Considering multiple neighboring triangles for support point normals
This commit is contained in:
parent
f7a6ee9e29
commit
b613334b81
9 changed files with 2605 additions and 23 deletions
53
src/eigen/unsupported/Eigen/SparseExtra
Normal file
53
src/eigen/unsupported/Eigen/SparseExtra
Normal file
|
@ -0,0 +1,53 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_EXTRA_MODULE_H
|
||||
#define EIGEN_SPARSE_EXTRA_MODULE_H
|
||||
|
||||
#include "../../Eigen/Sparse"
|
||||
|
||||
#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#ifdef EIGEN_GOOGLEHASH_SUPPORT
|
||||
#include <google/dense_hash_map>
|
||||
#endif
|
||||
|
||||
/**
|
||||
* \defgroup SparseExtra_Module SparseExtra module
|
||||
*
|
||||
* This module contains some experimental features extending the sparse module.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SparseExtra>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
|
||||
#include "src/SparseExtra/DynamicSparseMatrix.h"
|
||||
#include "src/SparseExtra/BlockOfDynamicSparseMatrix.h"
|
||||
#include "src/SparseExtra/RandomSetter.h"
|
||||
|
||||
#include "src/SparseExtra/MarketIO.h"
|
||||
|
||||
#if !defined(_WIN32)
|
||||
#include <dirent.h>
|
||||
#include "src/SparseExtra/MatrixMarketIterator.h"
|
||||
#endif
|
||||
|
||||
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SPARSE_EXTRA_MODULE_H
|
|
@ -0,0 +1,122 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
|
||||
#define EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#if 0
|
||||
|
||||
// NOTE Have to be reimplemented as a specialization of BlockImpl< DynamicSparseMatrix<_Scalar, _Options, _Index>, ... >
|
||||
// See SparseBlock.h for an example
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* specialisation for DynamicSparseMatrix
|
||||
***************************************************************************/
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index, int Size>
|
||||
class SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size>
|
||||
: public SparseMatrixBase<SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size> >
|
||||
{
|
||||
typedef DynamicSparseMatrix<_Scalar, _Options, _Index> MatrixType;
|
||||
public:
|
||||
|
||||
enum { IsRowMajor = internal::traits<SparseInnerVectorSet>::IsRowMajor };
|
||||
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseInnerVectorSet)
|
||||
class InnerIterator: public MatrixType::InnerIterator
|
||||
{
|
||||
public:
|
||||
inline InnerIterator(const SparseInnerVectorSet& xpr, Index outer)
|
||||
: MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
|
||||
{}
|
||||
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
|
||||
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
|
||||
protected:
|
||||
Index m_outer;
|
||||
};
|
||||
|
||||
inline SparseInnerVectorSet(const MatrixType& matrix, Index outerStart, Index outerSize)
|
||||
: m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize)
|
||||
{
|
||||
eigen_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) );
|
||||
}
|
||||
|
||||
inline SparseInnerVectorSet(const MatrixType& matrix, Index outer)
|
||||
: m_matrix(matrix), m_outerStart(outer), m_outerSize(Size)
|
||||
{
|
||||
eigen_assert(Size!=Dynamic);
|
||||
eigen_assert( (outer>=0) && (outer<matrix.outerSize()) );
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
{
|
||||
if (IsRowMajor != ((OtherDerived::Flags&RowMajorBit)==RowMajorBit))
|
||||
{
|
||||
// need to transpose => perform a block evaluation followed by a big swap
|
||||
DynamicSparseMatrix<Scalar,IsRowMajor?RowMajorBit:0> aux(other);
|
||||
*this = aux.markAsRValue();
|
||||
}
|
||||
else
|
||||
{
|
||||
// evaluate/copy vector per vector
|
||||
for (Index j=0; j<m_outerSize.value(); ++j)
|
||||
{
|
||||
SparseVector<Scalar,IsRowMajor ? RowMajorBit : 0> aux(other.innerVector(j));
|
||||
m_matrix.const_cast_derived()._data()[m_outerStart+j].swap(aux._data());
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline SparseInnerVectorSet& operator=(const SparseInnerVectorSet& other)
|
||||
{
|
||||
return operator=<SparseInnerVectorSet>(other);
|
||||
}
|
||||
|
||||
Index nonZeros() const
|
||||
{
|
||||
Index count = 0;
|
||||
for (Index j=0; j<m_outerSize.value(); ++j)
|
||||
count += m_matrix._data()[m_outerStart+j].size();
|
||||
return count;
|
||||
}
|
||||
|
||||
const Scalar& lastCoeff() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(SparseInnerVectorSet);
|
||||
eigen_assert(m_matrix.data()[m_outerStart].size()>0);
|
||||
return m_matrix.data()[m_outerStart].vale(m_matrix.data()[m_outerStart].size()-1);
|
||||
}
|
||||
|
||||
// template<typename Sparse>
|
||||
// inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
// {
|
||||
// return *this;
|
||||
// }
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
protected:
|
||||
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
Index m_outerStart;
|
||||
const internal::variable_if_dynamic<Index, Size> m_outerSize;
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
|
1079
src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
Normal file
1079
src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
Normal file
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,392 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
|
||||
#define EIGEN_DYNAMIC_SPARSEMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \deprecated use a SparseMatrix in an uncompressed mode
|
||||
*
|
||||
* \class DynamicSparseMatrix
|
||||
*
|
||||
* \brief A sparse matrix class designed for matrix assembly purpose
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e. the type of the coefficients
|
||||
*
|
||||
* Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
|
||||
* random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
|
||||
* nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
|
||||
* otherwise.
|
||||
*
|
||||
* Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
|
||||
* decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
|
||||
* till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
|
||||
*
|
||||
* \see SparseMatrix
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
struct traits<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef Sparse StorageKind;
|
||||
typedef MatrixXpr XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = Dynamic,
|
||||
ColsAtCompileTime = Dynamic,
|
||||
MaxRowsAtCompileTime = Dynamic,
|
||||
MaxColsAtCompileTime = Dynamic,
|
||||
Flags = _Options | NestByRefBit | LvalueBit,
|
||||
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
||||
SupportedAccessPatterns = OuterRandomAccessPattern
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
class DynamicSparseMatrix
|
||||
: public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
|
||||
{
|
||||
typedef SparseMatrixBase<DynamicSparseMatrix> Base;
|
||||
using Base::convert_index;
|
||||
public:
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
|
||||
// FIXME: why are these operator already alvailable ???
