Fixed the "avoid crossing perimeters" bug introduced in Slic3r 1.34.1.24
https://github.com/prusa3d/Slic3r/issues/311 https://github.com/prusa3d/Slic3r/issues/317 https://github.com/prusa3d/Slic3r/issues/323
This commit is contained in:
parent
ef73bb404b
commit
b5f38dd23f
7 changed files with 191 additions and 188 deletions
|
@ -170,12 +170,18 @@ intersection_pl(const Slic3r::Polylines &subject, const Slic3r::Polygons &clip,
|
|||
return _clipper_pl(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Lines
|
||||
intersection_ln(const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
inline Slic3r::Lines intersection_ln(const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ln(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Lines intersection_ln(const Slic3r::Line &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
Slic3r::Lines lines;
|
||||
lines.emplace_back(subject);
|
||||
return _clipper_ln(ClipperLib::ctIntersection, lines, clip, safety_offset_);
|
||||
}
|
||||
|
||||
// union
|
||||
inline Slic3r::Polygons
|
||||
union_(const Slic3r::Polygons &subject, bool safety_offset_ = false)
|
||||
|
|
|
@ -26,13 +26,18 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
Polyline AvoidCrossingPerimeters::travel_to(GCode &gcodegen, Point point)
|
||||
// Plan a travel move while minimizing the number of perimeter crossings.
|
||||
// point is in unscaled coordinates, in the coordinate system of the current active object
|
||||
// (set by gcodegen.set_origin()).
|
||||
Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point)
|
||||
{
|
||||
// If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
|
||||
// Otherwise perform the path planning in the coordinate system of the active object.
|
||||
bool use_external = this->use_external_mp || this->use_external_mp_once;
|
||||
Point scaled_origin = use_external ? Point(0, 0) : Point::new_scale(gcodegen.origin().x, gcodegen.origin().y);
|
||||
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin().x, gcodegen.origin().y) : Point(0, 0);
|
||||
Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())->
|
||||
shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin);
|
||||
if (! use_external)
|
||||
if (use_external)
|
||||
result.translate(scaled_origin.negative());
|
||||
return result;
|
||||
}
|
||||
|
@ -489,25 +494,18 @@ bool GCode::do_export(FILE *file, Print &print)
|
|||
|
||||
// Initialize a motion planner for object-to-object travel moves.
|
||||
if (print.config.avoid_crossing_perimeters.value) {
|
||||
//coord_t distance_from_objects = coord_t(scale_(1.));
|
||||
// Compute the offsetted convex hull for each object and repeat it for each copy.
|
||||
Polygons islands_p;
|
||||
for (const PrintObject *object : print.objects) {
|
||||
// Discard objects only containing thin walls (offset would fail on an empty polygon).
|
||||
Polygons polygons;
|
||||
// Collect outer contours of all objects over all layers.
|
||||
// Discard objects only containing thin walls (offset would fail on an empty polygon).
|
||||
Polygons islands;
|
||||
for (const PrintObject *object : print.objects)
|
||||
for (const Layer *layer : object->layers)
|
||||
for (const ExPolygon &expoly : layer->slices.expolygons)
|
||||
polygons.push_back(expoly.contour);
|
||||
if (! polygons.empty()) {
|
||||
// Translate convex hull for each object copy and append it to the islands array.
|
||||
for (const Point © : object->_shifted_copies)
|
||||
for (Polygon poly : polygons) {
|
||||
poly.translate(copy);
|
||||
islands_p.emplace_back(std::move(poly));
|
||||
for (const Point © : object->_shifted_copies) {
|
||||
islands.emplace_back(expoly.contour);
|
||||
islands.back().translate(copy);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_avoid_crossing_perimeters.init_external_mp(union_ex(islands_p));
|
||||
//FIXME Mege the islands in parallel.
|
||||
m_avoid_crossing_perimeters.init_external_mp(union_ex(islands));
|
||||
}
|
||||
|
||||
// Calculate wiping points if needed
|
||||
|
@ -1022,7 +1020,7 @@ void GCode::process_layer(
|
|||
|
||||
// Extrude brim with the extruder of the 1st region.
