Merge remote-tracking branch 'remotes/origin/3mf_io'

This commit is contained in:
bubnikv 2018-02-15 17:02:47 +01:00
commit b695089bc4
28 changed files with 10717 additions and 108 deletions

View file

@ -41,16 +41,17 @@ use Wx::Event qw(EVT_IDLE EVT_COMMAND EVT_MENU);
use base 'Wx::App';
use constant FILE_WILDCARDS => {
known => 'Known files (*.stl, *.obj, *.amf, *.xml, *.prusa)|*.stl;*.STL;*.obj;*.OBJ;*.amf;*.AMF;*.xml;*.XML;*.prusa;*.PRUSA',
known => 'Known files (*.stl, *.obj, *.amf, *.xml, *.3mf, *.prusa)|*.stl;*.STL;*.obj;*.OBJ;*.amf;*.AMF;*.xml;*.XML;*.3mf;*.3MF;*.prusa;*.PRUSA',
stl => 'STL files (*.stl)|*.stl;*.STL',
obj => 'OBJ files (*.obj)|*.obj;*.OBJ',
amf => 'AMF files (*.amf)|*.amf;*.AMF;*.xml;*.XML',
threemf => '3MF files (*.3mf)|*.3mf;*.3MF',
prusa => 'Prusa Control files (*.prusa)|*.prusa;*.PRUSA',
ini => 'INI files *.ini|*.ini;*.INI',
gcode => 'G-code files (*.gcode, *.gco, *.g, *.ngc)|*.gcode;*.GCODE;*.gco;*.GCO;*.g;*.G;*.ngc;*.NGC',
svg => 'SVG files *.svg|*.svg;*.SVG',
};
use constant MODEL_WILDCARD => join '|', @{&FILE_WILDCARDS}{qw(known stl obj amf prusa)};
use constant MODEL_WILDCARD => join '|', @{&FILE_WILDCARDS}{qw(known stl obj amf threemf prusa)};
# Datadir provided on the command line.
our $datadir;

View file

@ -244,6 +244,9 @@ sub _init_menubar {
$self->_append_menu_item($self->{plater_menu}, "Export plate as AMF...", 'Export current plate as AMF', sub {
$plater->export_amf;
}, undef, 'brick_go.png');
$self->_append_menu_item($self->{plater_menu}, "Export plate as 3MF...", 'Export current plate as 3MF', sub {
$plater->export_3mf;
}, undef, 'brick_go.png');
$self->{object_menu} = $self->{plater}->object_menu;
$self->on_plater_selection_changed(0);
@ -374,7 +377,7 @@ sub quick_slice {
# select input file
my $input_file;
if (!$params{reslice}) {
my $dialog = Wx::FileDialog->new($self, 'Choose a file to slice (STL/OBJ/AMF/PRUSA):',
my $dialog = Wx::FileDialog->new($self, 'Choose a file to slice (STL/OBJ/AMF/3MF/PRUSA):',
wxTheApp->{app_config}->get_last_dir, "",
&Slic3r::GUI::MODEL_WILDCARD, wxFD_OPEN | wxFD_FILE_MUST_EXIST);
if ($dialog->ShowModal != wxID_OK) {

View file

@ -622,7 +622,7 @@ sub load_files {
# One of the files is potentionally a bundle of files. Don't bundle them, but load them one by one.
# Only bundle .stls or .objs if the printer has multiple extruders.
my $one_by_one = (@$nozzle_dmrs <= 1) || (@$input_files == 1) ||
defined(first { $_ =~ /.[aA][mM][fF]$/ || $_ =~ /.3[mM][fF]$/ || $_ =~ /.[pP][rR][uI][sS][aA]$/ } @$input_files);
defined(first { $_ =~ /.[aA][mM][fF]$/ || $_ =~ /.[aA][mM][fF].[xX][mM][lL]$/ || $_ =~ /.[zZ][iI][pP].[aA][mM][fF]$/ || $_ =~ /.3[mM][fF]$/ || $_ =~ /.[pP][rR][uI][sS][aA]$/ } @$input_files);
my $process_dialog = Wx::ProgressDialog->new('Loading…', "Processing input file\n" . basename($input_files->[0]), 100, $self, 0);
$process_dialog->Pulse;
@ -640,8 +640,19 @@ sub load_files {
my $input_file = $input_files->[$i];
$process_dialog->Update(100. * $i / @$input_files, "Processing input file\n" . basename($input_file));
my $model = eval { Slic3r::Model->read_from_file($input_file, 0) };
Slic3r::GUI::show_error($self, $@) if $@;
my $model;
if (($input_file =~ /.3[mM][fF]$/) || ($input_file =~ /.[zZ][iI][pP].[aA][mM][fF]$/))
{
$model = eval { Slic3r::Model->read_from_archive($input_file, wxTheApp->{preset_bundle}, 0) };
Slic3r::GUI::show_error($self, $@) if $@;
$_->load_current_preset for (values %{$self->GetFrame->{options_tabs}});
wxTheApp->{app_config}->update_config_dir(dirname($input_file));
}
else
{
$model = eval { Slic3r::Model->read_from_file($input_file, 0) };
Slic3r::GUI::show_error($self, $@) if $@;
}
next if ! defined $model;
@ -1573,15 +1584,50 @@ sub export_amf {
return if !@{$self->{objects}};
# Ask user for a file name to write into.
my $output_file = $self->_get_export_file('AMF') or return;
$self->{model}->store_amf($output_file);
$self->statusbar->SetStatusText("AMF file exported to $output_file");
my $res = $self->{model}->store_amf($output_file, $self->{print});
if ($res)
{
$self->statusbar->SetStatusText("AMF file exported to $output_file");
}
else
{
$self->statusbar->SetStatusText("Error exporting AMF file $output_file");
}
}
sub export_3mf {
my ($self) = @_;
return if !@{$self->{objects}};
# Ask user for a file name to write into.
my $output_file = $self->_get_export_file('3MF') or return;
my $res = $self->{model}->store_3mf($output_file, $self->{print});
if ($res)
{
$self->statusbar->SetStatusText("3MF file exported to $output_file");
}
else
{
$self->statusbar->SetStatusText("Error exporting 3MF file $output_file");
}
}
# Ask user to select an output file for a given file format (STl, AMF, 3MF).
# Propose a default file name based on the 'output_filename_format' configuration value.
sub _get_export_file {
my ($self, $format) = @_;
my $suffix = $format eq 'STL' ? '.stl' : '.amf.xml';
my $suffix = '';
if ($format eq 'STL')
{
$suffix = '.stl';
}
elsif ($format eq 'AMF')
{
$suffix = '.zip.amf';
}
elsif ($format eq '3MF')
{
$suffix = '.3mf';
}
my $output_file = eval { $self->{print}->output_filepath($main::opt{output} // '') };
Slic3r::GUI::catch_error($self) and return undef;
$output_file =~ s/\.[gG][cC][oO][dD][eE]$/$suffix/;
@ -2090,8 +2136,8 @@ sub OnDropFiles {
# stop scalars leaking on older perl
# https://rt.perl.org/rt3/Public/Bug/Display.html?id=70602
@_ = ();
# only accept STL, OBJ and AMF files
return 0 if grep !/\.(?:[sS][tT][lL]|[oO][bB][jJ]|[aA][mM][fF](?:\.[xX][mM][lL])?|[pP][rR][uU][sS][aA])$/, @$filenames;
# only accept STL, OBJ, AMF, 3MF and PRUSA files
return 0 if grep !/\.(?:[sS][tT][lL]|[oO][bB][jJ]|[aA][mM][fF]|[3][mM][fF]|[aA][mM][fF].[xX][mM][lL]|[zZ][iI][pP].[aA][mM][lL]|[pP][rR][uU][sS][aA])$/, @$filenames;
$self->{window}->load_files($filenames);
}

View file

@ -74,6 +74,8 @@ add_library(libslic3r STATIC
${LIBDIR}/libslic3r/Fill/FillRectilinear3.hpp
${LIBDIR}/libslic3r/Flow.cpp
${LIBDIR}/libslic3r/Flow.hpp
${LIBDIR}/libslic3r/Format/3mf.cpp
${LIBDIR}/libslic3r/Format/3mf.hpp
${LIBDIR}/libslic3r/Format/AMF.cpp
${LIBDIR}/libslic3r/Format/AMF.hpp
${LIBDIR}/libslic3r/Format/OBJ.cpp
@ -193,6 +195,18 @@ add_library(admesh STATIC
${LIBDIR}/admesh/util.cpp
)
add_library(miniz STATIC
${LIBDIR}/miniz/miniz.h
${LIBDIR}/miniz/miniz_common.h
${LIBDIR}/miniz/miniz_tdef.h
${LIBDIR}/miniz/miniz_tinfl.h
${LIBDIR}/miniz/miniz_zip.h
${LIBDIR}/miniz/miniz.cpp
${LIBDIR}/miniz/miniz_tdef.cpp
${LIBDIR}/miniz/miniz_tinfl.cpp
${LIBDIR}/miniz/miniz_zip.cpp
)
add_library(clipper STATIC
${LIBDIR}/clipper.cpp
${LIBDIR}/clipper.hpp
@ -352,7 +366,7 @@ if(APPLE)
# Ignore undefined symbols of the perl interpreter, they will be found in the caller image.
target_link_libraries(XS "-undefined dynamic_lookup")
endif()
target_link_libraries(XS libslic3r libslic3r_gui admesh clipper nowide polypartition poly2tri)
target_link_libraries(XS libslic3r libslic3r_gui admesh miniz clipper nowide polypartition poly2tri)
if(SLIC3R_PROFILE)
target_link_libraries(XS Shiny)
endif()
@ -555,7 +569,7 @@ endif()
# Create a slic3r executable
add_executable(slic3r ${PROJECT_SOURCE_DIR}/src/slic3r.cpp)
target_include_directories(XS PRIVATE src src/libslic3r)
target_link_libraries(slic3r libslic3r libslic3r_gui admesh ${Boost_LIBRARIES} clipper ${EXPAT_LIBRARIES} ${GLEW_LIBRARIES} polypartition poly2tri ${TBB_LIBRARIES} ${wxWidgets_LIBRARIES})
target_link_libraries(slic3r libslic3r libslic3r_gui admesh miniz ${Boost_LIBRARIES} clipper ${EXPAT_LIBRARIES} ${GLEW_LIBRARIES} polypartition poly2tri ${TBB_LIBRARIES} ${wxWidgets_LIBRARIES})
if(SLIC3R_PROFILE)
target_link_libraries(Shiny)
endif()

View file

@ -324,7 +324,7 @@ void ConfigBase::setenv_()
void ConfigBase::load(const std::string &file)
{
if (boost::iends_with(file, ".gcode") || boost::iends_with(file, ".g"))
this->load_from_gcode(file);
this->load_from_gcode_file(file);
else
this->load_from_ini(file);
}
@ -349,10 +349,10 @@ void ConfigBase::load(const boost::property_tree::ptree &tree)
}
}
// Load the config keys from the tail of a G-code.
void ConfigBase::load_from_gcode(const std::string &file)
// Load the config keys from the tail of a G-code file.
void ConfigBase::load_from_gcode_file(const std::string &file)
{
// 1) Read a 64k block from the end of the G-code.
// Read a 64k block from the end of the G-code.
boost::nowide::ifstream ifs(file);
{
const char slic3r_gcode_header[] = "; generated by Slic3r ";
@ -365,30 +365,39 @@ void ConfigBase::load_from_gcode(const std::string &file)
auto file_length = ifs.tellg();
auto data_length = std::min<std::fstream::streampos>(65535, file_length);
ifs.seekg(file_length - data_length, ifs.beg);
std::vector<char> data(size_t(data_length) + 1, 0);
ifs.read(data.data(), data_length);
std::vector<char> data(size_t(data_length) + 1, 0);
ifs.read(data.data(), data_length);
ifs.close();
// 2) Walk line by line in reverse until a non-configuration key appears.
char *data_start = data.data();
load_from_gcode_string(data.data());
}
// Load the config keys from the given string.
void ConfigBase::load_from_gcode_string(const char* str)
{
if (str == nullptr)
return;
// Walk line by line in reverse until a non-configuration key appears.
char *data_start = const_cast<char*>(str);
// boost::nowide::ifstream seems to cook the text data somehow, so less then the 64k of characters may be retrieved.
char *end = data_start + strlen(data.data());
char *end = data_start + strlen(str);
size_t num_key_value_pairs = 0;
for (;;) {
// Extract next line.
for (-- end; end > data_start && (*end == '\r' || *end == '\n'); -- end);
for (--end; end > data_start && (*end == '\r' || *end == '\n'); --end);
if (end == data_start)
break;
char *start = end;
*(++ end) = 0;
for (; start > data_start && *start != '\r' && *start != '\n'; -- start);
*(++end) = 0;
for (; start > data_start && *start != '\r' && *start != '\n'; --start);
if (start == data_start)
break;
// Extracted a line from start to end. Extract the key = value pair.
if (end - (++ start) < 10 || start[0] != ';' || start[1] != ' ')
if (end - (++start) < 10 || start[0] != ';' || start[1] != ' ')
break;
char *key = start + 2;
if (! (*key >= 'a' && *key <= 'z') || (*key >= 'A' && *key <= 'Z'))
if (!(*key >= 'a' && *key <= 'z') || (*key >= 'A' && *key <= 'Z'))
// A key must start with a letter.
break;
char *sep = strchr(key, '=');
@ -402,8 +411,8 @@ void ConfigBase::load_from_gcode(const std::string &file)
break;
*key_end = 0;
// The key may contain letters, digits and underscores.
for (char *c = key; c != key_end; ++ c)
if (! ((*c >= 'a' && *c <= 'z') || (*c >= 'A' && *c <= 'Z') || (*c >= '0' && *c <= '9') || *c == '_')) {
for (char *c = key; c != key_end; ++c)
if (!((*c >= 'a' && *c <= 'z') || (*c >= 'A' && *c <= 'Z') || (*c >= '0' && *c <= '9') || *c == '_')) {
key = nullptr;
break;
}
@ -411,8 +420,9 @@ void ConfigBase::load_from_gcode(const std::string &file)
break;
try {
this->set_deserialize(key, value);
++ num_key_value_pairs;
} catch (UnknownOptionException & /* e */) {
++num_key_value_pairs;
}
catch (UnknownOptionException & /* e */) {
// ignore
}
end = start;

View file

@ -1056,7 +1056,8 @@ public:
void setenv_();
void load(const std::string &file);
void load_from_ini(const std::string &file);
void load_from_gcode(const std::string &file);
void load_from_gcode_file(const std::string &file);
void load_from_gcode_string(const char* str);
void load(const boost::property_tree::ptree &tree);
void save(const std::string &file) const;

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,19 @@
#ifndef slic3r_Format_3mf_hpp_
#define slic3r_Format_3mf_hpp_
namespace Slic3r {
class Model;
class Print;
class PresetBundle;
// Load the content of a 3mf file into the given model and preset bundle.
extern bool load_3mf(const char* path, PresetBundle* bundle, Model* model);
// Save the given model and the config data contained in the given Print into a 3mf file.
// The model could be modified during the export process if meshes are not repaired or have no shared vertices
extern bool store_3mf(const char* path, Model* model, Print* print);
}; // namespace Slic3r
#endif /* slic3r_Format_3mf_hpp_ */