|
||||
// EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
|
||||
// EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
|
||||
typedef MappedSparseMatrix<Scalar,Flags> Map;
|
||||
using Base::IsRowMajor;
|
||||
using Base::operator=;
|
||||
enum {
|
||||
Options = _Options
|
||||
};
|
||||
|
||||
protected:
|
||||
|
||||
typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0), StorageIndex> TransposedSparseMatrix;
|
||||
|
||||
Index m_innerSize;
|
||||
std::vector<internal::CompressedStorage<Scalar,StorageIndex> > m_data;
|
||||
|
||||
public:
|
||||
|
||||
inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
|
||||
inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
|
||||
inline Index innerSize() const { return m_innerSize; }
|
||||
inline Index outerSize() const { return convert_index(m_data.size()); }
|
||||
inline Index innerNonZeros(Index j) const { return m_data[j].size(); }
|
||||
|
||||
std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() { return m_data; }
|
||||
const std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() const { return m_data; }
|
||||
|
||||
/** \returns the coefficient value at given position \a row, \a col
|
||||
* This operation involes a log(rho*outer_size) binary search.
|
||||
*/
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
const Index inner = IsRowMajor ? col : row;
|
||||
return m_data[outer].at(inner);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient value at given position \a row, \a col
|
||||
* This operation involes a log(rho*outer_size) binary search. If the coefficient does not
|
||||
* exist yet, then a sorted insertion into a sequential buffer is performed.
|
||||
*/
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
const Index inner = IsRowMajor ? col : row;
|
||||
return m_data[outer].atWithInsertion(inner);
|
||||
}
|
||||
|
||||
class InnerIterator;
|
||||
class ReverseInnerIterator;
|
||||
|
||||
void setZero()
|
||||
{
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
m_data[j].clear();
|
||||
}
|
||||
|
||||
/** \returns the number of non zero coefficients */
|
||||
Index nonZeros() const
|
||||
{
|
||||
Index res = 0;
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
res += m_data[j].size();
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void reserve(Index reserveSize = 1000)
|
||||
{
|
||||
if (outerSize()>0)
|
||||
{
|
||||
Index reserveSizePerVector = (std::max)(reserveSize/outerSize(),Index(4));
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
{
|
||||
m_data[j].reserve(reserveSizePerVector);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Does nothing: provided for compatibility with SparseMatrix */
|
||||
inline void startVec(Index /*outer*/) {}
|
||||
|
||||
/** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
|
||||
* - the nonzero does not already exist
|
||||
* - the new coefficient is the last one of the given inner vector.
|
||||
*
|
||||
* \sa insert, insertBackByOuterInner */
|
||||
inline Scalar& insertBack(Index row, Index col)
|
||||
{
|
||||
return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
|
||||
}
|
||||
|
||||
/** \sa insertBack */
|
||||
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
|
||||
{
|
||||
eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range");
|
||||
eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner))
|
||||
&& "wrong sorted insertion");
|
||||
m_data[outer].append(0, inner);
|
||||
return m_data[outer].value(m_data[outer].size()-1);
|
||||
}
|
||||
|
||||
inline Scalar& insert(Index row, Index col)
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
const Index inner = IsRowMajor ? col : row;
|
||||
|
||||
Index startId = 0;
|
||||
Index id = static_cast<Index>(m_data[outer].size()) - 1;
|
||||
m_data[outer].resize(id+2,1);
|
||||
|
||||
while ( (id >= startId) && (m_data[outer].index(id) > inner) )
|
||||
{
|
||||
m_data[outer].index(id+1) = m_data[outer].index(id);
|
||||
m_data[outer].value(id+1) = m_data[outer].value(id);
|
||||
--id;
|
||||
}
|
||||
m_data[outer].index(id+1) = inner;
|
||||
m_data[outer].value(id+1) = 0;
|
||||
return m_data[outer].value(id+1);
|
||||
}
|
||||
|
||||
/** Does nothing: provided for compatibility with SparseMatrix */
|
||||
inline void finalize() {}
|
||||
|
||||
/** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
|
||||
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
|
||||
{
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
m_data[j].prune(reference,epsilon);
|
||||
}
|
||||
|
||||
/** Resize the matrix without preserving the data (the matrix is set to zero)
|
||||
*/
|
||||
void resize(Index rows, Index cols)
|
||||
{
|
||||
const Index outerSize = IsRowMajor ? rows : cols;
|
||||
m_innerSize = convert_index(IsRowMajor ? cols : rows);
|
||||
setZero();
|
||||
if (Index(m_data.size()) != outerSize)
|
||||
{
|
||||
m_data.resize(outerSize);
|
||||
}
|
||||
}
|
||||
|
||||
void resizeAndKeepData(Index rows, Index cols)
|
||||
{
|
||||
const Index outerSize = IsRowMajor ? rows : cols;
|
||||
const Index innerSize = IsRowMajor ? cols : rows;
|
||||
if (m_innerSize>innerSize)
|
||||
{
|
||||
// remove all coefficients with innerCoord>=innerSize
|
||||
// TODO
|
||||
//std::cerr << "not implemented yet\n";
|
||||
exit(2);
|
||||
}
|
||||
if (m_data.size() != outerSize)
|
||||
{
|
||||
m_data.resize(outerSize);
|
||||
}
|
||||
}
|
||||
|
||||
/** The class DynamicSparseMatrix is deprectaed */
|
||||
EIGEN_DEPRECATED inline DynamicSparseMatrix()
|
||||
: m_innerSize(0), m_data(0)
|
||||
{
|
||||
eigen_assert(innerSize()==0 && outerSize()==0);
|
||||
}
|
||||
|
||||
/** The class DynamicSparseMatrix is deprectaed */
|
||||
EIGEN_DEPRECATED inline DynamicSparseMatrix(Index rows, Index cols)
|
||||
: m_innerSize(0)
|
||||
{
|
||||
resize(rows, cols);
|
||||
}
|
||||
|
||||
/** The class DynamicSparseMatrix is deprectaed */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEPRECATED explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
|
||||
: m_innerSize(0)
|
||||
{
|
||||
Base::operator=(other.derived());
|
||||
}
|
||||
|
||||
inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
|
||||
: Base(), m_innerSize(0)
|
||||
{
|
||||
*this = other.derived();
|
||||
}
|
||||
|
||||
inline void swap(DynamicSparseMatrix& other)
|
||||
{
|
||||
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
|
||||
std::swap(m_innerSize, other.m_innerSize);
|
||||
//std::swap(m_outerSize, other.m_outerSize);
|
||||
m_data.swap(other.m_data);
|
||||
}
|
||||
|
||||
inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
|
||||
{
|
||||
if (other.isRValue())
|
||||
{
|
||||
swap(other.const_cast_derived());
|
||||
}
|
||||
else
|
||||
{
|
||||
resize(other.rows(), other.cols());
|
||||
m_data = other.m_data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Destructor */
|
||||
inline ~DynamicSparseMatrix() {}
|
||||
|
||||
public:
|
||||
|
||||
/** \deprecated
|
||||
* Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
|
||||
EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
|
||||
{
|
||||
setZero();
|
||||
reserve(reserveSize);
|
||||
}
|
||||
|
||||
/** \deprecated use insert()
|
||||
* inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
|
||||
* 1 - the coefficient does not exist yet
|
||||
* 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
|
||||
* In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
|
||||
* \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
|
||||
*
|
||||
* \see fillrand(), coeffRef()
|
||||
*/
|
||||
EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
const Index inner = IsRowMajor ? col : row;
|
||||
return insertBack(outer,inner);
|
||||
}
|
||||
|
||||
/** \deprecated use insert()
|
||||
* Like fill() but with random inner coordinates.