|
||||
if (! m_brim_done) {
|
||||
this->set_origin(0.f, 0.f);
|
||||
this->set_origin(0., 0.);
|
||||
m_avoid_crossing_perimeters.use_external_mp = true;
|
||||
for (const ExtrusionEntity *ee : print.brim.entities)
|
||||
gcode += this->extrude_loop(*dynamic_cast<const ExtrusionLoop*>(ee), "brim", m_config.support_material_speed.value);
|
||||
|
|
|
@ -42,7 +42,7 @@ public:
|
|||
void init_external_mp(const ExPolygons &islands) { m_external_mp = Slic3r::make_unique<MotionPlanner>(islands); }
|
||||
void init_layer_mp(const ExPolygons &islands) { m_layer_mp = Slic3r::make_unique<MotionPlanner>(islands); }
|
||||
|
||||
Polyline travel_to(GCode &gcodegen, Point point);
|
||||
Polyline travel_to(const GCode &gcodegen, const Point &point);
|
||||
|
||||
private:
|
||||
std::unique_ptr<MotionPlanner> m_external_mp;
|
||||
|
|
|
@ -12,13 +12,13 @@ using boost::polygon::voronoi_diagram;
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false)
|
||||
MotionPlanner::MotionPlanner(const ExPolygons &islands) : m_initialized(false)
|
||||
{
|
||||
ExPolygons expp;
|
||||
for (const ExPolygon &island : islands) {
|
||||
island.simplify(SCALED_EPSILON, &expp);
|
||||
for (ExPolygon &island : expp)
|
||||
this->islands.push_back(MotionPlannerEnv(island));
|
||||
m_islands.emplace_back(MotionPlannerEnv(island));
|
||||
expp.clear();
|
||||
}
|
||||
}
|
||||
|
@ -26,18 +26,18 @@ MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false)
|
|||
void MotionPlanner::initialize()
|
||||
{
|
||||
// prevent initialization of empty BoundingBox
|
||||
if (this->initialized || this->islands.empty())
|
||||
if (m_initialized || m_islands.empty())
|
||||
return;
|
||||
|
||||
// loop through islands in order to create inner expolygons and collect their contours
|
||||
|
||||
// loop through islands in order to create inner expolygons and collect their contours.
|
||||
Polygons outer_holes;
|
||||
for (MotionPlannerEnv &island : this->islands) {
|
||||
// generate the internal env boundaries by shrinking the island
|
||||
for (MotionPlannerEnv &island : m_islands) {
|
||||
// Generate the internal env boundaries by shrinking the island
|
||||
// we'll use these inner rings for motion planning (endpoints of the Voronoi-based
|
||||
// graph, visibility check) in order to avoid moving too close to the boundaries
|
||||
island.env = ExPolygonCollection(offset_ex(island.island, -MP_INNER_MARGIN));
|
||||
// island contours are holes of our external environment
|
||||
outer_holes.push_back(island.island.contour);
|
||||
// graph, visibility check) in order to avoid moving too close to the boundaries.
|
||||
island.m_env = ExPolygonCollection(offset_ex(island.m_island, -MP_INNER_MARGIN));
|
||||
// Island contours are holes of our external environment.
|
||||
outer_holes.push_back(island.m_island.contour);
|
||||
}
|
||||
|
||||
// Generate a box contour around everyting.
|
||||
|
@ -46,30 +46,37 @@ void MotionPlanner::initialize()
|
|||
// make expolygon for outer environment
|
||||
ExPolygons outer = diff_ex(contour, outer_holes);
|
||||
assert(outer.size() == 1);
|
||||
//FIXME What if some of the islands are nested? Then the front contour may not be the outmost contour!
|
||||
this->outer.island = outer.front();
|
||||
this->outer.env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
|
||||
this->graphs.resize(this->islands.size() + 1);
|
||||
this->initialized = true;
|
||||
// If some of the islands are nested, then the 0th contour is the outer contour due to the order of conversion
|
||||
// from Clipper data structure into the Slic3r expolygons inside diff_ex().