View file

@ -7,8 +7,14 @@
#include "../libslic3r.h"
#include "../Model.hpp"
#include "../GCode.hpp"
#include "../slic3r/GUI/PresetBundle.hpp"
#include "AMF.hpp"
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string.hpp>
#include <miniz/miniz_zip.h>
#if 0
// Enable debugging and assert in this file.
#define DEBUG
@ -18,18 +24,22 @@
#include <assert.h>
const char* SLIC3R_CONFIG_TYPE = "slic3rpe_config";
namespace Slic3r
{
struct AMFParserContext
{
AMFParserContext(XML_Parser parser, Model *model) :
AMFParserContext(XML_Parser parser, const std::string& archive_filename, PresetBundle* preset_bundle, Model *model) :
m_parser(parser),
m_model(*model),
m_object(nullptr),
m_volume(nullptr),
m_material(nullptr),
m_instance(nullptr)
m_instance(nullptr),
m_preset_bundle(preset_bundle),
m_archive_filename(archive_filename)
{
m_path.reserve(12);
}
@ -149,6 +159,10 @@ struct AMFParserContext
Instance *m_instance;
// Generic string buffer for vertices, face indices, metadata etc.
std::string m_value[3];
// Pointer to preset bundle to update if config data are stored inside the amf file
PresetBundle* m_preset_bundle;
// Fullpath name of the amf file
std::string m_archive_filename;
private:
AMFParserContext& operator=(AMFParserContext&);
@ -403,7 +417,10 @@ void AMFParserContext::endElement(const char * /* name */)
break;
case NODE_TYPE_METADATA:
if (strncmp(m_value[0].c_str(), "slic3r.", 7) == 0) {
if ((m_preset_bundle != nullptr) && strncmp(m_value[0].c_str(), SLIC3R_CONFIG_TYPE, strlen(SLIC3R_CONFIG_TYPE)) == 0) {
m_preset_bundle->load_config_string(m_value[1].c_str(), m_archive_filename.c_str());
}
else if (strncmp(m_value[0].c_str(), "slic3r.", 7) == 0) {
const char *opt_key = m_value[0].c_str() + 7;
if (print_config_def.options.find(opt_key) != print_config_def.options.end()) {
DynamicPrintConfig *config = nullptr;
@ -474,10 +491,13 @@ void AMFParserContext::endDocument()
}
// Load an AMF file into a provided model.
bool load_amf(const char *path, Model *model)
bool load_amf_file(const char *path, PresetBundle* bundle, Model *model)
{
if ((path == nullptr) || (model == nullptr))
return false;
XML_Parser parser = XML_ParserCreate(nullptr); // encoding
if (! parser) {
if (!parser) {
printf("Couldn't allocate memory for parser\n");
return false;
}
@ -488,7 +508,7 @@ bool load_amf(const char *path, Model *model)
return false;
}
AMFParserContext ctx(parser, model);
AMFParserContext ctx(parser, path, bundle, model);
XML_SetUserData(parser, (void*)&ctx);
XML_SetElementHandler(parser, AMFParserContext::startElement, AMFParserContext::endElement);
XML_SetCharacterDataHandler(parser, AMFParserContext::characters);
@ -519,49 +539,163 @@ bool load_amf(const char *path, Model *model)
if (result)
ctx.endDocument();
return result;
}
bool store_amf(const char *path, Model *model)
// Load an AMF archive into a provided model.
bool load_amf_archive(const char *path, PresetBundle* bundle, Model *model)
{
FILE *file = boost::nowide::fopen(path, "wb");
if (file == nullptr)
if ((path == nullptr) || (model == nullptr))
return false;
fprintf(file, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
fprintf(file, "<amf unit=\"millimeter\">\n");
fprintf(file, "<metadata type=\"cad\">Slic3r %s</metadata>\n", SLIC3R_VERSION);
mz_zip_archive archive;
mz_zip_zero_struct(&archive);
mz_bool res = mz_zip_reader_init_file(&archive, path, 0);
if (res == 0)
{
printf("Unable to init zip reader\n");
return false;
}
mz_uint num_entries = mz_zip_reader_get_num_files(&archive);
if (num_entries != 1)
{
printf("Found invalid number of entries\n");
mz_zip_reader_end(&archive);
return false;
}
mz_zip_archive_file_stat stat;
res = mz_zip_reader_file_stat(&archive, 0, &stat);
if (res == 0)
{
printf("Unable to extract entry statistics\n");
mz_zip_reader_end(&archive);
return false;
}
std::string internal_amf_filename = boost::ireplace_last_copy(boost::filesystem::path(path).filename().string(), ".zip.amf", ".amf");
if (internal_amf_filename != stat.m_filename)
{
printf("Found invalid internal filename\n");
mz_zip_reader_end(&archive);
return false;
}
if (stat.m_uncomp_size == 0)
{
printf("Found invalid size\n");
mz_zip_reader_end(&archive);
return false;
}
XML_Parser parser = XML_ParserCreate(nullptr); // encoding
if (!parser) {
printf("Couldn't allocate memory for parser\n");
mz_zip_reader_end(&archive);
return false;
}
AMFParserContext ctx(parser, path, bundle, model);
XML_SetUserData(parser, (void*)&ctx);
XML_SetElementHandler(parser, AMFParserContext::startElement, AMFParserContext::endElement);
XML_SetCharacterDataHandler(parser, AMFParserContext::characters);
void* parser_buffer = XML_GetBuffer(parser, (int)stat.m_uncomp_size);
if (parser_buffer == nullptr)
{
printf("Unable to create buffer\n");
mz_zip_reader_end(&archive);
return false;
}
res = mz_zip_reader_extract_file_to_mem(&archive, stat.m_filename, parser_buffer, (size_t)stat.m_uncomp_size, 0);
if (res == 0)
{
printf("Error while reading model data to buffer\n");
mz_zip_reader_end(&archive);
return false;
}
if (!XML_ParseBuffer(parser, (int)stat.m_uncomp_size, 1))
{
printf("Error (%s) while parsing xml file at line %d\n", XML_ErrorString(XML_GetErrorCode(parser)), XML_GetCurrentLineNumber(parser));
mz_zip_reader_end(&archive);
return false;
}
ctx.endDocument();
mz_zip_reader_end(&archive);
return true;
}
// Load an AMF file into a provided model.
// If bundle is not a null pointer, updates it if the amf file/archive contains config data
bool load_amf(const char *path, PresetBundle* bundle, Model *model)
{
if (boost::iends_with(path, ".zip.amf"))
return load_amf_archive(path, bundle, model);
else if (boost::iends_with(path, ".amf") || boost::iends_with(path, ".amf.xml"))
return load_amf_file(path, bundle, model);
else
return false;
}
bool store_amf(const char *path, Model *model, Print* print)
{
if ((path == nullptr) || (model == nullptr) || (print == nullptr))
return false;
mz_zip_archive archive;
mz_zip_zero_struct(&archive);
mz_bool res = mz_zip_writer_init_file(&archive, path, 0);
if (res == 0)
return false;
std::stringstream stream;
stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
stream << "<amf unit=\"millimeter\">\n";
stream << "<metadata type=\"cad\">Slic3r " << SLIC3R_VERSION << "</metadata>\n";
std::string config = "\n";
GCode::append_full_config(*print, config);
stream << "<metadata type=\"" << SLIC3R_CONFIG_TYPE << "\">" << config << "</metadata>\n";
for (const auto &material : model->materials) {
if (material.first.empty())
continue;
// note that material-id must never be 0 since it's reserved by the AMF spec
fprintf(file, " <material id=\"%s\">\n", material.first.c_str());
stream << " <material id=\"" << material.first << "\">\n";
for (const auto &attr : material.second->attributes)
fprintf(file, " <metadata type=\"%s\">%s</metadata>\n", attr.first.c_str(), attr.second.c_str());
stream << " <metadata type=\"" << attr.first << "\">" << attr.second << "</metadata>\n";
for (const std::string &key : material.second->config.keys())
fprintf(file, " <metadata type=\"slic3r.%s\">%s</metadata>\n", key.c_str(), material.second->config.serialize(key).c_str());
fprintf(file, " </material>\n");
stream << " <metadata type=\"slic3r." << key << "\">" << material.second->config.serialize(key) << "</metadata>\n";
stream << " </material>\n";
}
std::string instances;
for (size_t object_id = 0; object_id < model->objects.size(); ++ object_id) {
ModelObject *object = model->objects[object_id];
fprintf(file, " <object id=\"" PRINTF_ZU "\">\n", object_id);
stream << " <object id=\"" << object_id << "\">\n";
for (const std::string &key : object->config.keys())
fprintf(file, " <metadata type=\"slic3r.%s\">%s</metadata>\n", key.c_str(), object->config.serialize(key).c_str());
if (! object->name.empty())
fprintf(file, " <metadata type=\"name\">%s</metadata>\n", object->name.c_str());
stream << " <metadata type=\"slic3r." << key << "\">" << object->config.serialize(key) << "</metadata>\n";
if (!object->name.empty())
stream << " <metadata type=\"name\">" << object->name << "</metadata>\n";
std::vector<double> layer_height_profile = object->layer_height_profile_valid ? object->layer_height_profile : std::vector<double>();
if (layer_height_profile.size() >= 4 && (layer_height_profile.size() % 2) == 0) {
// Store the layer height profile as a single semicolon separated list.
fprintf(file, " <metadata type=\"slic3r.layer_height_profile\">");
fprintf(file, "%f", layer_height_profile.front());
for (size_t i = 1; i < layer_height_profile.size(); ++ i)
fprintf(file, ";%f", layer_height_profile[i]);
fprintf(file, "\n </metadata>\n");
stream << " <metadata type=\"slic3r.layer_height_profile\">";
stream << layer_height_profile.front();
for (size_t i = 1; i < layer_height_profile.size(); ++i)
stream << ";" << layer_height_profile[i];
stream << "\n </metadata>\n";
}
//FIXME Store the layer height ranges (ModelObject::layer_height_ranges)
fprintf(file, " <mesh>\n");
fprintf(file, " <vertices>\n");
stream << " <mesh>\n";
stream << " <vertices>\n";
std::vector<int> vertices_offsets;
int num_vertices = 0;
for (ModelVolume *volume : object->volumes) {
@ -572,41 +706,41 @@ bool store_amf(const char *path, Model *model)
if (stl.v_shared == nullptr)
stl_generate_shared_vertices(&stl);
for (size_t i = 0; i < stl.stats.shared_vertices; ++ i) {
fprintf(file, " <vertex>\n");
fprintf(file, " <coordinates>\n");
fprintf(file, " <x>%f</x>\n", stl.v_shared[i].x);
fprintf(file, " <y>%f</y>\n", stl.v_shared[i].y);
fprintf(file, " <z>%f</z>\n", stl.v_shared[i].z);
fprintf(file, " </coordinates>\n");
fprintf(file, " </vertex>\n");
stream << " <vertex>\n";
stream << " <coordinates>\n";
stream << " <x>" << stl.v_shared[i].x << "</x>\n";
stream << " <y>" << stl.v_shared[i].y << "</y>\n";
stream << " <z>" << stl.v_shared[i].z << "</z>\n";
stream << " </coordinates>\n";
stream << " </vertex>\n";
}
num_vertices += stl.stats.shared_vertices;
}
fprintf(file, " </vertices>\n");
for (size_t i_volume = 0; i_volume < object->volumes.size(); ++ i_volume) {
stream << " </vertices>\n";
for (size_t i_volume = 0; i_volume < object->volumes.size(); ++i_volume) {
ModelVolume *volume = object->volumes[i_volume];
int vertices_offset = vertices_offsets[i_volume];
if (volume->material_id().empty())
fprintf(file, " <volume>\n");
stream << " <volume>\n";
else
fprintf(file, " <volume materialid=\"%s\">\n", volume->material_id().c_str());
stream << " <volume materialid=\"" << volume->material_id() << "\">\n";
for (const std::string &key : volume->config.keys())
fprintf(file, " <metadata type=\"slic3r.%s\">%s</metadata>\n", key.c_str(), volume->config.serialize(key).c_str());
if (! volume->name.empty())
fprintf(file, " <metadata type=\"name\">%s</metadata>\n", volume->name.c_str());
stream << " <metadata type=\"slic3r." << key << "\">" << volume->config.serialize(key) << "</metadata>\n";
if (!volume->name.empty())
stream << " <metadata type=\"name\">" << volume->name << "</metadata>\n";
if (volume->modifier)
fprintf(file, " <metadata type=\"slic3r.modifier\">1</metadata>\n");
for (int i = 0; i < volume->mesh.stl.stats.number_of_facets; ++ i) {
fprintf(file, " <triangle>\n");
for (int j = 0; j < 3; ++ j)
fprintf(file, " <v%d>%d</v%d>\n", j+1, volume->mesh.stl.v_indices[i].vertex[j] + vertices_offset, j+1);
fprintf(file, " </triangle>\n");
stream << " <metadata type=\"slic3r.modifier\">1</metadata>\n";
for (int i = 0; i < volume->mesh.stl.stats.number_of_facets; ++i) {
stream << " <triangle>\n";
for (int j = 0; j < 3; ++j)
stream << " <v" << j + 1 << ">" << volume->mesh.stl.v_indices[i].vertex[j] + vertices_offset << "</v" << j + 1 << ">\n";
stream << " </triangle>\n";
}
fprintf(file, " </volume>\n");
stream << " </volume>\n";
}
fprintf(file, " </mesh>\n");
fprintf(file, " </object>\n");
if (! object->instances.empty()) {
stream << " </mesh>\n";
stream << " </object>\n";
if (!object->instances.empty()) {
for (ModelInstance *instance : object->instances) {
char buf[512];
sprintf(buf,
@ -627,12 +761,31 @@ bool store_amf(const char *path, Model *model)
}
}
if (! instances.empty()) {
fprintf(file, " <constellation id=\"1\">\n");
fwrite(instances.data(), instances.size(), 1, file);
fprintf(file, " </constellation>\n");
stream << " <constellation id=\"1\">\n";
stream << instances;
stream << " </constellation>\n";
}
fprintf(file, "</amf>\n");
fclose(file);
stream << "</amf>\n";
std::string internal_amf_filename = boost::ireplace_last_copy(boost::filesystem::path(path).filename().string(), ".zip.amf", ".amf");
std::string out = stream.str();
if (!mz_zip_writer_add_mem(&archive, internal_amf_filename.c_str(), (const void*)out.data(), out.length(), MZ_DEFAULT_COMPRESSION))
{
mz_zip_writer_end(&archive);
boost::filesystem::remove(path);
return false;
}
if (!mz_zip_writer_finalize_archive(&archive))
{
mz_zip_writer_end(&archive);
boost::filesystem::remove(path);
return false;
}
mz_zip_writer_end(&archive);
return true;
}

View file

@ -4,11 +4,15 @@
namespace Slic3r {
class Model;
class Print;
class PresetBundle;
// Load an AMF file into a provided model.
extern bool load_amf(const char *path, Model *model);
// Load the content of an amf file into the given model and preset bundle.
extern bool load_amf(const char *path, PresetBundle* bundle, Model *model);
extern bool store_amf(const char *path, Model *model);
// Save the given model and the config data contained in the given Print into an amf file.
// The model could be modified during the export process if meshes are not repaired or have no shared vertices
extern bool store_amf(const char *path, Model *model, Print* print);
}; // namespace Slic3r

View file

@ -816,13 +816,10 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
// Append full config.
_write(file, "\n");
{
StaticPrintConfig *configs[] = { &print.config, &print.default_object_config, &print.default_region_config };
for (size_t i = 0; i < sizeof(configs) / sizeof(configs[0]); ++ i) {
StaticPrintConfig *cfg = configs[i];
for (const std::string &key : cfg->keys())
if (key != "compatible_printers")
_write_format(file, "; %s = %s\n", key.c_str(), cfg->serialize(key).c_str());
}
std::string full_config = "";
append_full_config(print, full_config);
if (!full_config.empty())
_write(file, full_config);
}
// starts analizer calculations
@ -1385,6 +1382,24 @@ void GCode::apply_print_config(const PrintConfig &print_config)
m_config.apply(print_config);
}
void GCode::append_full_config(const Print& print, std::string& str)
{
char buff[1024];
const StaticPrintConfig *configs[] = { &print.config, &print.default_object_config, &print.default_region_config };
for (size_t i = 0; i < sizeof(configs) / sizeof(configs[0]); ++i) {
const StaticPrintConfig *cfg = configs[i];
for (const std::string &key : cfg->keys())
{
if (key != "compatible_printers")
{
sprintf(buff, "; %s = %s\n", key.c_str(), cfg->serialize(key).c_str());
str += buff;
}
}
}
}
void GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)
{
m_writer.set_extruders(extruder_ids);