|
||||
* Compared to the generic coeffRef(), the unique limitation is that we assume
|
||||
* the coefficient does not exist yet.
|
||||
*/
|
||||
EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
|
||||
{
|
||||
return insert(row,col);
|
||||
}
|
||||
|
||||
/** \deprecated use finalize()
|
||||
* Does nothing. Provided for compatibility with SparseMatrix. */
|
||||
EIGEN_DEPRECATED void endFill() {}
|
||||
|
||||
# ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
|
||||
# include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
|
||||
# endif
|
||||
};
|
||||
|
||||
template<typename Scalar, int _Options, typename _StorageIndex>
|
||||
class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::InnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator
|
||||
{
|
||||
typedef typename SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator Base;
|
||||
public:
|
||||
InnerIterator(const DynamicSparseMatrix& mat, Index outer)
|
||||
: Base(mat.m_data[outer]), m_outer(outer)
|
||||
{}
|
||||
|
||||
inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
|
||||
inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
|
||||
inline Index outer() const { return m_outer; }
|
||||
|
||||
protected:
|
||||
const Index m_outer;
|
||||
};
|
||||
|
||||
template<typename Scalar, int _Options, typename _StorageIndex>
|
||||
class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator
|
||||
{
|
||||
typedef typename SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator Base;
|
||||
public:
|
||||
ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer)
|
||||
: Base(mat.m_data[outer]), m_outer(outer)
|
||||
{}
|
||||
|
||||
inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
|
||||
inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
|
||||
inline Index outer() const { return m_outer; }
|
||||
|
||||
protected:
|
||||
const Index m_outer;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
struct evaluator<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
: evaluator_base<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
|
||||
typedef typename SparseMatrixType::InnerIterator InnerIterator;
|
||||
typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = NumTraits<_Scalar>::ReadCost,
|
||||
Flags = SparseMatrixType::Flags
|
||||
};
|
||||
|
||||
evaluator() : m_matrix(0) {}
|
||||
evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
|
||||
|
||||
operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
|
||||
operator const SparseMatrixType&() const { return *m_matrix; }
|
||||
|
||||
Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }
|
||||
|
||||
Index nonZerosEstimate() const { return m_matrix->nonZeros(); }
|
||||
|
||||
const SparseMatrixType *m_matrix;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H
|
275
src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
Normal file
275
src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
Normal file
|
@ -0,0 +1,275 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_MARKET_IO_H
|
||||
#define EIGEN_SPARSE_MARKET_IO_H
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal
|
||||
{
|
||||
template <typename Scalar>
|
||||
inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, Scalar& value)
|
||||
{
|
||||
line >> i >> j >> value;
|
||||
i--;
|
||||
j--;
|
||||
if(i>=0 && j>=0 && i<M && j<N)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
template <typename Scalar>
|
||||
inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, std::complex<Scalar>& value)
|
||||
{
|
||||
Scalar valR, valI;
|
||||
line >> i >> j >> valR >> valI;
|
||||
i--;
|
||||
j--;
|
||||
if(i>=0 && j>=0 && i<M && j<N)
|
||||
{
|
||||
value = std::complex<Scalar>(valR, valI);
|
||||
return true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename RealScalar>
|
||||
inline void GetVectorElt (const std::string& line, RealScalar& val)
|
||||
{
|
||||
std::istringstream newline(line);
|
||||
newline >> val;
|
||||
}
|
||||
|
||||
template <typename RealScalar>
|
||||
inline void GetVectorElt (const std::string& line, std::complex<RealScalar>& val)
|
||||
{
|
||||
RealScalar valR, valI;
|
||||
std::istringstream newline(line);
|
||||
newline >> valR >> valI;
|
||||
val = std::complex<RealScalar>(valR, valI);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline void putMarketHeader(std::string& header,int sym)
|
||||
{
|
||||
header= "%%MatrixMarket matrix coordinate ";
|
||||
if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
|
||||
{
|
||||
header += " complex";
|
||||
if(sym == Symmetric) header += " symmetric";
|
||||
else if (sym == SelfAdjoint) header += " Hermitian";
|
||||
else header += " general";
|
||||
}
|
||||
else
|
||||
{
|
||||
header += " real";
|
||||
if(sym == Symmetric) header += " symmetric";
|
||||
else header += " general";
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline void PutMatrixElt(Scalar value, int row, int col, std::ofstream& out)
|
||||
{
|
||||
out << row << " "<< col << " " << value << "\n";
|
||||
}
|
||||
template<typename Scalar>
|
||||
inline void PutMatrixElt(std::complex<Scalar> value, int row, int col, std::ofstream& out)
|
||||
{
|
||||
out << row << " " << col << " " << value.real() << " " << value.imag() << "\n";
|
||||
}
|
||||
|
||||
|
||||
template<typename Scalar>
|
||||
inline void putVectorElt(Scalar value, std::ofstream& out)
|
||||
{
|
||||
out << value << "\n";
|
||||
}
|
||||
template<typename Scalar>
|
||||
inline void putVectorElt(std::complex<Scalar> value, std::ofstream& out)
|
||||
{
|
||||
out << value.real << " " << value.imag()<< "\n";
|
||||
}
|
||||
|
||||
} // end namepsace internal
|
||||
|
||||