|
||||
m_outer = MotionPlannerEnv(outer.front());
|
||||
m_outer.m_env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
|
||||
m_graphs.resize(m_islands.size() + 1);
|
||||
m_initialized = true;
|
||||
}
|
||||
|
||||
Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
||||
{
|
||||
// If we have an empty configuration space, return a straight move.
|
||||
if (this->islands.empty())
|
||||
if (m_islands.empty())
|
||||
return Line(from, to);
|
||||
|
||||
// Are both points in the same island?
|
||||
int island_idx = -1;
|
||||
for (MotionPlannerEnv &island : islands) {
|
||||
if (island.island_bbox.contains(from) && island.island_bbox.contains(to) &&
|
||||
island.island.contains(from) && island.island.contains(to)) {
|
||||
int island_idx_from = -1;
|
||||
int island_idx_to = -1;
|
||||
int island_idx = -1;
|
||||
for (MotionPlannerEnv &island : m_islands) {
|
||||
int idx = &island - m_islands.data();
|
||||
if (island.island_contains(from))
|
||||
island_idx_from = idx;
|
||||
if (island.island_contains(to))
|
||||
island_idx_to = idx;
|
||||
if (island_idx_from == idx && island_idx_to == idx) {
|
||||
// Since both points are in the same island, is a direct move possible?
|
||||
// If so, we avoid generating the visibility environment.
|
||||
if (island.island.contains(Line(from, to)))
|
||||
if (island.m_island.contains(Line(from, to)))
|
||||
return Line(from, to);
|
||||
// Both points are inside a single island, but the straight line crosses the island boundary.
|
||||
island_idx = &island - this->islands.data();
|
||||
island_idx = idx;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -77,9 +84,10 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
// lazy generation of configuration space.
|
||||
this->initialize();
|
||||
|
||||
// get environment
|
||||
// Get environment. If the from / to points do not share an island, then they cross an open space,
|
||||
// therefore island_idx == -1 and env will be set to the environment of the empty space.
|
||||
const MotionPlannerEnv &env = this->get_env(island_idx);
|
||||
if (env.env.expolygons.empty()) {
|
||||
if (env.m_env.expolygons.empty()) {
|
||||
// if this environment is empty (probably because it's too small), perform straight move
|
||||
// and avoid running the algorithms on empty dataset
|
||||
return Line(from, to);
|
||||
|
@ -90,32 +98,32 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
Point inner_to = to;
|
||||
|
||||
if (island_idx == -1) {
|
||||
// The end points do not share the same island. In that case some of the travel
|
||||
// will be likely performed inside the empty space.
|
||||
// TODO: instead of using the nearest_env_point() logic, we should
|
||||
// create a temporary graph where we connect 'from' and 'to' to the
|
||||
// nodes which don't require more than one crossing, and let Dijkstra
|
||||
// figure out the entire path - this should also replace the call to
|
||||
// find_node() below
|
||||
if (! env.island_bbox.contains(inner_from) || ! env.island.contains(inner_from)) {
|
||||
// Find the closest inner point to start from.
|
||||
if (island_idx_from != -1)
|
||||
// The start point is inside some island. Find the closest point at the empty space to start from.
|
||||
inner_from = env.nearest_env_point(from, to);
|
||||
}
|
||||
if (! env.island_bbox.contains(inner_to) || ! env.island.contains(inner_to)) {
|
||||
// Find the closest inner point to start from.
|
||||
if (island_idx_to != -1)
|
||||
// The start point is inside some island. Find the closest point at the empty space to start from.
|
||||
inner_to = env.nearest_env_point(to, inner_from);
|
||||
}
|
||||
}
|
||||
|
||||
// perform actual path search
|
||||
|
||||
// Perform a path search either in the open space, or in a common island of from/to.
|
||||
const MotionPlannerGraph &graph = this->init_graph(island_idx);
|
||||
Polyline polyline = graph.shortest_path(graph.find_closest_node(inner_from), graph.find_closest_node(inner_to));
|
||||
|
||||
// If no path exists without crossing perimeters, returns a straight segment.