View file

@ -160,6 +160,9 @@ public:
void set_layer_count(unsigned int value) { m_layer_count = value; }
void apply_print_config(const PrintConfig &print_config);
// append full config to the given string
static void append_full_config(const Print& print, std::string& str);
protected:
void _do_export(Print &print, FILE *file, GCodePreviewData *preview_data);

View file

@ -5,6 +5,7 @@
#include "Format/OBJ.hpp"
#include "Format/PRUS.hpp"
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
#include <float.h>
@ -46,16 +47,16 @@ Model Model::read_from_file(const std::string &input_file, bool add_default_inst
result = load_stl(input_file.c_str(), &model);
else if (boost::algorithm::iends_with(input_file, ".obj"))
result = load_obj(input_file.c_str(), &model);
else if (boost::algorithm::iends_with(input_file, ".amf") ||
boost::algorithm::iends_with(input_file, ".amf.xml"))
result = load_amf(input_file.c_str(), &model);
else if (!boost::algorithm::iends_with(input_file, ".zip.amf") && (boost::algorithm::iends_with(input_file, ".amf") ||
boost::algorithm::iends_with(input_file, ".amf.xml")))
result = load_amf(input_file.c_str(), nullptr, &model);
#ifdef SLIC3R_PRUS
else if (boost::algorithm::iends_with(input_file, ".prusa"))
result = load_prus(input_file.c_str(), &model);
#endif /* SLIC3R_PRUS */
else
throw std::runtime_error("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");
if (! result)
throw std::runtime_error("Loading of a model file failed.");
@ -71,6 +72,33 @@ Model Model::read_from_file(const std::string &input_file, bool add_default_inst
return model;
}
Model Model::read_from_archive(const std::string &input_file, PresetBundle* bundle, bool add_default_instances)
{
Model model;
bool result = false;
if (boost::algorithm::iends_with(input_file, ".3mf"))
result = load_3mf(input_file.c_str(), bundle, &model);
else if (boost::algorithm::iends_with(input_file, ".zip.amf"))
result = load_amf(input_file.c_str(), bundle, &model);
else
throw std::runtime_error("Unknown file format. Input file must have .3mf or .zip.amf extension.");
if (!result)
throw std::runtime_error("Loading of a model file failed.");
if (model.objects.empty())
throw std::runtime_error("The supplied file couldn't be read because it's empty");
for (ModelObject *o : model.objects)
o->input_file = input_file;
if (add_default_instances)
model.add_default_instances();
return model;
}
ModelObject* Model::add_object()
{
this->objects.emplace_back(new ModelObject(this));
@ -115,6 +143,23 @@ void Model::delete_object(size_t idx)
this->objects.erase(i);
}
void Model::delete_object(ModelObject* object)
{
if (object == nullptr)
return;
for (ModelObjectPtrs::iterator it = objects.begin(); it != objects.end(); ++it)
{
ModelObject* obj = *it;
if (obj == object)
{
delete obj;
objects.erase(it);
return;
}
}
}
void Model::clear_objects()
{
for (ModelObject *o : this->objects)
@ -607,6 +652,20 @@ void ModelObject::rotate(float angle, const Axis &axis)
this->invalidate_bounding_box();
}
void ModelObject::transform(const float* matrix3x4)
{
if (matrix3x4 == nullptr)
return;
for (ModelVolume* v : volumes)
{
v->mesh.transform(matrix3x4);
}
origin_translation = Pointf3(0.0f, 0.0f, 0.0f);
invalidate_bounding_box();
}
void ModelObject::mirror(const Axis &axis)
{
for (ModelVolume *v : this->volumes)

View file

@ -19,6 +19,7 @@ class ModelInstance;
class ModelMaterial;
class ModelObject;
class ModelVolume;
class PresetBundle;
typedef std::string t_model_material_id;
typedef std::string t_model_material_attribute;
@ -119,6 +120,7 @@ public:
void translate(coordf_t x, coordf_t y, coordf_t z);
void scale(const Pointf3 &versor);
void rotate(float angle, const Axis &axis);
void transform(const float* matrix3x4);
void mirror(const Axis &axis);
size_t materials_count() const;
size_t facets_count() const;
@ -238,12 +240,14 @@ public:
~Model() { this->clear_objects(); this->clear_materials(); }
static Model read_from_file(const std::string &input_file, bool add_default_instances = true);
static Model read_from_archive(const std::string &input_file, PresetBundle* bundle, bool add_default_instances = true);
ModelObject* add_object();
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
ModelObject* add_object(const ModelObject &other, bool copy_volumes = true);
void delete_object(size_t idx);
void delete_object(ModelObject* object);
void clear_objects();
ModelMaterial* add_material(t_model_material_id material_id);

View file

@ -375,6 +375,15 @@ void TriangleMesh::mirror_z()
this->mirror(Z);
}
void TriangleMesh::transform(const float* matrix3x4)
{
if (matrix3x4 == nullptr)
return;
stl_transform(&stl, const_cast<float*>(matrix3x4));
stl_invalidate_shared_vertices(&stl);
}
void TriangleMesh::align_to_origin()
{
this->translate(

View file

@ -47,6 +47,7 @@ public:
void mirror_x();
void mirror_y();
void mirror_z();
void transform(const float* matrix3x4);
void align_to_origin();
void rotate(double angle, Point* center);
TriangleMeshPtrs split() const;

594
xs/src/miniz/miniz.cpp Normal file
View file

@ -0,0 +1,594 @@
/**************************************************************************
*
* Copyright 2013-2014 RAD Game Tools and Valve Software
* Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
**************************************************************************/
#include "miniz.h"
typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
/* ------------------- zlib-style API's */
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len)
{
mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16);
size_t block_len = buf_len % 5552;
if (!ptr)
return MZ_ADLER32_INIT;
while (buf_len)
{
for (i = 0; i + 7 < block_len; i += 8, ptr += 8)
{
s1 += ptr[0], s2 += s1;
s1 += ptr[1], s2 += s1;
s1 += ptr[2], s2 += s1;
s1 += ptr[3], s2 += s1;
s1 += ptr[4], s2 += s1;
s1 += ptr[5], s2 += s1;
s1 += ptr[6], s2 += s1;
s1 += ptr[7], s2 += s1;
}
for (; i < block_len; ++i)
s1 += *ptr++, s2 += s1;
s1 %= 65521U, s2 %= 65521U;
buf_len -= block_len;
block_len = 5552;
}
return (s2 << 16) + s1;
}
/* Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C implementation that balances processor cache usage against speed": http://www.geocities.com/malbrain/ */
#if 0
mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len)
{
static const mz_uint32 s_crc32[16] = { 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c };
mz_uint32 crcu32 = (mz_uint32)crc;
if (!ptr)
return MZ_CRC32_INIT;
crcu32 = ~crcu32;
while (buf_len--)
{
mz_uint8 b = *ptr++;
crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)];
crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)];
}
return ~crcu32;
}
#else
/* Faster, but larger CPU cache footprint.
*/
mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len)
{
static const mz_uint32 s_crc_table[256] =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F,
0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB,
0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA,
0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE,
0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A,
0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409,
0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739,
0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268,
0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0,
0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8,
0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,
0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703,
0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7,
0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE,
0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6,
0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D,
0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5,
0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605,
0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
mz_uint32 crc32 = (mz_uint32)crc ^ 0xFFFFFFFF;
const mz_uint8 *pByte_buf = (const mz_uint8 *)ptr;
while (buf_len >= 4)
{
crc32 = (crc32 >> 8) ^ s_crc_table[(crc32 ^ pByte_buf[0]) & 0xFF];
crc32 = (crc32 >> 8) ^ s_crc_table[(crc32 ^ pByte_buf[1]) & 0xFF];
crc32 = (crc32 >> 8) ^ s_crc_table[(crc32 ^ pByte_buf[2]) & 0xFF];
crc32 = (crc32 >> 8) ^ s_crc_table[(crc32 ^ pByte_buf[3]) & 0xFF];
pByte_buf += 4;
buf_len -= 4;
}
while (buf_len)
{
crc32 = (crc32 >> 8) ^ s_crc_table[(crc32 ^ pByte_buf[0]) & 0xFF];
++pByte_buf;
--buf_len;
}
return ~crc32;
}
#endif
void mz_free(void *p)
{
MZ_FREE(p);
}
void *miniz_def_alloc_func(void *opaque, size_t items, size_t size)
{
(void)opaque, (void)items, (void)size;
return MZ_MALLOC(items * size);
}
void miniz_def_free_func(void *opaque, void *address)
{
(void)opaque, (void)address;
MZ_FREE(address);
}
void *miniz_def_realloc_func(void *opaque, void *address, size_t items, size_t size)
{
(void)opaque, (void)address, (void)items, (void)size;
return MZ_REALLOC(address, items * size);
}
const char *mz_version(void)
{
return MZ_VERSION;
}
#ifndef MINIZ_NO_ZLIB_APIS
int mz_deflateInit(mz_streamp pStream, int level)
{
return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY);
}
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy)
{
tdefl_compressor *pComp;
mz_uint comp_flags = TDEFL_COMPUTE_ADLER32 | tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);
if (!pStream)
return MZ_STREAM_ERROR;
if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) || ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS)))
return MZ_PARAM_ERROR;
pStream->data_type = 0;
pStream->adler = MZ_ADLER32_INIT;
pStream->msg = NULL;
pStream->reserved = 0;
pStream->total_in = 0;
pStream->total_out = 0;
if (!pStream->zalloc)
pStream->zalloc = miniz_def_alloc_func;
if (!pStream->zfree)
pStream->zfree = miniz_def_free_func;
pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1, sizeof(tdefl_compressor));
if (!pComp)
return MZ_MEM_ERROR;
pStream->state = (struct mz_internal_state *)pComp;
if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY)
{
mz_deflateEnd(pStream);
return MZ_PARAM_ERROR;
}
return MZ_OK;
}
int mz_deflateReset(mz_streamp pStream)
{
if ((!pStream) || (!pStream->state) || (!pStream->zalloc) || (!pStream->zfree))
return MZ_STREAM_ERROR;
pStream->total_in = pStream->total_out = 0;
tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL, ((tdefl_compressor *)pStream->state)->m_flags);
return MZ_OK;
}
int mz_deflate(mz_streamp pStream, int flush)
{
size_t in_bytes, out_bytes;
mz_ulong orig_total_in, orig_total_out;
int mz_status = MZ_OK;
if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) || (!pStream->next_out))
return MZ_STREAM_ERROR;
if (!pStream->avail_out)
return MZ_BUF_ERROR;
if (flush == MZ_PARTIAL_FLUSH)
flush = MZ_SYNC_FLUSH;
if (((tdefl_compressor *)pStream->state)->m_prev_return_status == TDEFL_STATUS_DONE)
return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;
orig_total_in = pStream->total_in;
orig_total_out = pStream->total_out;
for (;;)
{
tdefl_status defl_status;
in_bytes = pStream->avail_in;
out_bytes = pStream->avail_out;
defl_status = tdefl_compress((tdefl_compressor *)pStream->state, pStream->next_in, &in_bytes, pStream->next_out, &out_bytes, (tdefl_flush)flush);
pStream->next_in += (mz_uint)in_bytes;
pStream->avail_in -= (mz_uint)in_bytes;
pStream->total_in += (mz_uint)in_bytes;
pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state);
pStream->next_out += (mz_uint)out_bytes;
pStream->avail_out -= (mz_uint)out_bytes;
pStream->total_out += (mz_uint)out_bytes;
if (defl_status < 0)
{
mz_status = MZ_STREAM_ERROR;
break;
}
else if (defl_status == TDEFL_STATUS_DONE)
{
mz_status = MZ_STREAM_END;
break;
}
else if (!pStream->avail_out)
break;
else if ((!pStream->avail_in) && (flush != MZ_FINISH))
{
if ((flush) || (pStream->total_in != orig_total_in) || (pStream->total_out != orig_total_out))
break;
return MZ_BUF_ERROR; /* Can't make forward progress without some input.
*/
}
}
return mz_status;
}
int mz_deflateEnd(mz_streamp pStream)
{
if (!pStream)
return MZ_STREAM_ERROR;
if (pStream->state)
{
pStream->zfree(pStream->opaque, pStream->state);
pStream->state = NULL;
}
return MZ_OK;
}
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len)
{
(void)pStream;
/* This is really over conservative. (And lame, but it's actually pretty tricky to compute a true upper bound given the way tdefl's blocking works.) */
return MZ_MAX(128 + (source_len * 110) / 100, 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5);
}
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level)
{
int status;
mz_stream stream;
memset(&stream, 0, sizeof(stream));
/* In case mz_ulong is 64-bits (argh I hate longs). */
if ((source_len | *pDest_len) > 0xFFFFFFFFU)
return MZ_PARAM_ERROR;
stream.next_in = pSource;
stream.avail_in = (mz_uint32)source_len;
stream.next_out = pDest;
stream.avail_out = (mz_uint32)*pDest_len;
status = mz_deflateInit(&stream, level);
if (status != MZ_OK)
return status;
status = mz_deflate(&stream, MZ_FINISH);
if (status != MZ_STREAM_END)
{
mz_deflateEnd(&stream);
return (status == MZ_OK) ? MZ_BUF_ERROR : status;
}
*pDest_len = stream.total_out;
return mz_deflateEnd(&stream);
}
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len)
{
return mz_compress2(pDest, pDest_len, pSource, source_len, MZ_DEFAULT_COMPRESSION);
}
mz_ulong mz_compressBound(mz_ulong source_len)
{
return mz_deflateBound(NULL, source_len);
}
typedef struct
{
tinfl_decompressor m_decomp;
mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed;
int m_window_bits;
mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
tinfl_status m_last_status;
} inflate_state;
int mz_inflateInit2(mz_streamp pStream, int window_bits)
{
inflate_state *pDecomp;
if (!pStream)
return MZ_STREAM_ERROR;
if ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS))
return MZ_PARAM_ERROR;
pStream->data_type = 0;
pStream->adler = 0;
pStream->msg = NULL;
pStream->total_in = 0;
pStream->total_out = 0;
pStream->reserved = 0;
if (!pStream->zalloc)
pStream->zalloc = miniz_def_alloc_func;
if (!pStream->zfree)
pStream->zfree = miniz_def_free_func;
pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1, sizeof(inflate_state));
if (!pDecomp)
return MZ_MEM_ERROR;
pStream->state = (struct mz_internal_state *)pDecomp;
tinfl_init(&pDecomp->m_decomp);
pDecomp->m_dict_ofs = 0;
pDecomp->m_dict_avail = 0;
pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
pDecomp->m_first_call = 1;
pDecomp->m_has_flushed = 0;
pDecomp->m_window_bits = window_bits;
return MZ_OK;
}
int mz_inflateInit(mz_streamp pStream)
{
return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);
}
int mz_inflate(mz_streamp pStream, int flush)
{
inflate_state *pState;
mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
size_t in_bytes, out_bytes, orig_avail_in;
tinfl_status status;
if ((!pStream) || (!pStream->state))
return MZ_STREAM_ERROR;
if (flush == MZ_PARTIAL_FLUSH)
flush = MZ_SYNC_FLUSH;
if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH))
return MZ_STREAM_ERROR;
pState = (inflate_state *)pStream->state;
if (pState->m_window_bits > 0)
decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
orig_avail_in = pStream->avail_in;
first_call = pState->m_first_call;
pState->m_first_call = 0;
if (pState->m_last_status < 0)
return MZ_DATA_ERROR;
if (pState->m_has_flushed && (flush != MZ_FINISH))
return MZ_STREAM_ERROR;
pState->m_has_flushed |= (flush == MZ_FINISH);
if ((flush == MZ_FINISH) && (first_call))
{
/* MZ_FINISH on the first call implies that the input and output buffers are large enough to hold the entire compressed/decompressed file. */
decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
in_bytes = pStream->avail_in;
out_bytes = pStream->avail_out;
status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pStream->next_out, pStream->next_out, &out_bytes, decomp_flags);
pState->m_last_status = status;
pStream->next_in += (mz_uint)in_bytes;
pStream->avail_in -= (mz_uint)in_bytes;
pStream->total_in += (mz_uint)in_bytes;
pStream->adler = tinfl_get_adler32(&pState->m_decomp);
pStream->next_out += (mz_uint)out_bytes;
pStream->avail_out -= (mz_uint)out_bytes;
pStream->total_out += (mz_uint)out_bytes;
if (status < 0)
return MZ_DATA_ERROR;
else if (status != TINFL_STATUS_DONE)
{
pState->m_last_status = TINFL_STATUS_FAILED;
return MZ_BUF_ERROR;
}
return MZ_STREAM_END;
}
/* flush != MZ_FINISH then we must assume there's more input. */
if (flush != MZ_FINISH)
decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;
if (pState->m_dict_avail)
{
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
pStream->next_out += n;
pStream->avail_out -= n;
pStream->total_out += n;
pState->m_dict_avail -= n;
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
return ((pState->m_last_status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK;
}
for (;;)
{
in_bytes = pStream->avail_in;
out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;
status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);
pState->m_last_status = status;
pStream->next_in += (mz_uint)in_bytes;
pStream->avail_in -= (mz_uint)in_bytes;
pStream->total_in += (mz_uint)in_bytes;
pStream->adler = tinfl_get_adler32(&pState->m_decomp);
pState->m_dict_avail = (mz_uint)out_bytes;
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
pStream->next_out += n;
pStream->avail_out -= n;
pStream->total_out += n;
pState->m_dict_avail -= n;
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
if (status < 0)
return MZ_DATA_ERROR; /* Stream is corrupted (there could be some uncompressed data left in the output dictionary - oh well). */
else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))
return MZ_BUF_ERROR; /* Signal caller that we can't make forward progress without supplying more input or by setting flush to MZ_FINISH. */
else if (flush == MZ_FINISH)
{
/* The output buffer MUST be large to hold the remaining uncompressed data when flush==MZ_FINISH. */
if (status == TINFL_STATUS_DONE)
return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
/* status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's at least 1 more byte on the way. If there's no more room left in the output buffer then something is wrong. */
else if (!pStream->avail_out)
return MZ_BUF_ERROR;
}
else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) || (!pStream->avail_out) || (pState->m_dict_avail))
break;
}
return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK;
}
int mz_inflateEnd(mz_streamp pStream)
{
if (!pStream)
return MZ_STREAM_ERROR;
if (pStream->state)
{
pStream->zfree(pStream->opaque, pStream->state);
pStream->state = NULL;
}
return MZ_OK;
}
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len)
{
mz_stream stream;
int status;
memset(&stream, 0, sizeof(stream));
/* In case mz_ulong is 64-bits (argh I hate longs). */
if ((source_len | *pDest_len) > 0xFFFFFFFFU)
return MZ_PARAM_ERROR;
stream.next_in = pSource;
stream.avail_in = (mz_uint32)source_len;
stream.next_out = pDest;
stream.avail_out = (mz_uint32)*pDest_len;
status = mz_inflateInit(&stream);
if (status != MZ_OK)
return status;
status = mz_inflate(&stream, MZ_FINISH);
if (status != MZ_STREAM_END)
{
mz_inflateEnd(&stream);
return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR : status;
}
*pDest_len = stream.total_out;
return mz_inflateEnd(&stream);
}
const char *mz_error(int err)
{
static struct
{
int m_err;
const char *m_pDesc;
} s_error_descs[] =
{
{ MZ_OK, "" }, { MZ_STREAM_END, "stream end" }, { MZ_NEED_DICT, "need dictionary" }, { MZ_ERRNO, "file error" }, { MZ_STREAM_ERROR, "stream error" }, { MZ_DATA_ERROR, "data error" }, { MZ_MEM_ERROR, "out of memory" }, { MZ_BUF_ERROR, "buf error" }, { MZ_VERSION_ERROR, "version error" }, { MZ_PARAM_ERROR, "parameter error" }
};
mz_uint i;
for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i)
if (s_error_descs[i].m_err == err)
return s_error_descs[i].m_pDesc;
return NULL;
}
#endif /*MINIZ_NO_ZLIB_APIS */
/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
*/