inline bool getMarketHeader(const std::string& filename, int& sym, bool& iscomplex, bool& isvector)
|
||||
{
|
||||
sym = 0;
|
||||
iscomplex = false;
|
||||
isvector = false;
|
||||
std::ifstream in(filename.c_str(),std::ios::in);
|
||||
if(!in)
|
||||
return false;
|
||||
|
||||
std::string line;
|
||||
// The matrix header is always the first line in the file
|
||||
std::getline(in, line); eigen_assert(in.good());
|
||||
|
||||
std::stringstream fmtline(line);
|
||||
std::string substr[5];
|
||||
fmtline>> substr[0] >> substr[1] >> substr[2] >> substr[3] >> substr[4];
|
||||
if(substr[2].compare("array") == 0) isvector = true;
|
||||
if(substr[3].compare("complex") == 0) iscomplex = true;
|
||||
if(substr[4].compare("symmetric") == 0) sym = Symmetric;
|
||||
else if (substr[4].compare("Hermitian") == 0) sym = SelfAdjoint;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename SparseMatrixType>
|
||||
bool loadMarket(SparseMatrixType& mat, const std::string& filename)
|
||||
{
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
std::ifstream input(filename.c_str(),std::ios::in);
|
||||
if(!input)
|
||||
return false;
|
||||
|
||||
const int maxBuffersize = 2048;
|
||||
char buffer[maxBuffersize];
|
||||
|
||||
bool readsizes = false;
|
||||
|
||||
typedef Triplet<Scalar,Index> T;
|
||||
std::vector<T> elements;
|
||||
|
||||
Index M(-1), N(-1), NNZ(-1);
|
||||
Index count = 0;
|
||||
while(input.getline(buffer, maxBuffersize))
|
||||
{
|
||||
// skip comments
|
||||
//NOTE An appropriate test should be done on the header to get the symmetry
|
||||
if(buffer[0]=='%')
|
||||
continue;
|
||||
|
||||
std::stringstream line(buffer);
|
||||
|
||||
if(!readsizes)
|
||||
{
|
||||
line >> M >> N >> NNZ;
|
||||
if(M > 0 && N > 0 && NNZ > 0)
|
||||
{
|
||||
readsizes = true;
|
||||
//std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
|
||||
mat.resize(M,N);
|
||||
mat.reserve(NNZ);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Index i(-1), j(-1);
|
||||
Scalar value;
|
||||
if( internal::GetMarketLine(line, M, N, i, j, value) )
|
||||
{
|
||||
++ count;
|
||||
elements.push_back(T(i,j,value));
|
||||
}
|
||||
else
|
||||
std::cerr << "Invalid read: " << i << "," << j << "\n";
|
||||
}
|
||||
}
|
||||
mat.setFromTriplets(elements.begin(), elements.end());
|
||||
if(count!=NNZ)
|
||||
std::cerr << count << "!=" << NNZ << "\n";
|
||||
|
||||
input.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename VectorType>
|
||||
bool loadMarketVector(VectorType& vec, const std::string& filename)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
std::ifstream in(filename.c_str(), std::ios::in);
|
||||
if(!in)
|
||||
return false;
|
||||
|
||||
std::string line;
|
||||
int n(0), col(0);
|
||||
do
|
||||
{ // Skip comments
|
||||
std::getline(in, line); eigen_assert(in.good());
|
||||
} while (line[0] == '%');
|
||||
std::istringstream newline(line);
|
||||
newline >> n >> col;
|
||||
eigen_assert(n>0 && col>0);
|
||||
vec.resize(n);
|
||||
int i = 0;
|
||||
Scalar value;
|
||||
while ( std::getline(in, line) && (i < n) ){
|
||||
internal::GetVectorElt(line, value);
|
||||
vec(i++) = value;
|
||||
}
|
||||
in.close();
|
||||
if (i!=n){
|
||||
std::cerr<< "Unable to read all elements from file " << filename << "\n";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename SparseMatrixType>
|
||||
bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sym = 0)
|
||||
{
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
std::ofstream out(filename.c_str(),std::ios::out);
|
||||
if(!out)
|
||||
return false;
|
||||
|
||||
out.flags(std::ios_base::scientific);
|
||||
out.precision(64);
|
||||
std::string header;
|
||||
internal::putMarketHeader<Scalar>(header, sym);
|
||||
out << header << std::endl;
|
||||
out << mat.rows() << " " << mat.cols() << " " << mat.nonZeros() << "\n";
|
||||
int count = 0;
|
||||
for(int j=0; j<mat.outerSize(); ++j)
|
||||
for(typename SparseMatrixType::InnerIterator it(mat,j); it; ++it)
|
||||
{
|
||||
++ count;
|
||||
internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
|
||||
// out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
|
||||
}
|
||||
out.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename VectorType>
|
||||
bool saveMarketVector (const VectorType& vec, const std::string& filename)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
std::ofstream out(filename.c_str(),std::ios::out);
|
||||
if(!out)
|
||||
return false;
|
||||
|
||||
out.flags(std::ios_base::scientific);
|
||||
out.precision(64);
|
||||
if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
|
||||
out << "%%MatrixMarket matrix array complex general\n";
|
||||
else
|
||||
out << "%%MatrixMarket matrix array real general\n";
|
||||
out << vec.size() << " "<< 1 << "\n";
|
||||
for (int i=0; i < vec.size(); i++){
|
||||
internal::putVectorElt(vec(i), out);
|
||||
}
|
||||
out.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_MARKET_IO_H
|
|
@ -0,0 +1,247 @@
|
|||
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BROWSE_MATRICES_H
|
||||
#define EIGEN_BROWSE_MATRICES_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
enum {
|
||||
SPD = 0x100,
|
||||
NonSymmetric = 0x0
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Iterator to browse matrices from a specified folder
|
||||
*
|
||||
* This is used to load all the matrices from a folder.
|
||||
* The matrices should be in Matrix Market format
|
||||
* It is assumed that the matrices are named as matname.mtx
|
||||
* and matname_SPD.mtx if the matrix is Symmetric and positive definite (or Hermitian)
|
||||
* The right hand side vectors are loaded as well, if they exist.
|
||||
* They should be named as matname_b.mtx.