|
||||
Polyline polyline = graph.shortest_path(inner_from, inner_to);
|
||||
polyline.points.insert(polyline.points.begin(), from);
|
||||
polyline.points.push_back(to);
|
||||
polyline.points.emplace_back(to);
|
||||
|
||||
{
|
||||
// grow our environment slightly in order for simplify_by_visibility()
|
||||
// to work best by considering moves on boundaries valid as well
|
||||
ExPolygonCollection grown_env(offset_ex(env.env.expolygons, +SCALED_EPSILON));
|
||||
ExPolygonCollection grown_env(offset_ex(env.m_env.expolygons, float(+SCALED_EPSILON)));
|
||||
|
||||
if (island_idx == -1) {
|
||||
/* If 'from' or 'to' are not inside our env, they were connected using the
|
||||
|
@ -128,14 +136,17 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
if (! grown_env.contains(from)) {
|
||||
// delete second point while the line connecting first to third crosses the
|
||||
// boundaries as many times as the current first to second
|
||||
while (polyline.points.size() > 2 && intersection_ln((Lines)Line(from, polyline.points[2]), grown_env).size() == 1)
|
||||
while (polyline.points.size() > 2 && intersection_ln(Line(from, polyline.points[2]), grown_env).size() == 1)
|
||||
polyline.points.erase(polyline.points.begin() + 1);
|
||||
}
|
||||
if (! grown_env.contains(to)) {
|
||||
while (polyline.points.size() > 2 && intersection_ln((Lines)Line(*(polyline.points.end() - 3), to), grown_env).size() == 1)
|
||||
if (! grown_env.contains(to))
|
||||
while (polyline.points.size() > 2 && intersection_ln(Line(*(polyline.points.end() - 3), to), grown_env).size() == 1)
|
||||
polyline.points.erase(polyline.points.end() - 2);
|
||||
}
|
||||
}
|
||||
|
||||
// Perform some quick simplification (simplify_by_visibility() would make this
|
||||
// unnecessary, but this is much faster)
|
||||
polyline.simplify(MP_INNER_MARGIN/10);
|
||||
|
||||
// remove unnecessary vertices
|
||||
// Note: this is computationally intensive and does not look very necessary
|
||||
|
@ -169,64 +180,73 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
|
||||
const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx)
|
||||
{
|
||||
if (! this->graphs[island_idx + 1]) {
|
||||
// if this graph doesn't exist, initialize it
|
||||
this->graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
|
||||
MotionPlannerGraph* graph = this->graphs[island_idx + 1].get();
|
||||
// 0th graph is the graph for m_outer. Other graphs are 1 indexed.
|
||||
MotionPlannerGraph *graph = m_graphs[island_idx + 1].get();
|
||||
if (graph == nullptr) {
|
||||
// If this graph doesn't exist, initialize it.
|
||||
m_graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
|
||||
graph = m_graphs[island_idx + 1].get();
|
||||
|
||||
/* We don't add polygon boundaries as graph edges, because we'd need to connect
|
||||
them to the Voronoi-generated edges by recognizing coinciding nodes. */
|
||||
|
||||
typedef voronoi_diagram<double> VD;
|
||||
VD vd;
|
||||
|
||||
// mapping between Voronoi vertices and graph nodes
|
||||
typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
|
||||
t_vd_vertices vd_vertices;
|
||||
|
||||
// Mapping between Voronoi vertices and graph nodes.
|
||||
std::map<const VD::vertex_type*, size_t> vd_vertices;
|
||||
// get boundaries as lines
|
||||
const MotionPlannerEnv &env = this->get_env(island_idx);
|
||||
Lines lines = env.env.lines();
|
||||
Lines lines = env.m_env.lines();
|
||||
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
|
||||
// traverse the Voronoi diagram and generate graph nodes and edges
|
||||
for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
|
||||
if (edge->is_infinite()) continue;
|
||||
|
||||
const VD::vertex_type* v0 = edge->vertex0();
|
||||
const VD::vertex_type* v1 = edge->vertex1();
|
||||
Point p0 = Point(v0->x(), v0->y());
|
||||
Point p1 = Point(v1->x(), v1->y());
|
||||
|
||||
// skip edge if any of its endpoints is outside our configuration space
|
||||
for (const VD::edge_type &edge : vd.edges()) {
|
||||
if (edge.is_infinite())
|
||||
continue;
|
||||
const VD::vertex_type* v0 = edge.vertex0();
|
||||
const VD::vertex_type* v1 = edge.vertex1();
|
||||
Point p0(v0->x(), v0->y());
|
||||
Point p1(v1->x(), v1->y());
|
||||
// Insert only Voronoi edges fully contained in the island.