462
xs/src/miniz/miniz.h Normal file
View file

@ -0,0 +1,462 @@
/* miniz.c 2.0.6 beta - public domain deflate/inflate, zlib-subset, ZIP reading/writing/appending, PNG writing
See "unlicense" statement at the end of this file.
Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013
Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt
Most API's defined in miniz.c are optional. For example, to disable the archive related functions just define
MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO (see the list below for more macros).
* Low-level Deflate/Inflate implementation notes:
Compression: Use the "tdefl" API's. The compressor supports raw, static, and dynamic blocks, lazy or
greedy parsing, match length filtering, RLE-only, and Huffman-only streams. It performs and compresses
approximately as well as zlib.
Decompression: Use the "tinfl" API's. The entire decompressor is implemented as a single function
coroutine: see tinfl_decompress(). It supports decompression into a 32KB (or larger power of 2) wrapping buffer, or into a memory
block large enough to hold the entire file.
The low-level tdefl/tinfl API's do not make any use of dynamic memory allocation.
* zlib-style API notes:
miniz.c implements a fairly large subset of zlib. There's enough functionality present for it to be a drop-in
zlib replacement in many apps:
The z_stream struct, optional memory allocation callbacks
deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound
inflateInit/inflateInit2/inflate/inflateEnd
compress, compress2, compressBound, uncompress
CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly routines.
Supports raw deflate streams or standard zlib streams with adler-32 checking.
Limitations:
The callback API's are not implemented yet. No support for gzip headers or zlib static dictionaries.
I've tried to closely emulate zlib's various flavors of stream flushing and return status codes, but
there are no guarantees that miniz.c pulls this off perfectly.
* PNG writing: See the tdefl_write_image_to_png_file_in_memory() function, originally written by
Alex Evans. Supports 1-4 bytes/pixel images.
* ZIP archive API notes:
The ZIP archive API's where designed with simplicity and efficiency in mind, with just enough abstraction to
get the job done with minimal fuss. There are simple API's to retrieve file information, read files from
existing archives, create new archives, append new files to existing archives, or clone archive data from
one archive to another. It supports archives located in memory or the heap, on disk (using stdio.h),
or you can specify custom file read/write callbacks.
- Archive reading: Just call this function to read a single file from a disk archive:
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name,
size_t *pSize, mz_uint zip_flags);
For more complex cases, use the "mz_zip_reader" functions. Upon opening an archive, the entire central
directory is located and read as-is into memory, and subsequent file access only occurs when reading individual files.
- Archives file scanning: The simple way is to use this function to scan a loaded archive for a specific file:
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags);
The locate operation can optionally check file comments too, which (as one example) can be used to identify
multiple versions of the same file in an archive. This function uses a simple linear search through the central
directory, so it's not very fast.
Alternately, you can iterate through all the files in an archive (using mz_zip_reader_get_num_files()) and
retrieve detailed info on each file by calling mz_zip_reader_file_stat().
- Archive creation: Use the "mz_zip_writer" functions. The ZIP writer immediately writes compressed file data
to disk and builds an exact image of the central directory in memory. The central directory image is written
all at once at the end of the archive file when the archive is finalized.
The archive writer can optionally align each file's local header and file data to any power of 2 alignment,
which can be useful when the archive will be read from optical media. Also, the writer supports placing
arbitrary data blobs at the very beginning of ZIP archives. Archives written using either feature are still
readable by any ZIP tool.
- Archive appending: The simple way to add a single file to an archive is to call this function:
mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name,
const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags);
The archive will be created if it doesn't already exist, otherwise it'll be appended to.
Note the appending is done in-place and is not an atomic operation, so if something goes wrong
during the operation it's possible the archive could be left without a central directory (although the local
file headers and file data will be fine, so the archive will be recoverable).
For more complex archive modification scenarios:
1. The safest way is to use a mz_zip_reader to read the existing archive, cloning only those bits you want to
preserve into a new archive using using the mz_zip_writer_add_from_zip_reader() function (which compiles the
compressed file data as-is). When you're done, delete the old archive and rename the newly written archive, and
you're done. This is safe but requires a bunch of temporary disk space or heap memory.
2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using mz_zip_writer_init_from_reader(),
append new files as needed, then finalize the archive which will write an updated central directory to the
original archive. (This is basically what mz_zip_add_mem_to_archive_file_in_place() does.) There's a
possibility that the archive's central directory could be lost with this method if anything goes wrong, though.
- ZIP archive support limitations:
No zip64 or spanning support. Extraction functions can only handle unencrypted, stored or deflated files.
Requires streams capable of seeking.
* This is a header file library, like stb_image.c. To get only a header file, either cut and paste the
below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then include miniz.c from it.
* Important: For best perf. be sure to customize the below macros for your target platform:
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
#define MINIZ_LITTLE_ENDIAN 1
#define MINIZ_HAS_64BIT_REGISTERS 1
* On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before including miniz.c to ensure miniz
uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be able to process large files
(i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes).
*/
#pragma once
#include "miniz_common.h"
#include "miniz_tdef.h"
#include "miniz_tinfl.h"
/* Defines to completely disable specific portions of miniz.c:
If all macros here are defined the only functionality remaining will be CRC-32, adler-32, tinfl, and tdefl. */
/* Define MINIZ_NO_STDIO to disable all usage and any functions which rely on stdio for file I/O. */
/*#define MINIZ_NO_STDIO */
/* If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able to get the current time, or */
/* get/set file times, and the C run-time funcs that get/set times won't be called. */
/* The current downside is the times written to your archives will be from 1979. */
/*#define MINIZ_NO_TIME */
/* Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's. */
/*#define MINIZ_NO_ARCHIVE_APIS */
/* Define MINIZ_NO_ARCHIVE_WRITING_APIS to disable all writing related ZIP archive API's. */
/*#define MINIZ_NO_ARCHIVE_WRITING_APIS */
/* Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression API's. */
/*#define MINIZ_NO_ZLIB_APIS */
/* Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent conflicts against stock zlib. */
/*#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES */
/* Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.
Note if MINIZ_NO_MALLOC is defined then the user must always provide custom user alloc/free/realloc
callbacks to the zlib and archive API's, and a few stand-alone helper API's which don't provide custom user
functions (such as tdefl_compress_mem_to_heap() and tinfl_decompress_mem_to_heap()) won't work. */
/*#define MINIZ_NO_MALLOC */
#if defined(__TINYC__) && (defined(__linux) || defined(__linux__))
/* TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc on Linux */
#define MINIZ_NO_TIME
#endif
#include <stddef.h>
#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)
#include <time.h>
#endif
#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || defined(__i386) || defined(__i486__) || defined(__i486) || defined(i386) || defined(__ia64__) || defined(__x86_64__)
/* MINIZ_X86_OR_X64_CPU is only used to help set the below macros. */
#define MINIZ_X86_OR_X64_CPU 1
#else
#define MINIZ_X86_OR_X64_CPU 0
#endif
#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
/* Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian. */
#define MINIZ_LITTLE_ENDIAN 1
#else
#define MINIZ_LITTLE_ENDIAN 0
#endif
#if MINIZ_X86_OR_X64_CPU
/* Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient integer loads and stores from unaligned addresses. */
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
#else
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 0
#endif
#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__) || defined(__ia64__) || defined(__x86_64__)
/* Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are reasonably fast (and don't involve compiler generated calls to helper functions). */
#define MINIZ_HAS_64BIT_REGISTERS 1
#else
#define MINIZ_HAS_64BIT_REGISTERS 0
#endif
/* ------------------- zlib-style API Definitions. */
/* For more compatibility with zlib, miniz.c uses unsigned long for some parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits! */
typedef unsigned long mz_ulong;
/* mz_free() internally uses the MZ_FREE() macro (which by default calls free() unless you've modified the MZ_MALLOC macro) to release a block allocated from the heap. */
void mz_free(void *p);
#define MZ_ADLER32_INIT (1)
/* mz_adler32() returns the initial adler-32 value to use when called with ptr==NULL. */
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);
#define MZ_CRC32_INIT (0)
/* mz_crc32() returns the initial CRC-32 value to use when called with ptr==NULL. */
mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);
/* Compression strategies. */
enum
{
MZ_DEFAULT_STRATEGY = 0,
MZ_FILTERED = 1,
MZ_HUFFMAN_ONLY = 2,
MZ_RLE = 3,
MZ_FIXED = 4
};
/* Method */
#define MZ_DEFLATED 8
/* Heap allocation callbacks.
Note that mz_alloc_func parameter types purpsosely differ from zlib's: items/size is size_t, not unsigned long. */
typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);
typedef void (*mz_free_func)(void *opaque, void *address);
typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items, size_t size);
/* Compression levels: 0-9 are the standard zlib-style levels, 10 is best possible compression (not zlib compatible, and may be very slow), MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL. */
enum
{
MZ_NO_COMPRESSION = 0,
MZ_BEST_SPEED = 1,
MZ_BEST_COMPRESSION = 9,
MZ_UBER_COMPRESSION = 10,
MZ_DEFAULT_LEVEL = 6,
MZ_DEFAULT_COMPRESSION = -1
};
#define MZ_VERSION "10.0.1"
#define MZ_VERNUM 0xA010
#define MZ_VER_MAJOR 10
#define MZ_VER_MINOR 0
#define MZ_VER_REVISION 1
#define MZ_VER_SUBREVISION 0
#ifndef MINIZ_NO_ZLIB_APIS
/* Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The other values are for advanced use (refer to the zlib docs). */
enum
{
MZ_NO_FLUSH = 0,
MZ_PARTIAL_FLUSH = 1,
MZ_SYNC_FLUSH = 2,
MZ_FULL_FLUSH = 3,
MZ_FINISH = 4,
MZ_BLOCK = 5
};
/* Return status codes. MZ_PARAM_ERROR is non-standard. */
enum
{
MZ_OK = 0,
MZ_STREAM_END = 1,
MZ_NEED_DICT = 2,
MZ_ERRNO = -1,
MZ_STREAM_ERROR = -2,
MZ_DATA_ERROR = -3,
MZ_MEM_ERROR = -4,
MZ_BUF_ERROR = -5,
MZ_VERSION_ERROR = -6,
MZ_PARAM_ERROR = -10000
};
/* Window bits */
#define MZ_DEFAULT_WINDOW_BITS 15
struct mz_internal_state;
/* Compression/decompression stream struct. */
typedef struct mz_stream_s
{
const unsigned char *next_in; /* pointer to next byte to read */
unsigned int avail_in; /* number of bytes available at next_in */
mz_ulong total_in; /* total number of bytes consumed so far */
unsigned char *next_out; /* pointer to next byte to write */
unsigned int avail_out; /* number of bytes that can be written to next_out */
mz_ulong total_out; /* total number of bytes produced so far */
char *msg; /* error msg (unused) */
struct mz_internal_state *state; /* internal state, allocated by zalloc/zfree */
mz_alloc_func zalloc; /* optional heap allocation function (defaults to malloc) */
mz_free_func zfree; /* optional heap free function (defaults to free) */
void *opaque; /* heap alloc function user pointer */
int data_type; /* data_type (unused) */
mz_ulong adler; /* adler32 of the source or uncompressed data */
mz_ulong reserved; /* not used */
} mz_stream;
typedef mz_stream *mz_streamp;
/* Returns the version string of miniz.c. */
const char *mz_version(void);
/* mz_deflateInit() initializes a compressor with default options: */
/* Parameters: */
/* pStream must point to an initialized mz_stream struct. */
/* level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION]. */
/* level 1 enables a specially optimized compression function that's been optimized purely for performance, not ratio. */
/* (This special func. is currently only enabled when MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.) */
/* Return values: */
/* MZ_OK on success. */
/* MZ_STREAM_ERROR if the stream is bogus. */
/* MZ_PARAM_ERROR if the input parameters are bogus. */
/* MZ_MEM_ERROR on out of memory. */
int mz_deflateInit(mz_streamp pStream, int level);
/* mz_deflateInit2() is like mz_deflate(), except with more control: */
/* Additional parameters: */
/* method must be MZ_DEFLATED */
/* window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no header or footer) */
/* mem_level must be between [1, 9] (it's checked but ignored by miniz.c) */
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy);
/* Quickly resets a compressor without having to reallocate anything. Same as calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2(). */
int mz_deflateReset(mz_streamp pStream);
/* mz_deflate() compresses the input to output, consuming as much of the input and producing as much output as possible. */
/* Parameters: */
/* pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members. */
/* flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or MZ_FINISH. */
/* Return values: */
/* MZ_OK on success (when flushing, or if more input is needed but not available, and/or there's more output to be written but the output buffer is full). */
/* MZ_STREAM_END if all input has been consumed and all output bytes have been written. Don't call mz_deflate() on the stream anymore. */
/* MZ_STREAM_ERROR if the stream is bogus. */
/* MZ_PARAM_ERROR if one of the parameters is invalid. */
/* MZ_BUF_ERROR if no forward progress is possible because the input and/or output buffers are empty. (Fill up the input buffer or free up some output space and try again.) */
int mz_deflate(mz_streamp pStream, int flush);
/* mz_deflateEnd() deinitializes a compressor: */
/* Return values: */
/* MZ_OK on success. */
/* MZ_STREAM_ERROR if the stream is bogus. */
int mz_deflateEnd(mz_streamp pStream);
/* mz_deflateBound() returns a (very) conservative upper bound on the amount of data that could be generated by deflate(), assuming flush is set to only MZ_NO_FLUSH or MZ_FINISH. */
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);
/* Single-call compression functions mz_compress() and mz_compress2(): */
/* Returns MZ_OK on success, or one of the error codes from mz_deflate() on failure. */
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len);
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level);
/* mz_compressBound() returns a (very) conservative upper bound on the amount of data that could be generated by calling mz_compress(). */
mz_ulong mz_compressBound(mz_ulong source_len);
/* Initializes a decompressor. */
int mz_inflateInit(mz_streamp pStream);
/* mz_inflateInit2() is like mz_inflateInit() with an additional option that controls the window size and whether or not the stream has been wrapped with a zlib header/footer: */
/* window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate). */
int mz_inflateInit2(mz_streamp pStream, int window_bits);
/* Decompresses the input stream to the output, consuming only as much of the input as needed, and writing as much to the output as possible. */
/* Parameters: */
/* pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members. */
/* flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH. */
/* On the first call, if flush is MZ_FINISH it's assumed the input and output buffers are both sized large enough to decompress the entire stream in a single call (this is slightly faster). */
/* MZ_FINISH implies that there are no more source bytes available beside what's already in the input buffer, and that the output buffer is large enough to hold the rest of the decompressed data. */
/* Return values: */
/* MZ_OK on success. Either more input is needed but not available, and/or there's more output to be written but the output buffer is full. */
/* MZ_STREAM_END if all needed input has been consumed and all output bytes have been written. For zlib streams, the adler-32 of the decompressed data has also been verified. */
/* MZ_STREAM_ERROR if the stream is bogus. */
/* MZ_DATA_ERROR if the deflate stream is invalid. */
/* MZ_PARAM_ERROR if one of the parameters is invalid. */
/* MZ_BUF_ERROR if no forward progress is possible because the input buffer is empty but the inflater needs more input to continue, or if the output buffer is not large enough. Call mz_inflate() again */
/* with more input data, or with more room in the output buffer (except when using single call decompression, described above). */
int mz_inflate(mz_streamp pStream, int flush);
/* Deinitializes a decompressor. */
int mz_inflateEnd(mz_streamp pStream);
/* Single-call decompression. */
/* Returns MZ_OK on success, or one of the error codes from mz_inflate() on failure. */
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len);
/* Returns a string description of the specified error code, or NULL if the error code is invalid. */
const char *mz_error(int err);
/* Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used as a drop-in replacement for the subset of zlib that miniz.c supports. */
/* Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you use zlib in the same project. */
#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
typedef unsigned char Byte;
typedef unsigned int uInt;
typedef mz_ulong uLong;
typedef Byte Bytef;
typedef uInt uIntf;
typedef char charf;
typedef int intf;
typedef void *voidpf;
typedef uLong uLongf;
typedef void *voidp;
typedef void *const voidpc;
#define Z_NULL 0
#define Z_NO_FLUSH MZ_NO_FLUSH
#define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH
#define Z_SYNC_FLUSH MZ_SYNC_FLUSH
#define Z_FULL_FLUSH MZ_FULL_FLUSH
#define Z_FINISH MZ_FINISH
#define Z_BLOCK MZ_BLOCK
#define Z_OK MZ_OK
#define Z_STREAM_END MZ_STREAM_END
#define Z_NEED_DICT MZ_NEED_DICT
#define Z_ERRNO MZ_ERRNO
#define Z_STREAM_ERROR MZ_STREAM_ERROR
#define Z_DATA_ERROR MZ_DATA_ERROR
#define Z_MEM_ERROR MZ_MEM_ERROR
#define Z_BUF_ERROR MZ_BUF_ERROR
#define Z_VERSION_ERROR MZ_VERSION_ERROR
#define Z_PARAM_ERROR MZ_PARAM_ERROR
#define Z_NO_COMPRESSION MZ_NO_COMPRESSION
#define Z_BEST_SPEED MZ_BEST_SPEED
#define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION
#define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION
#define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY
#define Z_FILTERED MZ_FILTERED
#define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY
#define Z_RLE MZ_RLE
#define Z_FIXED MZ_FIXED
#define Z_DEFLATED MZ_DEFLATED
#define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS
#define alloc_func mz_alloc_func
#define free_func mz_free_func
#define internal_state mz_internal_state
#define z_stream mz_stream
#define deflateInit mz_deflateInit
#define deflateInit2 mz_deflateInit2
#define deflateReset mz_deflateReset
#define deflate mz_deflate
#define deflateEnd mz_deflateEnd
#define deflateBound mz_deflateBound
#define compress mz_compress
#define compress2 mz_compress2
#define compressBound mz_compressBound
#define inflateInit mz_inflateInit
#define inflateInit2 mz_inflateInit2
#define inflate mz_inflate
#define inflateEnd mz_inflateEnd
#define uncompress mz_uncompress
#define crc32 mz_crc32
#define adler32 mz_adler32
#define MAX_WBITS 15
#define MAX_MEM_LEVEL 9
#define zError mz_error
#define ZLIB_VERSION MZ_VERSION
#define ZLIB_VERNUM MZ_VERNUM
#define ZLIB_VER_MAJOR MZ_VER_MAJOR
#define ZLIB_VER_MINOR MZ_VER_MINOR
#define ZLIB_VER_REVISION MZ_VER_REVISION
#define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION
#define zlibVersion mz_version
#define zlib_version mz_version()
#endif /* #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES */
#endif /* MINIZ_NO_ZLIB_APIS */

