AUTOPLACEMENT_ON_LOAD */
for (ModelObject *model_object : model_objects) {
auto *object = model.add_object(*model_object);
std::string object_name = object->name.empty() ? fs::path(object->input_file).filename().string() : object->name;
obj_idxs.push_back(obj_count++);
if (model_object->instances.empty()) {
// if object has no defined position(s) we need to rearrange everything after loading
need_arrange = true;
// add a default instance and center object around origin
object->center_around_origin(); // also aligns object to Z = 0
ModelInstance* instance = object->add_instance();
#ifdef AUTOPLACEMENT_ON_LOAD
object->center_around_origin();
new_instances.emplace_back(object->add_instance());
#else /* AUTOPLACEMENT_ON_LOAD */
// if object has no defined position(s) we need to rearrange everything after loading object->center_around_origin();
need_arrange = true;
// add a default instance and center object around origin
object->center_around_origin(); // also aligns object to Z = 0
ModelInstance* instance = object->add_instance();
instance->set_offset(Slic3r::to_3d(bed_shape.center().cast<double>(), -object->origin_translation(2)));
#endif /* AUTOPLACEMENT_ON_LOAD */
}
const Vec3d size = object->bounding_box().size();
@ -1513,6 +1529,18 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
// print.add_model_object(object);
}
#ifdef AUTOPLACEMENT_ON_LOAD
// FIXME distance should be a config value /////////////////////////////////
auto min_obj_distance = static_cast<coord_t>(6/SCALING_FACTOR);
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
assert(bed_shape_opt);
auto& bedpoints = bed_shape_opt->values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
arr::find_new_position(model, new_instances, min_obj_distance, bed);
#endif /* AUTOPLACEMENT_ON_LOAD */
if (scaled_down) {
GUI::show_info(q,
_(L("Your object appears to be too large, so it was automatically scaled down to fit your print bed.")),
@ -2094,7 +2122,7 @@ void Plater::priv::fix_through_netfabb(const int obj_idx)
o->clear_instances();
for (auto instance: model_object->instances)
o->add_instance(*instance);
// o->invalidate_bounding_box();
o->invalidate_bounding_box();
if (o->volumes.size() == model_object->volumes.size()) {
for (int i = 0; i < o->volumes.size(); i++) {

View file

@ -87,6 +87,7 @@ void PreferencesDialog::build()
option = Option (def,"show_incompatible_presets");
m_optgroup->append_single_option_line(option);
// TODO: remove?
def.label = L("Use legacy OpenGL 1.1 rendering");
def.type = coBool;
def.tooltip = L("If you have rendering issues caused by a buggy OpenGL 2.0 driver, "
@ -96,6 +97,16 @@ void PreferencesDialog::build()
option = Option (def,"use_legacy_opengl");
m_optgroup->append_single_option_line(option);
#if __APPLE__
def.label = L("Use Retina resolution for the 3D scene");
def.type = coBool;
def.tooltip = L("If enabled, the 3D scene will be rendered in Retina resolution. "
"If you are experiencing 3D performance problems, disabling this option may help.");
def.default_value = new ConfigOptionBool{ app_config->get("use_retina_opengl") == "1" };
option = Option (def, "use_retina_opengl");
m_optgroup->append_single_option_line(option);
#endif
auto sizer = new wxBoxSizer(wxVERTICAL);
sizer->Add(m_optgroup->sizer, 0, wxEXPAND | wxBOTTOM | wxLEFT | wxRIGHT, 10);
@ -110,8 +121,8 @@ void PreferencesDialog::build()
void PreferencesDialog::accept()
{
if (m_values.find("no_defaults") != m_values.end()||
m_values.find("use_legacy_opengl")!= m_values.end()) {
if (m_values.find("no_defaults") != m_values.end() ||
m_values.find("use_legacy_opengl") != m_values.end()) {
warning_catcher(this, _(L("You need to restart Slic3r to make the changes effective.")));
}