|
||||
//FIXME This test has a terrible O(n^2) time complexity.
|
||||
if (!env.island.contains_b(p0) || !env.island.contains_b(p1)) continue;
|
||||
|
||||
t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
|
||||
size_t v0_idx;
|
||||
if (i_v0 == vd_vertices.end()) {
|
||||
graph->nodes.push_back(p0);
|
||||
vd_vertices[v0] = v0_idx = graph->nodes.size()-1;
|
||||
} else {
|
||||
v0_idx = i_v0->second;
|
||||
if (env.island_contains_b(p0) && env.island_contains_b(p1)) {
|
||||
// Find v0 in the graph, allocate a new node if v0 does not exist in the graph yet.
|
||||
auto i_v0 = vd_vertices.find(v0);
|
||||
size_t v0_idx;
|
||||
if (i_v0 == vd_vertices.end())
|
||||
vd_vertices[v0] = v0_idx = graph->add_node(p0);
|
||||
else
|
||||
v0_idx = i_v0->second;
|
||||
// Find v1 in the graph, allocate a new node if v0 does not exist in the graph yet.
|
||||
auto i_v1 = vd_vertices.find(v1);
|
||||
size_t v1_idx;
|
||||
if (i_v1 == vd_vertices.end())
|
||||
vd_vertices[v1] = v1_idx = graph->add_node(p1);
|
||||
else
|
||||
v1_idx = i_v1->second;
|
||||
// Euclidean distance is used as weight for the graph edge
|
||||
graph->add_edge(v0_idx, v1_idx, p0.distance_to(p1));
|
||||
}
|
||||
|
||||
t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
|
||||
size_t v1_idx;
|
||||
if (i_v1 == vd_vertices.end()) {
|
||||
graph->nodes.push_back(p1);
|
||||
vd_vertices[v1] = v1_idx = graph->nodes.size()-1;
|
||||
} else {
|
||||
v1_idx = i_v1->second;
|
||||
}
|
||||
|
||||
// Euclidean distance is used as weight for the graph edge
|
||||
double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
|
||||
graph->add_edge(v0_idx, v1_idx, dist);
|
||||
}
|
||||
}
|
||||
|
||||
return *this->graphs[island_idx + 1].get();
|
||||
return *graph;
|
||||
}
|
||||
|
||||
// Find a middle point on the path from start_point to end_point with the shortest path.
|
||||
static inline size_t nearest_waypoint_index(const Point &start_point, const Points &middle_points, const Point &end_point)
|
||||
{
|
||||
size_t idx = size_t(-1);
|
||||
double dmin = std::numeric_limits<double>::infinity();
|
||||
for (const Point &p : middle_points) {
|
||||
double d = start_point.distance_to(p) + p.distance_to(end_point);
|
||||
if (d < dmin) {
|
||||
idx = &p - middle_points.data();
|
||||
dmin = d;
|
||||
if (dmin < EPSILON)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
||||
|
@ -240,7 +260,7 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co
|
|||
|
||||
// get the points of the hole containing 'from', if any
|
||||
Points pp;
|
||||
for (const ExPolygon &ex : this->env.expolygons) {
|
||||
for (const ExPolygon &ex : m_env.expolygons) {
|
||||
for (const Polygon &hole : ex.holes)
|
||||
if (hole.contains(from))
|
||||
pp = hole;
|
||||
|
@ -248,19 +268,17 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co
|
|||
break;
|
||||
}
|
||||
|
||||
/* If 'from' is not inside a hole, it's outside of all contours, so take all
|
||||
contours' points */
|
||||
// If 'from' is not inside a hole, it's outside of all contours, so take all contours' points.