View file

@ -0,0 +1,83 @@
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
/* ------------------- Types and macros */
typedef unsigned char mz_uint8;
typedef signed short mz_int16;
typedef unsigned short mz_uint16;
typedef unsigned int mz_uint32;
typedef unsigned int mz_uint;
typedef int64_t mz_int64;
typedef uint64_t mz_uint64;
typedef int mz_bool;
#define MZ_FALSE (0)
#define MZ_TRUE (1)
/* Works around MSVC's spammy "warning C4127: conditional expression is constant" message. */
#ifdef _MSC_VER
#define MZ_MACRO_END while (0, 0)
#else
#define MZ_MACRO_END while (0)
#endif
#ifdef MINIZ_NO_STDIO
#define MZ_FILE void *
#else
#include <stdio.h>
#define MZ_FILE FILE
#endif /* #ifdef MINIZ_NO_STDIO */
#ifdef MINIZ_NO_TIME
typedef struct mz_dummy_time_t_tag
{
int m_dummy;
} mz_dummy_time_t;
#define MZ_TIME_T mz_dummy_time_t
#else
#define MZ_TIME_T time_t
#endif
#define MZ_ASSERT(x) assert(x)
#ifdef MINIZ_NO_MALLOC
#define MZ_MALLOC(x) NULL
#define MZ_FREE(x) (void)x, ((void)0)
#define MZ_REALLOC(p, x) NULL
#else
#define MZ_MALLOC(x) malloc(x)
#define MZ_FREE(x) free(x)
#define MZ_REALLOC(p, x) realloc(p, x)
#endif
#define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
#else
#define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
#define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
#endif
#define MZ_READ_LE64(p) (((mz_uint64)MZ_READ_LE32(p)) | (((mz_uint64)MZ_READ_LE32((const mz_uint8 *)(p) + sizeof(mz_uint32))) << 32U))
#ifdef _MSC_VER
#define MZ_FORCEINLINE __forceinline
#elif defined(__GNUC__)
#define MZ_FORCEINLINE __inline__ __attribute__((__always_inline__))
#else
#define MZ_FORCEINLINE inline
#endif
extern void *miniz_def_alloc_func(void *opaque, size_t items, size_t size);
extern void miniz_def_free_func(void *opaque, void *address);
extern void *miniz_def_realloc_func(void *opaque, void *address, size_t items, size_t size);
#define MZ_UINT16_MAX (0xFFFFU)
#define MZ_UINT32_MAX (0xFFFFFFFFU)

1555
xs/src/miniz/miniz_tdef.cpp Normal file

File diff suppressed because it is too large Load diff

181
xs/src/miniz/miniz_tdef.h Normal file
View file

@ -0,0 +1,181 @@
#pragma once
#include "miniz_common.h"
/* ------------------- Low-level Compression API Definitions */
/* Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly slower, and raw/dynamic blocks will be output more frequently). */
#define TDEFL_LESS_MEMORY 0
/* tdefl_init() compression flags logically OR'd together (low 12 bits contain the max. number of probes per dictionary search): */
/* TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ (slowest/best compression). */
enum
{
TDEFL_HUFFMAN_ONLY = 0,
TDEFL_DEFAULT_MAX_PROBES = 128,
TDEFL_MAX_PROBES_MASK = 0xFFF
};
/* TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before the deflate data, and the Adler-32 of the source data at the end. Otherwise, you'll get raw deflate data. */
/* TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even when not writing zlib headers). */
/* TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more efficient lazy parsing. */
/* TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's initialization time to the minimum, but the output may vary from run to run given the same input (depending on the contents of memory). */
/* TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1) */
/* TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled. */
/* TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables. */
/* TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks. */
/* The low 12 bits are reserved to control the max # of hash probes per dictionary lookup (see TDEFL_MAX_PROBES_MASK). */
enum
{
TDEFL_WRITE_ZLIB_HEADER = 0x01000,
TDEFL_COMPUTE_ADLER32 = 0x02000,
TDEFL_GREEDY_PARSING_FLAG = 0x04000,
TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
TDEFL_RLE_MATCHES = 0x10000,
TDEFL_FILTER_MATCHES = 0x20000,
TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,
TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000
};
/* High level compression functions: */
/* tdefl_compress_mem_to_heap() compresses a block in memory to a heap block allocated via malloc(). */
/* On entry: */
/* pSrc_buf, src_buf_len: Pointer and size of source block to compress. */
/* flags: The max match finder probes (default is 128) logically OR'd against the above flags. Higher probes are slower but improve compression. */
/* On return: */
/* Function returns a pointer to the compressed data, or NULL on failure. */
/* *pOut_len will be set to the compressed data's size, which could be larger than src_buf_len on uncompressible data. */
/* The caller must free() the returned block when it's no longer needed. */
void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);
/* tdefl_compress_mem_to_mem() compresses a block in memory to another block in memory. */
/* Returns 0 on failure. */
size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);
/* Compresses an image to a compressed PNG file in memory. */
/* On entry: */
/* pImage, w, h, and num_chans describe the image to compress. num_chans may be 1, 2, 3, or 4. */
/* The image pitch in bytes per scanline will be w*num_chans. The leftmost pixel on the top scanline is stored first in memory. */
/* level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL */
/* If flip is true, the image will be flipped on the Y axis (useful for OpenGL apps). */
/* On return: */
/* Function returns a pointer to the compressed data, or NULL on failure. */
/* *pLen_out will be set to the size of the PNG image file. */
/* The caller must mz_free() the returned heap block (which will typically be larger than *pLen_out) when it's no longer needed. */
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip);
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out);
/* Output stream interface. The compressor uses this interface to write compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time. */
typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser);
/* tdefl_compress_mem_to_output() compresses a block to an output stream. The above helpers use this function internally. */
mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);
enum
{
TDEFL_MAX_HUFF_TABLES = 3,
TDEFL_MAX_HUFF_SYMBOLS_0 = 288,
TDEFL_MAX_HUFF_SYMBOLS_1 = 32,
TDEFL_MAX_HUFF_SYMBOLS_2 = 19,
TDEFL_LZ_DICT_SIZE = 32768,
TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1,
TDEFL_MIN_MATCH_LEN = 3,
TDEFL_MAX_MATCH_LEN = 258
};
/* TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed output block (using static/fixed Huffman codes). */
#if TDEFL_LESS_MEMORY
enum
{
TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024,
TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
TDEFL_MAX_HUFF_SYMBOLS = 288,
TDEFL_LZ_HASH_BITS = 12,
TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
};
#else
enum
{
TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024,
TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
TDEFL_MAX_HUFF_SYMBOLS = 288,
TDEFL_LZ_HASH_BITS = 15,
TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
};
#endif
/* The low-level tdefl functions below may be used directly if the above helper functions aren't flexible enough. The low-level functions don't make any heap allocations, unlike the above helper functions. */
typedef enum {
TDEFL_STATUS_BAD_PARAM = -2,
TDEFL_STATUS_PUT_BUF_FAILED = -1,
TDEFL_STATUS_OKAY = 0,
TDEFL_STATUS_DONE = 1
} tdefl_status;
/* Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums */
typedef enum {
TDEFL_NO_FLUSH = 0,
TDEFL_SYNC_FLUSH = 2,
TDEFL_FULL_FLUSH = 3,
TDEFL_FINISH = 4
} tdefl_flush;
/* tdefl's compression state structure. */
typedef struct
{
tdefl_put_buf_func_ptr m_pPut_buf_func;
void *m_pPut_buf_user;
mz_uint m_flags, m_max_probes[2];
int m_greedy_parsing;
mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, m_bit_buffer;
mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, m_wants_to_finish;
tdefl_status m_prev_return_status;
const void *m_pIn_buf;
void *m_pOut_buf;
size_t *m_pIn_buf_size, *m_pOut_buf_size;
tdefl_flush m_flush;
const mz_uint8 *m_pSrc;
size_t m_src_buf_left, m_out_buf_ofs;
mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
} tdefl_compressor;
/* Initializes the compressor. */
/* There is no corresponding deinit() function because the tdefl API's do not dynamically allocate memory. */
/* pBut_buf_func: If NULL, output data will be supplied to the specified callback. In this case, the user should call the tdefl_compress_buffer() API for compression. */
/* If pBut_buf_func is NULL the user should always call the tdefl_compress() API. */
/* flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, etc.) */
tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);
/* Compresses a block of data, consuming as much of the specified input buffer as possible, and writing as much compressed data to the specified output buffer as possible. */
tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush);
/* tdefl_compress_buffer() is only usable when the tdefl_init() is called with a non-NULL tdefl_put_buf_func_ptr. */
/* tdefl_compress_buffer() always consumes the entire input buffer. */
tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush);
tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);
mz_uint32 tdefl_get_adler32(tdefl_compressor *d);
/* Create tdefl_compress() flags given zlib-style compression parameters. */
/* level may range from [0,10] (where 10 is absolute max compression, but may be much slower on some files) */
/* window_bits may be -15 (raw deflate) or 15 (zlib) */
/* strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, MZ_RLE, or MZ_FIXED */
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy);
/* Allocate the tdefl_compressor structure in C so that */
/* non-C language bindings to tdefl_ API don't need to worry about */
/* structure size and allocation mechanism. */
tdefl_compressor *tdefl_compressor_alloc();
void tdefl_compressor_free(tdefl_compressor *pComp);