View file

@ -0,0 +1,29 @@
#ifndef slic3r_RetinaHelper_hpp_
#define slic3r_RetinaHelper_hpp_
class wxWindow;
namespace Slic3r {
namespace GUI {
class RetinaHelper
{
public:
RetinaHelper(wxWindow* window);
~RetinaHelper();
void set_use_retina(bool value);
bool get_use_retina();
float get_scale_factor();
private:
wxWindow* m_window;
void* m_self;
};
} // namespace GUI
} // namespace Slic3r
#endif // RetinaHelper_h

View file

@ -0,0 +1,15 @@
#import <Cocoa/Cocoa.h>
class wxEvtHandler;
@interface RetinaHelperImpl : NSObject
{
NSView *view;
wxEvtHandler* handler;
}
-(id)initWithView:(NSView *)view handler:(wxEvtHandler *)handler;
-(void)setViewWantsBestResolutionOpenGLSurface:(BOOL)value;
-(BOOL)getViewWantsBestResolutionOpenGLSurface;
-(float)getBackingScaleFactor;
@end

View file

@ -0,0 +1,111 @@
// The RetinaHelper was originally written by Andreas Stahl, 2013
#import "RetinaHelper.hpp"
#import "RetinaHelperImpl.hmm"
#import <OpenGL/OpenGL.h>
#import "wx/window.h"
@implementation RetinaHelperImpl
namespace Slic3r {
namespace GUI {
RetinaHelper::RetinaHelper(wxWindow* window) :
m_window(window)
{
m_self = nullptr;
m_self = [[RetinaHelperImpl alloc] initWithView:window->GetHandle() handler:window->GetEventHandler()];
}
RetinaHelper::~RetinaHelper()
{
[m_self release];
}
void RetinaHelper::set_use_retina(bool aValue)
{
[(id)m_self setViewWantsBestResolutionOpenGLSurface:aValue];
}
bool RetinaHelper::get_use_retina()
{
return [(id)m_self getViewWantsBestResolutionOpenGLSurface];
}
float RetinaHelper::get_scale_factor()
{
return [(id)m_self getViewWantsBestResolutionOpenGLSurface] ? [(id)m_self getBackingScaleFactor] : 1.0f;
}
} // namespace GUI
} // namespace Slic3r
-(id)initWithView:(NSView *)aView handler:(wxEvtHandler *)aHandler
{
self = [super init];
if (self) {
handler = aHandler;
view = aView;
// register for backing change notifications
NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
if (nc) {
[nc addObserver:self selector:@selector(windowDidChangeBackingProperties:)
name:NSWindowDidChangeBackingPropertiesNotification object:nil];
}
}
return self;
}
-(void) dealloc
{
// unregister from all notifications
NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
if (nc) {
[nc removeObserver:self];
}
[super dealloc];
}
-(void)setViewWantsBestResolutionOpenGLSurface:(BOOL)value
{
[view setWantsBestResolutionOpenGLSurface:value];
}
-(BOOL)getViewWantsBestResolutionOpenGLSurface
{
return [view wantsBestResolutionOpenGLSurface];
}
-(float)getBackingScaleFactor
{
return [[view window] backingScaleFactor];
}
- (void)windowDidChangeBackingProperties:(NSNotification *)notification
{
NSWindow *theWindow = (NSWindow *)[notification object];
if (theWindow == [view window]) {
CGFloat newBackingScaleFactor = [theWindow backingScaleFactor];
CGFloat oldBackingScaleFactor = [[[notification userInfo]
objectForKey:@"NSBackingPropertyOldScaleFactorKey"]
doubleValue];
if (newBackingScaleFactor != oldBackingScaleFactor) {
// generate a wx resize event and pass it to the handler's queue
wxSizeEvent *event = new wxSizeEvent();
// use the following line if this resize event should have the physical pixel resolution
// but that is not recommended, because ordinary resize events won't do so either
// which would necessitate a case-by-case switch in the resize handler method.
// NSRect nsrect = [view convertRectToBacking:[view bounds]];
NSRect nsrect = [view bounds];
wxRect rect = wxRect(nsrect.origin.x, nsrect.origin.y, nsrect.size.width, nsrect.size.height);
event->SetRect(rect);
event->SetSize(rect.GetSize());
handler->QueueEvent(event);
}
}
}
@end