|
||||
if (pp.empty())
|
||||
for (const ExPolygon &ex : this->env.expolygons)
|
||||
for (const ExPolygon &ex : m_env.expolygons)
|
||||
append(pp, ex.contour.points);
|
||||
|
||||
/* Find the candidate result and check that it doesn't cross too many boundaries. */
|
||||
while (pp.size() >= 2) {
|
||||
// Find the candidate result and check that it doesn't cross too many boundaries.
|
||||
while (pp.size() > 1) {
|
||||
// find the point in pp that is closest to both 'from' and 'to'
|
||||
size_t result = from.nearest_waypoint_index(pp, to);
|
||||
|
||||
size_t result = nearest_waypoint_index(from, pp, to);
|
||||
// as we assume 'from' is outside env, any node will require at least one crossing
|
||||
if (intersection_ln((Lines)Line(from, pp[result]), this->island).size() > 1) {
|
||||
if (intersection_ln(Line(from, pp[result]), m_island).size() > 1) {
|
||||
// discard result
|
||||
pp.erase(pp.begin() + result);
|
||||
} else
|
||||
|
@ -277,34 +295,35 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co
|
|||
void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
|
||||
{
|
||||
// Extend adjacency list until this start node.
|
||||
if (this->adjacency_list.size() < from + 1) {
|
||||
if (m_adjacency_list.size() < from + 1) {
|
||||
// Reserve in powers of two to avoid repeated reallocation.
|
||||
this->adjacency_list.reserve(std::max<size_t>(8, next_highest_power_of_2(from + 1)));
|
||||
m_adjacency_list.reserve(std::max<size_t>(8, next_highest_power_of_2(from + 1)));
|
||||
// Allocate new empty adjacency vectors.
|
||||
this->adjacency_list.resize(from + 1);
|
||||
m_adjacency_list.resize(from + 1);
|
||||
}
|
||||
this->adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
|
||||
m_adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
|
||||
}
|
||||
|
||||
// Dijkstra's shortest path in a weighted graph from node_start to node_end.
|
||||
// The returned path contains the end points.
|
||||
// If no path exists from node_start to node_end, a straight segment is returned.
|
||||
Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const
|
||||
{
|
||||
// This prevents a crash in case for some reason we got here with an empty adjacency list.
|
||||
if (this->adjacency_list.empty())
|
||||
if (this->empty())
|
||||
return Polyline();
|
||||
|
||||
// Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
|
||||
std::vector<node_t> previous(this->adjacency_list.size(), -1);
|
||||
std::vector<weight_t> distance(this->adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
|
||||
std::vector<size_t> map_node_to_queue_id(this->adjacency_list.size(), size_t(-1));
|
||||
std::vector<node_t> previous(m_adjacency_list.size(), -1);
|
||||
std::vector<weight_t> distance(m_adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
|
||||
std::vector<size_t> map_node_to_queue_id(m_adjacency_list.size(), size_t(-1));
|
||||
distance[node_start] = 0.;
|
||||
|
||||
auto queue = make_mutable_priority_queue<node_t>(
|
||||
[&map_node_to_queue_id](const node_t &node, size_t idx) { map_node_to_queue_id[node] = idx; },
|
||||
[&distance](const node_t &node1, const node_t &node2) { return distance[node1] < distance[node2]; });
|
||||
queue.reserve(this->adjacency_list.size());
|
||||
for (size_t i = 0; i < this->adjacency_list.size(); ++ i)
|
||||
[&map_node_to_queue_id](const node_t node, size_t idx) { map_node_to_queue_id[node] = idx; },
|
||||
[&distance](const node_t node1, const node_t node2) { return distance[node1] < distance[node2]; });
|
||||
queue.reserve(m_adjacency_list.size());
|
||||
for (size_t i = 0; i < m_adjacency_list.size(); ++ i)
|
||||
queue.push(node_t(i));
|
||||
|
||||
while (! queue.empty()) {
|
||||
|
@ -316,7 +335,7 @@ Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) c
|
|||
if (u == node_end)
|
||||
break;
|
||||
// Visit each edge starting at node u.