|
||||
* Note that the right hand side for a SPD matrix is named as matname_SPD_b.mtx
|
||||
*
|
||||
* Sometimes a reference solution is available. In this case, it should be named as matname_x.mtx
|
||||
*
|
||||
* Sample code
|
||||
* \code
|
||||
*
|
||||
* \endcode
|
||||
*
|
||||
* \tparam Scalar The scalar type
|
||||
*/
|
||||
template <typename Scalar>
|
||||
class MatrixMarketIterator
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
public:
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
|
||||
|
||||
public:
|
||||
MatrixMarketIterator(const std::string &folder)
|
||||
: m_sym(0), m_isvalid(false), m_matIsLoaded(false), m_hasRhs(false), m_hasrefX(false), m_folder(folder)
|
||||
{
|
||||
m_folder_id = opendir(folder.c_str());
|
||||
if(m_folder_id)
|
||||
Getnextvalidmatrix();
|
||||
}
|
||||
|
||||
~MatrixMarketIterator()
|
||||
{
|
||||
if (m_folder_id) closedir(m_folder_id);
|
||||
}
|
||||
|
||||
inline MatrixMarketIterator& operator++()
|
||||
{
|
||||
m_matIsLoaded = false;
|
||||
m_hasrefX = false;
|
||||
m_hasRhs = false;
|
||||
Getnextvalidmatrix();
|
||||
return *this;
|
||||
}
|
||||
inline operator bool() const { return m_isvalid;}
|
||||
|
||||
/** Return the sparse matrix corresponding to the current file */
|
||||
inline MatrixType& matrix()
|
||||
{
|
||||
// Read the matrix
|
||||
if (m_matIsLoaded) return m_mat;
|
||||
|
||||
std::string matrix_file = m_folder + "/" + m_matname + ".mtx";
|
||||
if ( !loadMarket(m_mat, matrix_file))
|
||||
{
|
||||
std::cerr << "Warning loadMarket failed when loading \"" << matrix_file << "\"" << std::endl;
|
||||
m_matIsLoaded = false;
|
||||
return m_mat;
|
||||
}
|
||||
m_matIsLoaded = true;
|
||||
|
||||
if (m_sym != NonSymmetric)
|
||||
{
|
||||
// Check whether we need to restore a full matrix:
|
||||
RealScalar diag_norm = m_mat.diagonal().norm();
|
||||
RealScalar lower_norm = m_mat.template triangularView<Lower>().norm();
|
||||
RealScalar upper_norm = m_mat.template triangularView<Upper>().norm();
|
||||
if(lower_norm>diag_norm && upper_norm==diag_norm)
|
||||
{
|
||||
// only the lower part is stored
|
||||
MatrixType tmp(m_mat);
|
||||
m_mat = tmp.template selfadjointView<Lower>();
|
||||
}
|
||||
else if(upper_norm>diag_norm && lower_norm==diag_norm)
|
||||
{
|
||||
// only the upper part is stored
|
||||
MatrixType tmp(m_mat);
|
||||
m_mat = tmp.template selfadjointView<Upper>();
|
||||
}
|
||||
}
|
||||
return m_mat;
|
||||
}
|
||||
|
||||
/** Return the right hand side corresponding to the current matrix.
|
||||
* If the rhs file is not provided, a random rhs is generated
|
||||
*/
|
||||
inline VectorType& rhs()
|
||||
{
|
||||
// Get the right hand side
|
||||
if (m_hasRhs) return m_rhs;
|
||||
|
||||
std::string rhs_file;
|
||||
rhs_file = m_folder + "/" + m_matname + "_b.mtx"; // The pattern is matname_b.mtx
|
||||
m_hasRhs = Fileexists(rhs_file);
|
||||
if (m_hasRhs)
|
||||
{
|
||||
m_rhs.resize(m_mat.cols());
|
||||
m_hasRhs = loadMarketVector(m_rhs, rhs_file);
|
||||
}
|
||||
if (!m_hasRhs)
|
||||
{
|
||||
// Generate a random right hand side
|
||||
if (!m_matIsLoaded) this->matrix();
|
||||
m_refX.resize(m_mat.cols());
|
||||
m_refX.setRandom();
|
||||
m_rhs = m_mat * m_refX;
|
||||
m_hasrefX = true;
|
||||
m_hasRhs = true;
|
||||
}
|
||||
return m_rhs;
|
||||
}
|
||||
|
||||
/** Return a reference solution
|
||||
* If it is not provided and if the right hand side is not available
|
||||
* then refX is randomly generated such that A*refX = b
|
||||
* where A and b are the matrix and the rhs.
|
||||
* Note that when a rhs is provided, refX is not available
|
||||
*/
|
||||
inline VectorType& refX()
|
||||
{
|
||||
// Check if a reference solution is provided
|
||||
if (m_hasrefX) return m_refX;
|
||||
|
||||
std::string lhs_file;
|
||||
lhs_file = m_folder + "/" + m_matname + "_x.mtx";
|
||||
m_hasrefX = Fileexists(lhs_file);
|
||||
if (m_hasrefX)
|
||||
{
|
||||
m_refX.resize(m_mat.cols());
|
||||
m_hasrefX = loadMarketVector(m_refX, lhs_file);
|
||||
}
|
||||
else
|
||||
m_refX.resize(0);
|
||||
return m_refX;
|
||||
}
|
||||
|
||||
inline std::string& matname() { return m_matname; }
|
||||
|
||||
inline int sym() { return m_sym; }
|
||||
|
||||
bool hasRhs() {return m_hasRhs; }
|
||||
bool hasrefX() {return m_hasrefX; }
|
||||
bool isFolderValid() { return bool(m_folder_id); }
|
||||
|
||||
protected:
|
||||
|
||||
inline bool Fileexists(std::string file)
|
||||
{
|
||||
std::ifstream file_id(file.c_str());
|
||||
if (!file_id.good() )
|
||||
{
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
file_id.close();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void Getnextvalidmatrix( )
|
||||
{
|
||||
m_isvalid = false;
|
||||
// Here, we return with the next valid matrix in the folder
|
||||
while ( (m_curs_id = readdir(m_folder_id)) != NULL) {
|
||||
m_isvalid = false;
|
||||
std::string curfile;
|
||||
curfile = m_folder + "/" + m_curs_id->d_name;
|
||||
// Discard if it is a folder
|
||||
if (m_curs_id->d_type == DT_DIR) continue; //FIXME This may not be available on non BSD systems
|
||||
// struct stat st_buf;
|
||||
// stat (curfile.c_str(), &st_buf);
|
||||
// if (S_ISDIR(st_buf.st_mode)) continue;
|
||||
|
||||
// Determine from the header if it is a matrix or a right hand side
|
||||
bool isvector,iscomplex=false;
|
||||
if(!getMarketHeader(curfile,m_sym,iscomplex,isvector)) continue;
|
||||
if(isvector) continue;
|
||||
if (!iscomplex)
|
||||
{
|
||||
if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
|
||||
continue;
|
||||
}
|
||||
if (iscomplex)
|
||||
{
|
||||
if(internal::is_same<Scalar, float>::value || internal::is_same<Scalar, double>::value)
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
// Get the matrix name
|
||||
std::string filename = m_curs_id->d_name;
|
||||
m_matname = filename.substr(0, filename.length()-4);
|
||||
|
||||
// Find if the matrix is SPD
|
||||
size_t found = m_matname.find("SPD");
|
||||
if( (found!=std::string::npos) && (m_sym != NonSymmetric) )
|
||||
m_sym = SPD;
|
||||
|
||||
m_isvalid = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
int m_sym; // Symmetry of the matrix
|
||||
MatrixType m_mat; // Current matrix
|
||||
VectorType m_rhs; // Current vector
|
||||
VectorType m_refX; // The reference solution, if exists
|
||||
std::string m_matname; // Matrix Name
|
||||
bool m_isvalid;
|
||||
bool m_matIsLoaded; // Determine if the matrix has already been loaded from the file
|
||||
bool m_hasRhs; // The right hand side exists
|
||||
bool m_hasrefX; // A reference solution is provided
|
||||
std::string m_folder;
|
||||
DIR * m_folder_id;
|
||||
struct dirent *m_curs_id;
|
||||
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif
|
327
src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
Normal file
327
src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
Normal file
|
@ -0,0 +1,327 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_RANDOMSETTER_H
|
||||
#define EIGEN_RANDOMSETTER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** Represents a std::map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct StdMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
typedef std::map<KeyType,Scalar> Type;
|
||||
enum {
|
||||
IsSorted = 1
|
||||
};
|
||||
|
||||
static void setInvalidKey(Type&, const KeyType&) {}
|
||||
};
|
||||
|
||||
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
|
||||
/** Represents a std::unordered_map
|
||||
*
|
||||
* To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
|
||||
* yourself making sure that unordered_map is defined in the std namespace.