View file

@ -0,0 +1,725 @@
/**************************************************************************
*
* Copyright 2013-2014 RAD Game Tools and Valve Software
* Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
**************************************************************************/
#include "miniz_tinfl.h"
/* ------------------- Low-level Decompression (completely independent from all compression API's) */
#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
#define TINFL_MEMSET(p, c, l) memset(p, c, l)
#define TINFL_CR_BEGIN \
switch (r->m_state) \
{ \
case 0:
#define TINFL_CR_RETURN(state_index, result) \
do \
{ \
status = result; \
r->m_state = state_index; \
goto common_exit; \
case state_index:; \
} \
MZ_MACRO_END
#define TINFL_CR_RETURN_FOREVER(state_index, result) \
do \
{ \
for (;;) \
{ \
TINFL_CR_RETURN(state_index, result); \
} \
} \
MZ_MACRO_END
#define TINFL_CR_FINISH }
#define TINFL_GET_BYTE(state_index, c) \
do \
{ \
while (pIn_buf_cur >= pIn_buf_end) \
{ \
TINFL_CR_RETURN(state_index, (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) ? TINFL_STATUS_NEEDS_MORE_INPUT : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS); \
} \
c = *pIn_buf_cur++; \
} \
MZ_MACRO_END
#define TINFL_NEED_BITS(state_index, n) \
do \
{ \
mz_uint c; \
TINFL_GET_BYTE(state_index, c); \
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
num_bits += 8; \
} while (num_bits < (mz_uint)(n))
#define TINFL_SKIP_BITS(state_index, n) \
do \
{ \
if (num_bits < (mz_uint)(n)) \
{ \
TINFL_NEED_BITS(state_index, n); \
} \
bit_buf >>= (n); \
num_bits -= (n); \
} \
MZ_MACRO_END
#define TINFL_GET_BITS(state_index, b, n) \
do \
{ \
if (num_bits < (mz_uint)(n)) \
{ \
TINFL_NEED_BITS(state_index, n); \
} \
b = bit_buf & ((1 << (n)) - 1); \
bit_buf >>= (n); \
num_bits -= (n); \
} \
MZ_MACRO_END
/* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2. */
/* It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a */
/* Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the */
/* bit buffer contains >=15 bits (deflate's max. Huffman code size). */
#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
do \
{ \
temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
if (temp >= 0) \
{ \
code_len = temp >> 9; \
if ((code_len) && (num_bits >= code_len)) \
break; \
} \
else if (num_bits > TINFL_FAST_LOOKUP_BITS) \
{ \
code_len = TINFL_FAST_LOOKUP_BITS; \
do \
{ \
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
} while ((temp < 0) && (num_bits >= (code_len + 1))); \
if (temp >= 0) \
break; \
} \
TINFL_GET_BYTE(state_index, c); \
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
num_bits += 8; \
} while (num_bits < 15);
/* TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read */
/* beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully */
/* decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32. */
/* The slow path is only executed at the very end of the input buffer. */
/* v1.16: The original macro handled the case at the very end of the passed-in input buffer, but we also need to handle the case where the user passes in 1+zillion bytes */
/* following the deflate data and our non-conservative read-ahead path won't kick in here on this code. This is much trickier. */
#define TINFL_HUFF_DECODE(state_index, sym, pHuff) \
do \
{ \
int temp; \
mz_uint code_len, c; \
if (num_bits < 15) \
{ \
if ((pIn_buf_end - pIn_buf_cur) < 2) \
{ \
TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
} \
else \
{ \
bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \
pIn_buf_cur += 2; \
num_bits += 16; \
} \
} \
if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \
code_len = temp >> 9, temp &= 511; \
else \
{ \
code_len = TINFL_FAST_LOOKUP_BITS; \
do \
{ \
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
} while (temp < 0); \
} \
sym = temp; \
bit_buf >>= code_len; \
num_bits -= code_len; \
} \
MZ_MACRO_END
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)
{
static const int s_length_base[31] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 };
static const int s_length_extra[31] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0 };
static const int s_dist_base[32] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0 };
static const int s_dist_extra[32] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };
static const mz_uint8 s_length_dezigzag[19] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
static const int s_min_table_sizes[3] = { 257, 1, 4 };
tinfl_status status = TINFL_STATUS_FAILED;
mz_uint32 num_bits, dist, counter, num_extra;
tinfl_bit_buf_t bit_buf;
const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start;
/* Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter). */
if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start))
{
*pIn_buf_size = *pOut_buf_size = 0;
return TINFL_STATUS_BAD_PARAM;
}
num_bits = r->m_num_bits;
bit_buf = r->m_bit_buf;
dist = r->m_dist;
counter = r->m_counter;
num_extra = r->m_num_extra;
dist_from_out_buf_start = r->m_dist_from_out_buf_start;
TINFL_CR_BEGIN
bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0;
r->m_z_adler32 = r->m_check_adler32 = 1;
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
{
TINFL_GET_BYTE(1, r->m_zhdr0);
TINFL_GET_BYTE(2, r->m_zhdr1);
counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4)))));
if (counter)
{
TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
}
}
do
{
TINFL_GET_BITS(3, r->m_final, 3);
r->m_type = r->m_final >> 1;
if (r->m_type == 0)
{
TINFL_SKIP_BITS(5, num_bits & 7);
for (counter = 0; counter < 4; ++counter)
{
if (num_bits)
TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
else
TINFL_GET_BYTE(7, r->m_raw_header[counter]);
}
if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8))))
{
TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
}
while ((counter) && (num_bits))
{
TINFL_GET_BITS(51, dist, 8);
while (pOut_buf_cur >= pOut_buf_end)
{
TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
}
*pOut_buf_cur++ = (mz_uint8)dist;
counter--;
}
while (counter)
{
size_t n;
while (pOut_buf_cur >= pOut_buf_end)
{
TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
}
while (pIn_buf_cur >= pIn_buf_end)
{
TINFL_CR_RETURN(38, (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) ? TINFL_STATUS_NEEDS_MORE_INPUT : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS);
}
n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter);
TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
pIn_buf_cur += n;
pOut_buf_cur += n;
counter -= (mz_uint)n;
}
}
else if (r->m_type == 3)
{
TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
}
else
{
if (r->m_type == 1)
{
mz_uint8 *p = r->m_tables[0].m_code_size;
mz_uint i;
r->m_table_sizes[0] = 288;
r->m_table_sizes[1] = 32;
TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
for (i = 0; i <= 143; ++i)
*p++ = 8;
for (; i <= 255; ++i)
*p++ = 9;
for (; i <= 279; ++i)
*p++ = 7;
for (; i <= 287; ++i)
*p++ = 8;
}
else
{
for (counter = 0; counter < 3; counter++)
{
TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]);
r->m_table_sizes[counter] += s_min_table_sizes[counter];
}
MZ_CLEAR_OBJ(r->m_tables[2].m_code_size);
for (counter = 0; counter < r->m_table_sizes[2]; counter++)
{
mz_uint s;
TINFL_GET_BITS(14, s, 3);
r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s;
}
r->m_table_sizes[2] = 19;
}
for (; (int)r->m_type >= 0; r->m_type--)
{
int tree_next, tree_cur;
tinfl_huff_table *pTable;
mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16];
pTable = &r->m_tables[r->m_type];
MZ_CLEAR_OBJ(total_syms);
MZ_CLEAR_OBJ(pTable->m_look_up);
MZ_CLEAR_OBJ(pTable->m_tree);
for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
total_syms[pTable->m_code_size[i]]++;
used_syms = 0, total = 0;
next_code[0] = next_code[1] = 0;
for (i = 1; i <= 15; ++i)
{
used_syms += total_syms[i];
next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
}
if ((65536 != total) && (used_syms > 1))
{
TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
}
for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index)
{
mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index];
if (!code_size)
continue;
cur_code = next_code[code_size]++;
for (l = code_size; l > 0; l--, cur_code >>= 1)
rev_code = (rev_code << 1) | (cur_code & 1);
if (code_size <= TINFL_FAST_LOOKUP_BITS)
{
mz_int16 k = (mz_int16)((code_size << 9) | sym_index);
while (rev_code < TINFL_FAST_LOOKUP_SIZE)
{
pTable->m_look_up[rev_code] = k;
rev_code += (1 << code_size);
}
continue;
}
if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)]))
{
pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next;
tree_cur = tree_next;
tree_next -= 2;
}
rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--)
{
tree_cur -= ((rev_code >>= 1) & 1);
if (!pTable->m_tree[-tree_cur - 1])
{
pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next;
tree_cur = tree_next;
tree_next -= 2;
}
else
tree_cur = pTable->m_tree[-tree_cur - 1];
}
tree_cur -= ((rev_code >>= 1) & 1);
pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
}
if (r->m_type == 2)
{
for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);)
{
mz_uint s;
TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]);
if (dist < 16)
{
r->m_len_codes[counter++] = (mz_uint8)dist;
continue;
}
if ((dist == 16) && (!counter))
{
TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
}
num_extra = "\02\03\07"[dist - 16];
TINFL_GET_BITS(18, s, num_extra);
s += "\03\03\013"[dist - 16];
TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
counter += s;
}
if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter)
{
TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
}
TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]);
TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]);
}
}
for (;;)
{
mz_uint8 *pSrc;
for (;;)
{
if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2))
{
TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
if (counter >= 256)
break;
while (pOut_buf_cur >= pOut_buf_end)
{
TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
}
*pOut_buf_cur++ = (mz_uint8)counter;
}
else
{
int sym2;
mz_uint code_len;
#if TINFL_USE_64BIT_BITBUF
if (num_bits < 30)
{
bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits);
pIn_buf_cur += 4;
num_bits += 32;
}
#else
if (num_bits < 15)
{
bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
pIn_buf_cur += 2;
num_bits += 16;
}
#endif
if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
code_len = sym2 >> 9;
else
{
code_len = TINFL_FAST_LOOKUP_BITS;
do
{
sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
} while (sym2 < 0);
}
counter = sym2;
bit_buf >>= code_len;
num_bits -= code_len;
if (counter & 256)
break;
#if !TINFL_USE_64BIT_BITBUF
if (num_bits < 15)
{
bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
pIn_buf_cur += 2;
num_bits += 16;
}
#endif
if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
code_len = sym2 >> 9;
else
{
code_len = TINFL_FAST_LOOKUP_BITS;
do
{
sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
} while (sym2 < 0);
}
bit_buf >>= code_len;
num_bits -= code_len;
pOut_buf_cur[0] = (mz_uint8)counter;
if (sym2 & 256)
{
pOut_buf_cur++;
counter = sym2;
break;
}
pOut_buf_cur[1] = (mz_uint8)sym2;
pOut_buf_cur += 2;
}
}
if ((counter &= 511) == 256)
break;
num_extra = s_length_extra[counter - 257];
counter = s_length_base[counter - 257];
if (num_extra)
{
mz_uint extra_bits;
TINFL_GET_BITS(25, extra_bits, num_extra);
counter += extra_bits;
}
TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
num_extra = s_dist_extra[dist];
dist = s_dist_base[dist];
if (num_extra)
{
mz_uint extra_bits;
TINFL_GET_BITS(27, extra_bits, num_extra);
dist += extra_bits;
}
dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
{
TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
}
pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask);
if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end)
{
while (counter--)
{
while (pOut_buf_cur >= pOut_buf_end)
{
TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
}
*pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask];
}
continue;
}
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
else if ((counter >= 9) && (counter <= dist))
{
const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
do
{
((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
pOut_buf_cur += 8;
} while ((pSrc += 8) < pSrc_end);
if ((counter &= 7) < 3)
{
if (counter)
{
pOut_buf_cur[0] = pSrc[0];
if (counter > 1)
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur += counter;
}
continue;
}
}
#endif
do
{
pOut_buf_cur[0] = pSrc[0];
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur[2] = pSrc[2];
pOut_buf_cur += 3;
pSrc += 3;
} while ((int)(counter -= 3) > 2);
if ((int)counter > 0)
{
pOut_buf_cur[0] = pSrc[0];
if ((int)counter > 1)
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur += counter;
}
}
}
} while (!(r->m_final & 1));
/* Ensure byte alignment and put back any bytes from the bitbuf if we've looked ahead too far on gzip, or other Deflate streams followed by arbitrary data. */
/* I'm being super conservative here. A number of simplifications can be made to the byte alignment part, and the Adler32 check shouldn't ever need to worry about reading from the bitbuf now. */
TINFL_SKIP_BITS(32, num_bits & 7);
while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8))
{
--pIn_buf_cur;
num_bits -= 8;
}
bit_buf &= (tinfl_bit_buf_t)((((mz_uint64)1) << num_bits) - (mz_uint64)1);
MZ_ASSERT(!num_bits); /* if this assert fires then we've read beyond the end of non-deflate/zlib streams with following data (such as gzip streams). */
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
{
for (counter = 0; counter < 4; ++counter)
{
mz_uint s;
if (num_bits)
TINFL_GET_BITS(41, s, 8);
else
TINFL_GET_BYTE(42, s);
r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
}
}
TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
TINFL_CR_FINISH
common_exit:
/* As long as we aren't telling the caller that we NEED more input to make forward progress: */
/* Put back any bytes from the bitbuf in case we've looked ahead too far on gzip, or other Deflate streams followed by arbitrary data. */
/* We need to be very careful here to NOT push back any bytes we definitely know we need to make forward progress, though, or we'll lock the caller up into an inf loop. */
if ((status != TINFL_STATUS_NEEDS_MORE_INPUT) && (status != TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS))
{
while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8))
{
--pIn_buf_cur;
num_bits -= 8;
}
}
r->m_num_bits = num_bits;
r->m_bit_buf = bit_buf & (tinfl_bit_buf_t)((((mz_uint64)1) << num_bits) - (mz_uint64)1);
r->m_dist = dist;
r->m_counter = counter;
r->m_num_extra = num_extra;
r->m_dist_from_out_buf_start = dist_from_out_buf_start;
*pIn_buf_size = pIn_buf_cur - pIn_buf_next;
*pOut_buf_size = pOut_buf_cur - pOut_buf_next;
if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0))
{
const mz_uint8 *ptr = pOut_buf_next;
size_t buf_len = *pOut_buf_size;
mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16;
size_t block_len = buf_len % 5552;
while (buf_len)
{
for (i = 0; i + 7 < block_len; i += 8, ptr += 8)
{
s1 += ptr[0], s2 += s1;
s1 += ptr[1], s2 += s1;
s1 += ptr[2], s2 += s1;
s1 += ptr[3], s2 += s1;
s1 += ptr[4], s2 += s1;
s1 += ptr[5], s2 += s1;
s1 += ptr[6], s2 += s1;
s1 += ptr[7], s2 += s1;
}
for (; i < block_len; ++i)
s1 += *ptr++, s2 += s1;
s1 %= 65521U, s2 %= 65521U;
buf_len -= block_len;
block_len = 5552;
}
r->m_check_adler32 = (s2 << 16) + s1;
if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32))
status = TINFL_STATUS_ADLER32_MISMATCH;
}
return status;
}
/* Higher level helper functions. */
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
{
tinfl_decompressor decomp;
void *pBuf = NULL, *pNew_buf;
size_t src_buf_ofs = 0, out_buf_capacity = 0;
*pOut_len = 0;
tinfl_init(&decomp);
for (;;)
{
size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL, &dst_buf_size,
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT))
{
MZ_FREE(pBuf);
*pOut_len = 0;
return NULL;
}
src_buf_ofs += src_buf_size;
*pOut_len += dst_buf_size;
if (status == TINFL_STATUS_DONE)
break;
new_out_buf_capacity = out_buf_capacity * 2;
if (new_out_buf_capacity < 128)
new_out_buf_capacity = 128;
pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
if (!pNew_buf)
{
MZ_FREE(pBuf);
*pOut_len = 0;
return NULL;
}
pBuf = pNew_buf;
out_buf_capacity = new_out_buf_capacity;
}
return pBuf;
}
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
{
tinfl_decompressor decomp;
tinfl_status status;
tinfl_init(&decomp);
status = tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len, (mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;
}
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
{
int result = 0;
tinfl_decompressor decomp;
mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE);
size_t in_buf_ofs = 0, dict_ofs = 0;
if (!pDict)
return TINFL_STATUS_FAILED;
tinfl_init(&decomp);
for (;;)
{
size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
(flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
in_buf_ofs += in_buf_size;
if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
break;
if (status != TINFL_STATUS_HAS_MORE_OUTPUT)
{
result = (status == TINFL_STATUS_DONE);
break;
}
dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
}
MZ_FREE(pDict);
*pIn_buf_size = in_buf_ofs;
return result;
}
tinfl_decompressor *tinfl_decompressor_alloc()
{
tinfl_decompressor *pDecomp = (tinfl_decompressor *)MZ_MALLOC(sizeof(tinfl_decompressor));
if (pDecomp)
tinfl_init(pDecomp);
return pDecomp;
}
void tinfl_decompressor_free(tinfl_decompressor *pDecomp)
{
MZ_FREE(pDecomp);
}