|
||||
for (const Neighbor& neighbor : this->adjacency_list[u])
|
||||
for (const Neighbor& neighbor : m_adjacency_list[u])
|
||||
if (map_node_to_queue_id[neighbor.target] != size_t(-1)) {
|
||||
weight_t alt = distance[u] + neighbor.weight;
|
||||
// If total distance through u is shorter than the previous
|
||||
|
@ -329,11 +348,13 @@ Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) c
|
|||
}
|
||||
}
|
||||
|
||||
// In case the end point was not reached, previous[node_end] contains -1
|
||||
// and a straight line from node_start to node_end is returned.
|
||||
Polyline polyline;
|
||||
polyline.points.reserve(previous.size());
|
||||
polyline.points.reserve(m_adjacency_list.size());
|
||||
for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex])
|
||||
polyline.points.push_back(this->nodes[vertex]);
|
||||
polyline.points.push_back(this->nodes[node_start]);
|
||||
polyline.points.emplace_back(m_nodes[vertex]);
|
||||
polyline.points.emplace_back(m_nodes[node_start]);
|
||||
polyline.reverse();
|
||||
return polyline;
|
||||
}
|
||||
|
|
|
@ -23,34 +23,45 @@ class MotionPlannerEnv
|
|||
friend class MotionPlanner;
|
||||
|
||||
public:
|
||||
ExPolygon island;
|
||||
BoundingBox island_bbox;
|
||||
ExPolygonCollection env;
|
||||
MotionPlannerEnv() {};
|
||||
MotionPlannerEnv(const ExPolygon &island) : island(island), island_bbox(get_extents(island)) {};
|
||||
MotionPlannerEnv(const ExPolygon &island) : m_island(island), m_island_bbox(get_extents(island)) {};
|
||||
Point nearest_env_point(const Point &from, const Point &to) const;
|
||||
bool island_contains(const Point &pt) const
|
||||
{ return m_island_bbox.contains(pt) && m_island.contains(pt); }
|
||||
bool island_contains_b(const Point &pt) const
|
||||
{ return m_island_bbox.contains(pt) && m_island.contains_b(pt); }
|
||||
|
||||
private:
|
||||
ExPolygon m_island;
|
||||
BoundingBox m_island_bbox;
|
||||
// Region, where the travel is allowed.
|
||||
ExPolygonCollection m_env;
|
||||
};
|
||||
|
||||
// A 2D directed graph for searching a shortest path using the famous Dijkstra algorithm.
|
||||
class MotionPlannerGraph
|
||||
{
|
||||
friend class MotionPlanner;
|
||||
|
||||
{
|
||||
public:
|
||||
// Add a directed edge into the graph.
|
||||
size_t add_node(const Point &p) { m_nodes.emplace_back(p); return m_nodes.size() - 1; }
|
||||
void add_edge(size_t from, size_t to, double weight);
|
||||
size_t find_closest_node(const Point &point) const { return point.nearest_point_index(m_nodes); }
|
||||
|
||||
bool empty() const { return m_adjacency_list.empty(); }
|
||||
Polyline shortest_path(size_t from, size_t to) const;
|
||||
Polyline shortest_path(const Point &from, const Point &to) const
|
||||
{ return this->shortest_path(this->find_closest_node(from), this->find_closest_node(to)); }
|
||||
|
||||
private:
|
||||
typedef int node_t;
|
||||
typedef double weight_t;
|
||||
struct Neighbor {
|
||||
Neighbor(node_t target, weight_t weight) : target(target), weight(weight) {}
|
||||
node_t target;
|
||||
weight_t weight;
|
||||
Neighbor(node_t arg_target, weight_t arg_weight) : target(arg_target), weight(arg_weight) {}
|
||||
};
|
||||
typedef std::vector<std::vector<Neighbor>> adjacency_list_t;
|
||||
adjacency_list_t adjacency_list;
|
||||
|
||||
public:
|
||||
Points nodes;
|
||||
void add_edge(size_t from, size_t to, double weight);
|
||||
size_t find_closest_node(const Point &point) const { return point.nearest_point_index(this->nodes); }
|
||||
Polyline shortest_path(size_t from, size_t to) const;
|
||||
Points m_nodes;
|
||||
std::vector<std::vector<Neighbor>> m_adjacency_list;
|
||||
};
|
||||
|
||||
class MotionPlanner
|
||||
|
@ -60,18 +71,19 @@ public:
|
|||
~MotionPlanner() {}
|
||||
|
||||
Polyline shortest_path(const Point &from, const Point &to);
|
||||
size_t islands_count() const { return this->islands.size(); }
|
||||
size_t islands_count() const { return m_islands.size(); }
|
||||
|
||||
private:
|
||||
bool initialized;
|
||||
std::vector<MotionPlannerEnv> islands;
|
||||
MotionPlannerEnv outer;
|
||||
std::vector<std::unique_ptr<MotionPlannerGraph>> graphs;
|
||||
bool m_initialized;
|
||||
std::vector<MotionPlannerEnv> m_islands;
|
||||
MotionPlannerEnv m_outer;
|
||||
// 0th graph is the graph for m_outer. Other graphs are 1 indexed.