|
||||
*
|
||||
* For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
|
||||
* \code
|
||||
* #include <tr1/unordered_map>
|
||||
* #define EIGEN_UNORDERED_MAP_SUPPORT
|
||||
* namespace std {
|
||||
* using std::tr1::unordered_map;
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct StdUnorderedMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
typedef std::unordered_map<KeyType,Scalar> Type;
|
||||
enum {
|
||||
IsSorted = 0
|
||||
};
|
||||
|
||||
static void setInvalidKey(Type&, const KeyType&) {}
|
||||
};
|
||||
#endif // EIGEN_UNORDERED_MAP_SUPPORT
|
||||
|
||||
#ifdef _DENSE_HASH_MAP_H_
|
||||
/** Represents a google::dense_hash_map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct GoogleDenseHashMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
typedef google::dense_hash_map<KeyType,Scalar> Type;
|
||||
enum {
|
||||
IsSorted = 0
|
||||
};
|
||||
|
||||
static void setInvalidKey(Type& map, const KeyType& k)
|
||||
{ map.set_empty_key(k); }
|
||||
};
|
||||
#endif
|
||||
|
||||
#ifdef _SPARSE_HASH_MAP_H_
|
||||
/** Represents a google::sparse_hash_map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct GoogleSparseHashMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
typedef google::sparse_hash_map<KeyType,Scalar> Type;
|
||||
enum {
|
||||
IsSorted = 0
|
||||
};
|
||||
|
||||
static void setInvalidKey(Type&, const KeyType&) {}
|
||||
};
|
||||
#endif
|
||||
|
||||
/** \class RandomSetter
|
||||
*
|
||||
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
|
||||
*
|
||||
* \tparam SparseMatrixType the type of the sparse matrix we are updating
|
||||
* \tparam MapTraits a traits class representing the map implementation used for the temporary sparse storage.
|
||||
* Its default value depends on the system.
|
||||
* \tparam OuterPacketBits defines the number of rows (or columns) manage by a single map object
|
||||
* as a power of two exponent.
|
||||
*
|
||||
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for
|
||||
* efficient random access. The conversion from the compressed representation to a hash_map object is performed
|
||||
* in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
|
||||
* suggest the use of nested blocks as in this example:
|
||||
*
|
||||
* \code
|
||||
* SparseMatrix<double> m(rows,cols);
|
||||
* {
|
||||
* RandomSetter<SparseMatrix<double> > w(m);
|
||||
* // don't use m but w instead with read/write random access to the coefficients:
|
||||
* for(;;)
|
||||
* w(rand(),rand()) = rand;
|
||||
* }
|
||||
* // when w is deleted, the data are copied back to m
|
||||
* // and m is ready to use.
|
||||
* \endcode
|
||||
*
|
||||
* Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
|
||||
* involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
|
||||
* use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
|
||||
* To reach optimal performance, this value should be adjusted according to the average number of nonzeros
|
||||
* per rows/columns.
|
||||
*
|
||||
* The possible values for the template parameter MapTraits are:
|
||||
* - \b StdMapTraits: corresponds to std::map. (does not perform very well)
|
||||
* - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
|
||||
* - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
|
||||
* - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
|
||||
*
|
||||
* The default map implementation depends on the availability, and the preferred order is:
|
||||
* GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
|
||||
*
|
||||
* For performance and memory consumption reasons it is highly recommended to use one of
|
||||
* the Google's hash_map implementation. To enable the support for them, you have two options:
|
||||
* - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
|
||||
* - define EIGEN_GOOGLEHASH_SUPPORT
|
||||
* In the later case the inclusion of <google/dense_hash_map> is made for you.
|
||||
*
|
||||
* \see http://code.google.com/p/google-sparsehash/
|
||||
*/
|
||||
template<typename SparseMatrixType,
|
||||
template <typename T> class MapTraits =
|
||||
#if defined _DENSE_HASH_MAP_H_
|
||||
GoogleDenseHashMapTraits
|
||||
#elif defined _HASH_MAP
|
||||
GnuHashMapTraits
|
||||
#else
|
||||
StdMapTraits
|
||||
#endif
|
||||
,int OuterPacketBits = 6>
|
||||
class RandomSetter
|
||||
{
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::StorageIndex StorageIndex;
|
||||
|
||||
struct ScalarWrapper
|
||||
{
|
||||
ScalarWrapper() : value(0) {}
|
||||
Scalar value;
|
||||
};
|
||||
typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
|
||||
typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
|
||||
static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
|
||||
enum {
|
||||
SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
|
||||
TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
|
||||
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
/** Constructs a random setter object from the sparse matrix \a target
|
||||
*
|
||||
* Note that the initial value of \a target are imported. If you want to re-set
|
||||
* a sparse matrix from scratch, then you must set it to zero first using the
|
||||
* setZero() function.