137
xs/src/miniz/miniz_tinfl.h Normal file
View file

@ -0,0 +1,137 @@
#pragma once
#include "miniz_common.h"
/* ------------------- Low-level Decompression API Definitions */
/* Decompression flags used by tinfl_decompress(). */
/* TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream. */
/* TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input. */
/* TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB). */
/* TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes. */
enum
{
TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
TINFL_FLAG_HAS_MORE_INPUT = 2,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
TINFL_FLAG_COMPUTE_ADLER32 = 8
};
/* High level decompression functions: */
/* tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc(). */
/* On entry: */
/* pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress. */
/* On return: */
/* Function returns a pointer to the decompressed data, or NULL on failure. */
/* *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data. */
/* The caller must call mz_free() on the returned block when it's no longer needed. */
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);
/* tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory. */
/* Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success. */
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);
/* tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer. */
/* Returns 1 on success or 0 on failure. */
typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser);
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);
struct tinfl_decompressor_tag;
typedef struct tinfl_decompressor_tag tinfl_decompressor;
/* Allocate the tinfl_decompressor structure in C so that */
/* non-C language bindings to tinfl_ API don't need to worry about */
/* structure size and allocation mechanism. */
tinfl_decompressor *tinfl_decompressor_alloc();
void tinfl_decompressor_free(tinfl_decompressor *pDecomp);
/* Max size of LZ dictionary. */
#define TINFL_LZ_DICT_SIZE 32768
/* Return status. */
typedef enum {
/* This flags indicates the inflator needs 1 or more input bytes to make forward progress, but the caller is indicating that no more are available. The compressed data */
/* is probably corrupted. If you call the inflator again with more bytes it'll try to continue processing the input but this is a BAD sign (either the data is corrupted or you called it incorrectly). */
/* If you call it again with no input you'll just get TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS again. */
TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS = -4,
/* This flag indicates that one or more of the input parameters was obviously bogus. (You can try calling it again, but if you get this error the calling code is wrong.) */
TINFL_STATUS_BAD_PARAM = -3,
/* This flags indicate the inflator is finished but the adler32 check of the uncompressed data didn't match. If you call it again it'll return TINFL_STATUS_DONE. */
TINFL_STATUS_ADLER32_MISMATCH = -2,
/* This flags indicate the inflator has somehow failed (bad code, corrupted input, etc.). If you call it again without resetting via tinfl_init() it it'll just keep on returning the same status failure code. */
TINFL_STATUS_FAILED = -1,
/* Any status code less than TINFL_STATUS_DONE must indicate a failure. */
/* This flag indicates the inflator has returned every byte of uncompressed data that it can, has consumed every byte that it needed, has successfully reached the end of the deflate stream, and */
/* if zlib headers and adler32 checking enabled that it has successfully checked the uncompressed data's adler32. If you call it again you'll just get TINFL_STATUS_DONE over and over again. */
TINFL_STATUS_DONE = 0,
/* This flag indicates the inflator MUST have more input data (even 1 byte) before it can make any more forward progress, or you need to clear the TINFL_FLAG_HAS_MORE_INPUT */
/* flag on the next call if you don't have any more source data. If the source data was somehow corrupted it's also possible (but unlikely) for the inflator to keep on demanding input to */
/* proceed, so be sure to properly set the TINFL_FLAG_HAS_MORE_INPUT flag. */
TINFL_STATUS_NEEDS_MORE_INPUT = 1,
/* This flag indicates the inflator definitely has 1 or more bytes of uncompressed data available, but it cannot write this data into the output buffer. */
/* Note if the source compressed data was corrupted it's possible for the inflator to return a lot of uncompressed data to the caller. I've been assuming you know how much uncompressed data to expect */
/* (either exact or worst case) and will stop calling the inflator and fail after receiving too much. In pure streaming scenarios where you have no idea how many bytes to expect this may not be possible */
/* so I may need to add some code to address this. */
TINFL_STATUS_HAS_MORE_OUTPUT = 2
} tinfl_status;
/* Initializes the decompressor to its initial state. */
#define tinfl_init(r) \
do \
{ \
(r)->m_state = 0; \
} \
MZ_MACRO_END
#define tinfl_get_adler32(r) (r)->m_check_adler32
/* Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability. */
/* This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output. */
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags);
/* Internal/private bits follow. */
enum
{
TINFL_MAX_HUFF_TABLES = 3,
TINFL_MAX_HUFF_SYMBOLS_0 = 288,
TINFL_MAX_HUFF_SYMBOLS_1 = 32,
TINFL_MAX_HUFF_SYMBOLS_2 = 19,
TINFL_FAST_LOOKUP_BITS = 10,
TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
};
typedef struct
{
mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
} tinfl_huff_table;
#if MINIZ_HAS_64BIT_REGISTERS
#define TINFL_USE_64BIT_BITBUF 1
#else
#define TINFL_USE_64BIT_BITBUF 0
#endif
#if TINFL_USE_64BIT_BITBUF
typedef mz_uint64 tinfl_bit_buf_t;
#define TINFL_BITBUF_SIZE (64)
#else
typedef mz_uint32 tinfl_bit_buf_t;
#define TINFL_BITBUF_SIZE (32)
#endif
struct tinfl_decompressor_tag
{
mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES];
tinfl_bit_buf_t m_bit_buf;
size_t m_dist_from_out_buf_start;
tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
};