|
||||
std::vector<std::unique_ptr<MotionPlannerGraph>> m_graphs;
|
||||
|
||||
void initialize();
|
||||
const MotionPlannerGraph& init_graph(int island_idx);
|
||||
const MotionPlannerEnv& get_env(int island_idx) const
|
||||
{ return (island_idx == -1) ? this->outer : this->islands[island_idx]; }
|
||||
{ return (island_idx == -1) ? m_outer : m_islands[island_idx]; }
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -119,29 +119,6 @@ int Point::nearest_point_index(const PointConstPtrs &points) const
|
|||
return idx;
|
||||
}
|
||||
|
||||
/* This method finds the point that is closest to both this point and the supplied one */
|
||||
size_t Point::nearest_waypoint_index(const Points &points, const Point &dest) const
|
||||
{
|
||||
size_t idx = size_t(-1);
|
||||
double d2min = std::numeric_limits<double>::infinity(); // double because long is limited to 2147483647 on some platforms and it's not enough
|
||||
|
||||
for (const Point &p : points) {
|
||||
double d2 =
|
||||
// distance from this to candidate
|
||||
sqr<double>(this->x - p.x) + sqr<double>(this->y - p.y) +
|
||||
// distance from candidate to dest
|
||||
sqr<double>(p.x - dest.x) + sqr<double>(p.y - dest.y);
|
||||
if (d2 < d2min) {
|
||||
idx = &p - points.data();
|
||||
d2min = d2;
|
||||
if (d2min < EPSILON)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return idx;
|
||||
}
|
||||
|
||||
int
|
||||
Point::nearest_point_index(const PointPtrs &points) const
|
||||
{
|
||||
|
@ -161,15 +138,6 @@ Point::nearest_point(const Points &points, Point* point) const
|
|||
return true;
|
||||
}
|
||||
|
||||
bool
|
||||
Point::nearest_waypoint(const Points &points, const Point &dest, Point* point) const
|
||||
{
|
||||
int idx = this->nearest_waypoint_index(points, dest);
|
||||
if (idx == -1) return false;
|
||||
*point = points.at(idx);
|
||||
return true;
|
||||
}
|
||||
|
||||
/* distance to the closest point of line */
|
||||
double
|
||||
Point::distance_to(const Line &line) const
|
||||
|
|
|
@ -60,9 +60,7 @@ class Point
|
|||
int nearest_point_index(const Points &points) const;
|
||||
int nearest_point_index(const PointConstPtrs &points) const;
|
||||
int nearest_point_index(const PointPtrs &points) const;
|
||||
size_t nearest_waypoint_index(const Points &points, const Point &point) const;
|
||||
bool nearest_point(const Points &points, Point* point) const;
|
||||
bool nearest_waypoint(const Points &points, const Point &dest, Point* point) const;
|
||||
double distance_to(const Point &point) const { return sqrt(distance_to_sq(point)); }
|
||||
double distance_to_sq(const Point &point) const { double dx = double(point.x - this->x); double dy = double(point.y - this->y); return dx*dx + dy*dy; }
|
||||
double distance_to(const Line &line) const;
|
||||
|
|
Loading…
Reference in a new issue