|
||||
*/
|
||||
inline RandomSetter(SparseMatrixType& target)
|
||||
: mp_target(&target)
|
||||
{
|
||||
const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
|
||||
const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
|
||||
m_outerPackets = outerSize >> OuterPacketBits;
|
||||
if (outerSize&OuterPacketMask)
|
||||
m_outerPackets += 1;
|
||||
m_hashmaps = new HashMapType[m_outerPackets];
|
||||
// compute number of bits needed to store inner indices
|
||||
Index aux = innerSize - 1;
|
||||
m_keyBitsOffset = 0;
|
||||
while (aux)
|
||||
{
|
||||
++m_keyBitsOffset;
|
||||
aux = aux >> 1;
|
||||
}
|
||||
KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
|
||||
for (Index k=0; k<m_outerPackets; ++k)
|
||||
MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
|
||||
|
||||
// insert current coeffs
|
||||
for (Index j=0; j<mp_target->outerSize(); ++j)
|
||||
for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
|
||||
(*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
|
||||
}
|
||||
|
||||
/** Destructor updating back the sparse matrix target */
|
||||
~RandomSetter()
|
||||
{
|
||||
KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
|
||||
if (!SwapStorage) // also means the map is sorted
|
||||
{
|
||||
mp_target->setZero();
|
||||
mp_target->makeCompressed();
|
||||
mp_target->reserve(nonZeros());
|
||||
Index prevOuter = -1;
|
||||
for (Index k=0; k<m_outerPackets; ++k)
|
||||
{
|
||||
const Index outerOffset = (1<<OuterPacketBits) * k;
|
||||
typename HashMapType::iterator end = m_hashmaps[k].end();
|
||||
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
|
||||
{
|
||||
const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
|
||||
const Index inner = it->first & keyBitsMask;
|
||||
if (prevOuter!=outer)
|
||||
{
|
||||
for (Index j=prevOuter+1;j<=outer;++j)
|
||||
mp_target->startVec(j);
|
||||
prevOuter = outer;
|
||||
}
|
||||
mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
|
||||
}
|
||||
}
|
||||
mp_target->finalize();
|
||||
}
|
||||
else
|
||||
{
|
||||
VectorXi positions(mp_target->outerSize());
|
||||
positions.setZero();
|
||||
// pass 1
|
||||
for (Index k=0; k<m_outerPackets; ++k)
|
||||
{
|
||||
typename HashMapType::iterator end = m_hashmaps[k].end();
|
||||
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
|
||||
{
|
||||
const Index outer = it->first & keyBitsMask;
|
||||
++positions[outer];
|
||||
}
|
||||
}
|
||||
// prefix sum
|
||||
Index count = 0;
|
||||
for (Index j=0; j<mp_target->outerSize(); ++j)
|
||||
{
|
||||
Index tmp = positions[j];
|
||||
mp_target->outerIndexPtr()[j] = count;
|
||||
positions[j] = count;
|
||||
count += tmp;
|
||||
}
|
||||
mp_target->makeCompressed();
|
||||
mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
|
||||
mp_target->resizeNonZeros(count);
|
||||
// pass 2
|
||||
for (Index k=0; k<m_outerPackets; ++k)
|
||||
{
|
||||
const Index outerOffset = (1<<OuterPacketBits) * k;
|
||||
typename HashMapType::iterator end = m_hashmaps[k].end();
|
||||
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
|
||||
{
|
||||
const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
|
||||
const Index outer = it->first & keyBitsMask;
|
||||
// sorted insertion
|
||||
// Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
|
||||
// moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
|
||||
// small fraction of them have to be sorted, whence the following simple procedure:
|
||||
Index posStart = mp_target->outerIndexPtr()[outer];
|
||||
Index i = (positions[outer]++) - 1;
|
||||
while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
|
||||
{
|
||||
mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
|
||||
mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
|
||||
--i;
|
||||
}
|
||||
mp_target->innerIndexPtr()[i+1] = inner;
|
||||
mp_target->valuePtr()[i+1] = it->second.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
delete[] m_hashmaps;
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given coordinates \a row, \a col */
|
||||
Scalar& operator() (Index row, Index col)
|
||||
{
|
||||
const Index outer = SetterRowMajor ? row : col;
|
||||
const Index inner = SetterRowMajor ? col : row;
|
||||
const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
|
||||
const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
|
||||
const KeyType key = internal::convert_index<KeyType>((outerMinor<<m_keyBitsOffset) | inner);
|
||||
return m_hashmaps[outerMajor][key].value;
|
||||
}
|
||||
|
||||
/** \returns the number of non zero coefficients
|
||||
*
|
||||
* \note According to the underlying map/hash_map implementation,
|
||||
* this function might be quite expensive.
|
||||
*/
|
||||
Index nonZeros() const
|
||||
{
|
||||
Index nz = 0;
|
||||
for (Index k=0; k<m_outerPackets; ++k)
|
||||
nz += static_cast<Index>(m_hashmaps[k].size());
|
||||
return nz;
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
HashMapType* m_hashmaps;
|
||||
SparseMatrixType* mp_target;
|
||||
Index m_outerPackets;
|
||||
unsigned char m_keyBitsOffset;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_RANDOMSETTER_H
|
|
@ -612,7 +612,9 @@ double ray_mesh_intersect(const Vec3d& s,
|
|||
const Vec3d& dir,
|
||||
const EigenMesh3D& m);
|
||||
|
||||
PointSet normals(const PointSet& points, const EigenMesh3D& mesh);
|
||||
PointSet normals(const PointSet& points, const EigenMesh3D& mesh,
|
||||
double eps = 0.05, // min distance from edges
|
||||
std::function<void()> throw_on_cancel = [](){});
|
||||
|
||||
inline Vec2d to_vec2(const Vec3d& v3) {
|
||||
return {v3(X), v3(Y)};
|
||||
|
@ -1049,7 +1051,7 @@ bool SLASupportTree::generate(const PointSet &points,
|
|||
tifcl();
|
||||
|
||||
// calculate the normals to the triangles belonging to filtered points
|
||||
auto nmls = sla::normals(filt_pts, mesh);
|
||||
auto nmls = sla::normals(filt_pts, mesh, cfg.head_front_radius_mm, tifcl);
|
||||
|