4659
xs/src/miniz/miniz_zip.cpp Normal file

File diff suppressed because it is too large Load diff

429
xs/src/miniz/miniz_zip.h Normal file
View file

@ -0,0 +1,429 @@
#pragma once
#include "miniz.h"
/* ------------------- ZIP archive reading/writing */
#ifndef MINIZ_NO_ARCHIVE_APIS
enum
{
/* Note: These enums can be reduced as needed to save memory or stack space - they are pretty conservative. */
MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024,
MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 512,
MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 512
};
typedef struct
{
/* Central directory file index. */
mz_uint32 m_file_index;
/* Byte offset of this entry in the archive's central directory. Note we currently only support up to UINT_MAX or less bytes in the central dir. */
mz_uint64 m_central_dir_ofs;
/* These fields are copied directly from the zip's central dir. */
mz_uint16 m_version_made_by;
mz_uint16 m_version_needed;
mz_uint16 m_bit_flag;
mz_uint16 m_method;
#ifndef MINIZ_NO_TIME
MZ_TIME_T m_time;
#endif
/* CRC-32 of uncompressed data. */
mz_uint32 m_crc32;
/* File's compressed size. */
mz_uint64 m_comp_size;
/* File's uncompressed size. Note, I've seen some old archives where directory entries had 512 bytes for their uncompressed sizes, but when you try to unpack them you actually get 0 bytes. */
mz_uint64 m_uncomp_size;
/* Zip internal and external file attributes. */
mz_uint16 m_internal_attr;
mz_uint32 m_external_attr;
/* Entry's local header file offset in bytes. */
mz_uint64 m_local_header_ofs;
/* Size of comment in bytes. */
mz_uint32 m_comment_size;
/* MZ_TRUE if the entry appears to be a directory. */
mz_bool m_is_directory;
/* MZ_TRUE if the entry uses encryption/strong encryption (which miniz_zip doesn't support) */
mz_bool m_is_encrypted;
/* MZ_TRUE if the file is not encrypted, a patch file, and if it uses a compression method we support. */
mz_bool m_is_supported;
/* Filename. If string ends in '/' it's a subdirectory entry. */
/* Guaranteed to be zero terminated, may be truncated to fit. */
char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
/* Comment field. */
/* Guaranteed to be zero terminated, may be truncated to fit. */
char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
} mz_zip_archive_file_stat;
typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n);
typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n);
typedef mz_bool (*mz_file_needs_keepalive)(void *pOpaque);
struct mz_zip_internal_state_tag;
typedef struct mz_zip_internal_state_tag mz_zip_internal_state;
typedef enum {
MZ_ZIP_MODE_INVALID = 0,
MZ_ZIP_MODE_READING = 1,
MZ_ZIP_MODE_WRITING = 2,
MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
} mz_zip_mode;
typedef enum {
MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100,
MZ_ZIP_FLAG_IGNORE_PATH = 0x0200,
MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400,
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800,
MZ_ZIP_FLAG_VALIDATE_LOCATE_FILE_FLAG = 0x1000, /* if enabled, mz_zip_reader_locate_file() will be called on each file as its validated to ensure the func finds the file in the central dir (intended for testing) */
MZ_ZIP_FLAG_VALIDATE_HEADERS_ONLY = 0x2000, /* validate the local headers, but don't decompress the entire file and check the crc32 */
MZ_ZIP_FLAG_WRITE_ZIP64 = 0x4000, /* always use the zip64 file format, instead of the original zip file format with automatic switch to zip64. Use as flags parameter with mz_zip_writer_init*_v2 */
MZ_ZIP_FLAG_WRITE_ALLOW_READING = 0x8000,
MZ_ZIP_FLAG_ASCII_FILENAME = 0x10000
} mz_zip_flags;
typedef enum {
MZ_ZIP_TYPE_INVALID = 0,
MZ_ZIP_TYPE_USER,
MZ_ZIP_TYPE_MEMORY,
MZ_ZIP_TYPE_HEAP,
MZ_ZIP_TYPE_FILE,
MZ_ZIP_TYPE_CFILE,
MZ_ZIP_TOTAL_TYPES
} mz_zip_type;
/* miniz error codes. Be sure to update mz_zip_get_error_string() if you add or modify this enum. */
typedef enum {
MZ_ZIP_NO_ERROR = 0,
MZ_ZIP_UNDEFINED_ERROR,
MZ_ZIP_TOO_MANY_FILES,
MZ_ZIP_FILE_TOO_LARGE,
MZ_ZIP_UNSUPPORTED_METHOD,
MZ_ZIP_UNSUPPORTED_ENCRYPTION,
MZ_ZIP_UNSUPPORTED_FEATURE,
MZ_ZIP_FAILED_FINDING_CENTRAL_DIR,
MZ_ZIP_NOT_AN_ARCHIVE,
MZ_ZIP_INVALID_HEADER_OR_CORRUPTED,
MZ_ZIP_UNSUPPORTED_MULTIDISK,
MZ_ZIP_DECOMPRESSION_FAILED,
MZ_ZIP_COMPRESSION_FAILED,
MZ_ZIP_UNEXPECTED_DECOMPRESSED_SIZE,
MZ_ZIP_CRC_CHECK_FAILED,
MZ_ZIP_UNSUPPORTED_CDIR_SIZE,
MZ_ZIP_ALLOC_FAILED,
MZ_ZIP_FILE_OPEN_FAILED,
MZ_ZIP_FILE_CREATE_FAILED,
MZ_ZIP_FILE_WRITE_FAILED,
MZ_ZIP_FILE_READ_FAILED,
MZ_ZIP_FILE_CLOSE_FAILED,
MZ_ZIP_FILE_SEEK_FAILED,
MZ_ZIP_FILE_STAT_FAILED,
MZ_ZIP_INVALID_PARAMETER,
MZ_ZIP_INVALID_FILENAME,
MZ_ZIP_BUF_TOO_SMALL,
MZ_ZIP_INTERNAL_ERROR,
MZ_ZIP_FILE_NOT_FOUND,
MZ_ZIP_ARCHIVE_TOO_LARGE,
MZ_ZIP_VALIDATION_FAILED,
MZ_ZIP_WRITE_CALLBACK_FAILED,
MZ_ZIP_TOTAL_ERRORS
} mz_zip_error;
typedef struct
{
mz_uint64 m_archive_size;
mz_uint64 m_central_directory_file_ofs;
/* We only support up to UINT32_MAX files in zip64 mode. */
mz_uint32 m_total_files;
mz_zip_mode m_zip_mode;
mz_zip_type m_zip_type;
mz_zip_error m_last_error;
mz_uint64 m_file_offset_alignment;
mz_alloc_func m_pAlloc;
mz_free_func m_pFree;
mz_realloc_func m_pRealloc;
void *m_pAlloc_opaque;
mz_file_read_func m_pRead;
mz_file_write_func m_pWrite;
mz_file_needs_keepalive m_pNeeds_keepalive;
void *m_pIO_opaque;
mz_zip_internal_state *m_pState;
} mz_zip_archive;
typedef struct
{
mz_zip_archive *pZip;
mz_uint flags;
int status;
#ifndef MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS
mz_uint file_crc32;
#endif
mz_uint64 read_buf_size, read_buf_ofs, read_buf_avail, comp_remaining, out_buf_ofs, cur_file_ofs;
mz_zip_archive_file_stat file_stat;
void *pRead_buf;
void *pWrite_buf;
size_t out_blk_remain;
tinfl_decompressor inflator;
} mz_zip_reader_extract_iter_state;
/* -------- ZIP reading */
/* Inits a ZIP archive reader. */
/* These functions read and validate the archive's central directory. */
mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, mz_uint flags);
mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, size_t size, mz_uint flags);
#ifndef MINIZ_NO_STDIO
/* Read a archive from a disk file. */
/* file_start_ofs is the file offset where the archive actually begins, or 0. */
/* actual_archive_size is the true total size of the archive, which may be smaller than the file's actual size on disk. If zero the entire file is treated as the archive. */
mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint32 flags);
mz_bool mz_zip_reader_init_file_v2(mz_zip_archive *pZip, const char *pFilename, mz_uint flags, mz_uint64 file_start_ofs, mz_uint64 archive_size);
/* Read an archive from an already opened FILE, beginning at the current file position. */
/* The archive is assumed to be archive_size bytes long. If archive_size is < 0, then the entire rest of the file is assumed to contain the archive. */
/* The FILE will NOT be closed when mz_zip_reader_end() is called. */
mz_bool mz_zip_reader_init_cfile(mz_zip_archive *pZip, MZ_FILE *pFile, mz_uint64 archive_size, mz_uint flags);
#endif
/* Ends archive reading, freeing all allocations, and closing the input archive file if mz_zip_reader_init_file() was used. */
mz_bool mz_zip_reader_end(mz_zip_archive *pZip);
/* -------- ZIP reading or writing */
/* Clears a mz_zip_archive struct to all zeros. */
/* Important: This must be done before passing the struct to any mz_zip functions. */
void mz_zip_zero_struct(mz_zip_archive *pZip);
mz_zip_mode mz_zip_get_mode(mz_zip_archive *pZip);
mz_zip_type mz_zip_get_type(mz_zip_archive *pZip);
/* Returns the total number of files in the archive. */
mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip);
mz_uint64 mz_zip_get_archive_size(mz_zip_archive *pZip);
mz_uint64 mz_zip_get_archive_file_start_offset(mz_zip_archive *pZip);
MZ_FILE *mz_zip_get_cfile(mz_zip_archive *pZip);
/* Reads n bytes of raw archive data, starting at file offset file_ofs, to pBuf. */
size_t mz_zip_read_archive_data(mz_zip_archive *pZip, mz_uint64 file_ofs, void *pBuf, size_t n);
/* Attempts to locates a file in the archive's central directory. */
/* Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH */
/* Returns -1 if the file cannot be found. */
int mz_zip_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags);
/* Returns MZ_FALSE if the file cannot be found. */
mz_bool mz_zip_locate_file_v2(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags, mz_uint32 *pIndex);
/* All mz_zip funcs set the m_last_error field in the mz_zip_archive struct. These functions retrieve/manipulate this field. */
/* Note that the m_last_error functionality is not thread safe. */
mz_zip_error mz_zip_set_last_error(mz_zip_archive *pZip, mz_zip_error err_num);
mz_zip_error mz_zip_peek_last_error(mz_zip_archive *pZip);
mz_zip_error mz_zip_clear_last_error(mz_zip_archive *pZip);
mz_zip_error mz_zip_get_last_error(mz_zip_archive *pZip);
const char *mz_zip_get_error_string(mz_zip_error mz_err);
/* MZ_TRUE if the archive file entry is a directory entry. */
mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, mz_uint file_index);
/* MZ_TRUE if the file is encrypted/strong encrypted. */
mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, mz_uint file_index);
/* MZ_TRUE if the compression method is supported, and the file is not encrypted, and the file is not a compressed patch file. */
mz_bool mz_zip_reader_is_file_supported(mz_zip_archive *pZip, mz_uint file_index);
/* Retrieves the filename of an archive file entry. */
/* Returns the number of bytes written to pFilename, or if filename_buf_size is 0 this function returns the number of bytes needed to fully store the filename. */
mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, char *pFilename, mz_uint filename_buf_size);
/* Attempts to locates a file in the archive's central directory. */
/* Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH */
/* Returns -1 if the file cannot be found. */
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags);
int mz_zip_reader_locate_file_v2(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags, mz_uint32 *file_index);
/* Returns detailed information about an archive file entry. */
mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, mz_zip_archive_file_stat *pStat);
/* MZ_TRUE if the file is in zip64 format. */
/* A file is considered zip64 if it contained a zip64 end of central directory marker, or if it contained any zip64 extended file information fields in the central directory. */
mz_bool mz_zip_is_zip64(mz_zip_archive *pZip);
/* Returns the total central directory size in bytes. */
/* The current max supported size is <= MZ_UINT32_MAX. */
size_t mz_zip_get_central_dir_size(mz_zip_archive *pZip);
/* Extracts a archive file to a memory buffer using no memory allocation. */
/* There must be at least enough room on the stack to store the inflator's state (~34KB or so). */
mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
/* Extracts a archive file to a memory buffer. */
mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags);
/* Extracts a archive file to a dynamically allocated heap buffer. */
/* The memory will be allocated via the mz_zip_archive's alloc/realloc functions. */
/* Returns NULL and sets the last error on failure. */
void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, size_t *pSize, mz_uint flags);
void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, const char *pFilename, size_t *pSize, mz_uint flags);
/* Extracts a archive file using a callback function to output the file's data. */
mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, mz_uint file_index, mz_file_write_func pCallback, void *pOpaque, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, const char *pFilename, mz_file_write_func pCallback, void *pOpaque, mz_uint flags);
/* Extract a file iteratively */
mz_zip_reader_extract_iter_state* mz_zip_reader_extract_iter_new(mz_zip_archive *pZip, mz_uint file_index, mz_uint flags);
mz_zip_reader_extract_iter_state* mz_zip_reader_extract_file_iter_new(mz_zip_archive *pZip, const char *pFilename, mz_uint flags);
size_t mz_zip_reader_extract_iter_read(mz_zip_reader_extract_iter_state* pState, void* pvBuf, size_t buf_size);
mz_bool mz_zip_reader_extract_iter_free(mz_zip_reader_extract_iter_state* pState);
#ifndef MINIZ_NO_STDIO
/* Extracts a archive file to a disk file and sets its last accessed and modified times. */
/* This function only extracts files, not archive directory records. */
mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, const char *pDst_filename, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, const char *pArchive_filename, const char *pDst_filename, mz_uint flags);
/* Extracts a archive file starting at the current position in the destination FILE stream. */
mz_bool mz_zip_reader_extract_to_cfile(mz_zip_archive *pZip, mz_uint file_index, MZ_FILE *File, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_cfile(mz_zip_archive *pZip, const char *pArchive_filename, MZ_FILE *pFile, mz_uint flags);
#endif
#if 0
/* TODO */
typedef void *mz_zip_streaming_extract_state_ptr;
mz_zip_streaming_extract_state_ptr mz_zip_streaming_extract_begin(mz_zip_archive *pZip, mz_uint file_index, mz_uint flags);
uint64_t mz_zip_streaming_extract_get_size(mz_zip_archive *pZip, mz_zip_streaming_extract_state_ptr pState);
uint64_t mz_zip_streaming_extract_get_cur_ofs(mz_zip_archive *pZip, mz_zip_streaming_extract_state_ptr pState);
mz_bool mz_zip_streaming_extract_seek(mz_zip_archive *pZip, mz_zip_streaming_extract_state_ptr pState, uint64_t new_ofs);
size_t mz_zip_streaming_extract_read(mz_zip_archive *pZip, mz_zip_streaming_extract_state_ptr pState, void *pBuf, size_t buf_size);
mz_bool mz_zip_streaming_extract_end(mz_zip_archive *pZip, mz_zip_streaming_extract_state_ptr pState);
#endif
/* This function compares the archive's local headers, the optional local zip64 extended information block, and the optional descriptor following the compressed data vs. the data in the central directory. */
/* It also validates that each file can be successfully uncompressed unless the MZ_ZIP_FLAG_VALIDATE_HEADERS_ONLY is specified. */
mz_bool mz_zip_validate_file(mz_zip_archive *pZip, mz_uint file_index, mz_uint flags);
/* Validates an entire archive by calling mz_zip_validate_file() on each file. */
mz_bool mz_zip_validate_archive(mz_zip_archive *pZip, mz_uint flags);
/* Misc utils/helpers, valid for ZIP reading or writing */
mz_bool mz_zip_validate_mem_archive(const void *pMem, size_t size, mz_uint flags, mz_zip_error *pErr);
mz_bool mz_zip_validate_file_archive(const char *pFilename, mz_uint flags, mz_zip_error *pErr);
/* Universal end function - calls either mz_zip_reader_end() or mz_zip_writer_end(). */
mz_bool mz_zip_end(mz_zip_archive *pZip);
/* -------- ZIP writing */
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
/* Inits a ZIP archive writer. */
/*Set pZip->m_pWrite (and pZip->m_pIO_opaque) before calling mz_zip_writer_init or mz_zip_writer_init_v2*/
/*The output is streamable, i.e. file_ofs in mz_file_write_func always increases only by n*/
mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size);
mz_bool mz_zip_writer_init_v2(mz_zip_archive *pZip, mz_uint64 existing_size, mz_uint flags);
mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size);
mz_bool mz_zip_writer_init_heap_v2(mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size, mz_uint flags);
#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning);
mz_bool mz_zip_writer_init_file_v2(mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning, mz_uint flags);
mz_bool mz_zip_writer_init_cfile(mz_zip_archive *pZip, MZ_FILE *pFile, mz_uint flags);
#endif
/* Converts a ZIP archive reader object into a writer object, to allow efficient in-place file appends to occur on an existing archive. */
/* For archives opened using mz_zip_reader_init_file, pFilename must be the archive's filename so it can be reopened for writing. If the file can't be reopened, mz_zip_reader_end() will be called. */
/* For archives opened using mz_zip_reader_init_mem, the memory block must be growable using the realloc callback (which defaults to realloc unless you've overridden it). */
/* Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's user provided m_pWrite function cannot be NULL. */
/* Note: In-place archive modification is not recommended unless you know what you're doing, because if execution stops or something goes wrong before */
/* the archive is finalized the file's central directory will be hosed. */
mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, const char *pFilename);
mz_bool mz_zip_writer_init_from_reader_v2(mz_zip_archive *pZip, const char *pFilename, mz_uint flags);
/* Adds the contents of a memory buffer to an archive. These functions record the current local time into the archive. */
/* To add a directory entry, call this method with an archive name ending in a forwardslash with an empty buffer. */
/* level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION. */
mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, mz_uint level_and_flags);
/* Like mz_zip_writer_add_mem(), except you can specify a file comment field, and optionally supply the function with already compressed data. */
/* uncomp_size/uncomp_crc32 are only used if the MZ_ZIP_FLAG_COMPRESSED_DATA flag is specified. */
mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags,
mz_uint64 uncomp_size, mz_uint32 uncomp_crc32);
mz_bool mz_zip_writer_add_mem_ex_v2(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags,
mz_uint64 uncomp_size, mz_uint32 uncomp_crc32, MZ_TIME_T *last_modified, const char *user_extra_data_local, mz_uint user_extra_data_local_len,
const char *user_extra_data_central, mz_uint user_extra_data_central_len);
#ifndef MINIZ_NO_STDIO
/* Adds the contents of a disk file to an archive. This function also records the disk file's modified time into the archive. */
/* level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION. */
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, const char *pSrc_filename, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags);
/* Like mz_zip_writer_add_file(), except the file data is read from the specified FILE stream. */
mz_bool mz_zip_writer_add_cfile(mz_zip_archive *pZip, const char *pArchive_name, MZ_FILE *pSrc_file, mz_uint64 size_to_add,
const MZ_TIME_T *pFile_time, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, const char *user_extra_data_local, mz_uint user_extra_data_local_len,
const char *user_extra_data_central, mz_uint user_extra_data_central_len);
#endif
/* Adds a file to an archive by fully cloning the data from another archive. */
/* This function fully clones the source file's compressed data (no recompression), along with its full filename, extra data (it may add or modify the zip64 local header extra data field), and the optional descriptor following the compressed data. */
mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, mz_zip_archive *pSource_zip, mz_uint src_file_index);
/* Finalizes the archive by writing the central directory records followed by the end of central directory record. */
/* After an archive is finalized, the only valid call on the mz_zip_archive struct is mz_zip_writer_end(). */
/* An archive must be manually finalized by calling this function for it to be valid. */
mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip);
/* Finalizes a heap archive, returning a poiner to the heap block and its size. */
/* The heap block will be allocated using the mz_zip_archive's alloc/realloc callbacks. */
mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **ppBuf, size_t *pSize);
/* Ends archive writing, freeing all allocations, and closing the output file if mz_zip_writer_init_file() was used. */
/* Note for the archive to be valid, it *must* have been finalized before ending (this function will not do it for you). */
mz_bool mz_zip_writer_end(mz_zip_archive *pZip);
/* -------- Misc. high-level helper functions: */
/* mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically) appends a memory blob to a ZIP archive. */
/* Note this is NOT a fully safe operation. If it crashes or dies in some way your archive can be left in a screwed up state (without a central directory). */
/* level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION. */
/* TODO: Perhaps add an option to leave the existing central dir in place in case the add dies? We could then truncate the file (so the old central dir would be at the end) if something goes wrong. */
mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags);
mz_bool mz_zip_add_mem_to_archive_file_in_place_v2(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, mz_zip_error *pErr);
/* Reads a single file from an archive into a heap block. */
/* If pComment is not NULL, only the file with the specified comment will be extracted. */
/* Returns NULL on failure. */
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint flags);
void *mz_zip_extract_archive_file_to_heap_v2(const char *pZip_filename, const char *pArchive_name, const char *pComment, size_t *pSize, mz_uint flags, mz_zip_error *pErr);
#endif /* #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS */
#endif /* MINIZ_NO_ARCHIVE_APIS */

View file

@ -280,8 +280,8 @@ void PresetBundle::load_config_file(const std::string &path)
if (boost::iends_with(path, ".gcode") || boost::iends_with(path, ".g")) {
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
config.load_from_gcode(path);
Preset::normalize(config);
config.load_from_gcode_file(path);
Preset::normalize(config);
load_config_file_config(path, true, std::move(config));
return;
}
@ -320,6 +320,18 @@ void PresetBundle::load_config_file(const std::string &path)
}
}
void PresetBundle::load_config_string(const char* str, const char* source_filename)
{
if (str != nullptr)
{
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
config.load_from_gcode_string(str);
Preset::normalize(config);
load_config_file_config((source_filename == nullptr) ? "" : source_filename, true, std::move(config));
}
}
// Load a config file from a boost property_tree. This is a private method called from load_config_file.
void PresetBundle::load_config_file_config(const std::string &name_or_path, bool is_external, DynamicPrintConfig &&config)
{

View file

@ -55,6 +55,11 @@ public:
// If the file is loaded successfully, its print / filament / printer profiles will be activated.
void load_config_file(const std::string &path);
// Load an external config source containing the print, filament and printer presets.
// The given string must contain the full set of parameters (same as those exported to gcode).
// If the string is parsed successfully, its print / filament / printer profiles will be activated.
void load_config_string(const char* str, const char* source_filename = nullptr);
// Load a config bundle file, into presets and store the loaded presets into separate files
// of the local configuration directory.
// Load settings into the provided settings instance.

View file

@ -3,12 +3,15 @@
%{
#include <xsinit.h>
#include "libslic3r/Model.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/Slicing.hpp"
#include "libslic3r/Format/AMF.hpp"
#include "libslic3r/Format/3mf.hpp"
#include "libslic3r/Format/OBJ.hpp"
#include "libslic3r/Format/PRUS.hpp"
#include "libslic3r/Format/STL.hpp"
#include "slic3r/GUI/PresetBundle.hpp"
%}
%name{Slic3r::Model} class Model {
@ -24,6 +27,15 @@
}
%};
%name{read_from_archive} Model(std::string input_file, PresetBundle* bundle, bool add_default_instances = true)
%code%{
try {
RETVAL = new Model(Model::read_from_archive(input_file, bundle, add_default_instances));
} catch (std::exception& e) {
croak("Error while opening %s: %s\n", input_file.c_str(), e.what());
}
%};
Clone<Model> clone()
%code%{ RETVAL = THIS; %};
@ -89,8 +101,10 @@
bool store_stl(char *path, bool binary)
%code%{ TriangleMesh mesh = THIS->mesh(); RETVAL = Slic3r::store_stl(path, &mesh, binary); %};
bool store_amf(char *path)
%code%{ RETVAL = Slic3r::store_amf(path, THIS); %};
bool store_amf(char *path, Print* print)
%code%{ RETVAL = Slic3r::store_amf(path, THIS, print); %};
bool store_3mf(char *path, Print* print)
%code%{ RETVAL = Slic3r::store_3mf(path, THIS, print); %};
%{
@ -123,18 +137,33 @@ load_obj(CLASS, path, object_name)
RETVAL
Model*
load_amf(CLASS, path)
load_amf(CLASS, bundle, path)
char* CLASS;
PresetBundle* bundle;
char* path;
CODE:
RETVAL = new Model();
if (! load_amf(path, RETVAL)) {
if (! load_amf(path, bundle, RETVAL)) {
delete RETVAL;
RETVAL = NULL;
}
OUTPUT:
RETVAL
Model*
load_3mf(CLASS, bundle, path)
char* CLASS;
PresetBundle* bundle;
char* path;
CODE:
RETVAL = new Model();
if (! load_3mf(path, bundle, RETVAL)) {
delete RETVAL;
RETVAL = NULL;
}
OUTPUT:
RETVAL
Model*
load_prus(CLASS, path)
char* CLASS;