||||
head_norm.resize(count, 3);
|
||||
head_pos.resize(count, 3);
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
#include <cmath>
|
||||
#include "SLA/SLASupportTree.hpp"
|
||||
#include "SLA/SLABoilerPlate.hpp"
|
||||
#include "SLA/SLASpatIndex.hpp"
|
||||
|
@ -9,15 +10,8 @@
|
|||
#include "boost/geometry/index/rtree.hpp"
|
||||
|
||||
#include <igl/ray_mesh_intersect.h>
|
||||
|
||||
//#if !defined(_MSC_VER) || defined(_WIN64)
|
||||
#if 1
|
||||
#define IGL_COMPATIBLE
|
||||
#endif
|
||||
|
||||
#ifdef IGL_COMPATIBLE
|
||||
#include <igl/point_mesh_squared_distance.h>
|
||||
#endif
|
||||
#include <igl/remove_duplicate_vertices.h>
|
||||
|
||||
#include "SLASpatIndex.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
|
@ -84,33 +78,124 @@ size_t SpatIndex::size() const
|
|||
return m_impl->m_store.size();
|
||||
}
|
||||
|
||||
PointSet normals(const PointSet& points, const EigenMesh3D& mesh) {
|
||||
if(points.rows() == 0 || mesh.V.rows() == 0 || mesh.F.rows() == 0) return {};
|
||||
#ifdef IGL_COMPATIBLE
|
||||
bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
|
||||
double eps = 0.05)
|
||||
{
|
||||
using Line3D = Eigen::ParametrizedLine<double, 3>;
|
||||
|
||||
auto line = Line3D::Through(e1, e2);
|
||||
double d = line.distance(p);
|
||||
return std::abs(d) < eps;
|
||||
}
|
||||
|
||||
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
|
||||
auto p = pp2 - pp1;
|
||||
return std::sqrt(p.transpose() * p);
|
||||
}
|
||||
|
||||
PointSet normals(const PointSet& points, const EigenMesh3D& emesh,
|
||||
double eps,
|
||||
std::function<void()> throw_on_cancel) {
|
||||
if(points.rows() == 0 || emesh.V.rows() == 0 || emesh.F.rows() == 0)
|
||||
return {};
|
||||
|
||||
Eigen::VectorXd dists;
|
||||
Eigen::VectorXi I;
|
||||
PointSet C;
|
||||
|
||||
// We need to remove duplicate vertices and have a true index triangle
|
||||
// structure
|
||||
EigenMesh3D mesh;
|
||||
Eigen::VectorXi SVI, SVJ;
|
||||
igl::remove_duplicate_vertices(emesh.V, emesh.F, 1e-6,
|
||||
mesh.V, SVI, SVJ, mesh.F);
|
||||
|
||||
igl::point_mesh_squared_distance( points, mesh.V, mesh.F, dists, I, C);
|
||||
|
||||
PointSet ret(I.rows(), 3);
|
||||
for(int i = 0; i < I.rows(); i++) {
|
||||
throw_on_cancel();
|
||||
auto idx = I(i);
|
||||
auto trindex = mesh.F.row(idx);
|
||||
|
||||
auto& p1 = mesh.V.row(trindex(0));
|
||||
auto& p2 = mesh.V.row(trindex(1));
|
||||
auto& p3 = mesh.V.row(trindex(2));
|
||||
const Vec3d& p1 = mesh.V.row(trindex(0));
|
||||
const Vec3d& p2 = mesh.V.row(trindex(1));
|
||||
const Vec3d& p3 = mesh.V.row(trindex(2));
|
||||
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
ret.row(i) = U.cross(V).normalized();
|
||||
// We should check if the point lies on an edge of the hosting triangle.
|
||||
// If it does than all the other triangles using the same two points
|
||||
// have to be searched and the final normal should be some kind of
|
||||
// aggregation of the participating triangle normals. We should also
|
||||
// consider the cases where the support point lies right on a vertex
|
||||
// of its triangle. The procedure is the same, get the neighbor
|
||||
// triangles and calculate an average normal.
|
||||
|
||||
const Vec3d& p = C.row(i);
|
||||
|
||||
// mark the vertex indices of the edge. ia and ib marks and edge ic
|
||||
// will mark a single vertex.
|
||||
int ia = -1, ib = -1, ic = -1;
|
||||
|
||||
if(std::abs(distance(p, p1)) < eps) {
|
||||
ic = trindex(0);
|
||||
}
|
||||
else if(std::abs(distance(p, p2)) < eps) {
|
||||
ic = trindex(1);
|
||||
}
|
||||
else if(std::abs(distance(p, p3)) < eps) {
|
||||
ic = trindex(2);
|
||||
}
|
||||
else if(point_on_edge(p, p1, p2, eps)) {
|
||||
ia = trindex(0); ib = trindex(1);
|
||||
}
|
||||
else if(point_on_edge(p, p2, p3, eps)) {
|
||||
ia = trindex(1); ib = trindex(2);
|
||||
}
|
||||
else if(point_on_edge(p, p1, p3, eps)) {
|
||||
ia = trindex(0); ib = trindex(2);
|
||||
}
|
||||
|
||||
std::vector<Vec3i> neigh;
|
||||
if(ic >= 0) { // The point is right on a vertex of the triangle
|
||||
for(int n = 0; n < mesh.F.rows(); ++n) {
|
||||
throw_on_cancel();
|
||||
Vec3i ni = mesh.F.row(n);
|
||||
if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
|
||||
neigh.emplace_back(ni);
|
||||
}
|
||||
}
|
||||
else if(ia >= 0 && ib >= 0) { // the point is on and edge
|
||||
// now get all the neigboring triangles
|
||||
for(int n = 0; n < mesh.F.rows(); ++n) {
|
||||
throw_on_cancel();
|
||||
Vec3i ni = mesh.F.row(n);
|
||||
if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
|
||||
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
|
||||
neigh.emplace_back(ni);
|
||||
}
|
||||
}
|
||||
|
||||
if(!neigh.empty()) { // there were neighbors to count with
|
||||
Vec3d sumnorm(0, 0, 0);
|
||||
for(const Vec3i& tri : neigh) {
|
||||
const Vec3d& pt1 = mesh.V.row(tri(0));
|
||||
const Vec3d& pt2 = mesh.V.row(tri(1));
|
||||
const Vec3d& pt3 = mesh.V.row(tri(2));
|
||||
Eigen::Vector3d U = pt2 - pt1;
|
||||
Eigen::Vector3d V = pt3 - pt1;
|
||||
sumnorm += U.cross(V).normalized();
|
||||
}
|
||||
sumnorm /= neigh.size();
|
||||
ret.row(i) = sumnorm;
|
||||
}
|
||||
else { // point lies safely within its triangle
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
ret.row(i) = U.cross(V).normalized();
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
#else // TODO: do something on 32 bit windows
|
||||
return {};
|
||||
#endif
|
||||
}
|
||||
|
||||
double ray_mesh_intersect(const Vec3d& s,
|
||||
|
@ -223,7 +308,7 @@ Segments model_boundary(const EigenMesh3D& emesh, double offs)
|
|||
pp.emplace_back(p);
|
||||
}
|
||||
|
||||
ExPolygons merged = union_ex(offset(pp, float(scale_(offs))), true);
|
||||
ExPolygons merged = union_ex(Slic3r::offset(pp, float(scale_(offs))), true);
|
||||
|
||||
for(auto& expoly : merged) {
|
||||
auto lines = expoly.lines();
|
||||
|
|
Loading…
Reference in a new issue