Split Print.cpp and Layer.cpp into multiple compilation units

This commit is contained in:
Alessandro Ranellucci 2014-08-03 19:28:40 +02:00
parent 7ff13c063f
commit b8676241e0
6 changed files with 372 additions and 355 deletions

View file

@ -1673,6 +1673,7 @@ src/Geometry.cpp
src/Geometry.hpp
src/Layer.cpp
src/Layer.hpp
src/LayerRegion.cpp
src/Line.cpp
src/Line.hpp
src/Model.cpp
@ -1712,6 +1713,8 @@ src/Print.cpp
src/Print.hpp
src/PrintConfig.cpp
src/PrintConfig.hpp
src/PrintObject.cpp
src/PrintRegion.cpp
src/Surface.cpp
src/Surface.hpp
src/SurfaceCollection.cpp

View file

@ -6,46 +6,6 @@
namespace Slic3r {
LayerRegion::LayerRegion(Layer *layer, PrintRegion *region)
: _layer(layer),
_region(region)
{
}
LayerRegion::~LayerRegion()
{
}
Layer*
LayerRegion::layer()
{
return this->_layer;
}
PrintRegion*
LayerRegion::region()
{
return this->_region;
}
Flow
LayerRegion::flow(FlowRole role, bool bridge, double width) const
{
return this->_region->flow(
role,
this->_layer->height,
bridge,
this->_layer->id() == 0,
width,
*this->_layer->object()
);
}
#ifdef SLIC3RXS
REGISTER_CLASS(LayerRegion, "Layer::Region");
#endif
Layer::Layer(int id, PrintObject *object, coordf_t height, coordf_t print_z,
coordf_t slice_z)
: _id(id),

45
xs/src/LayerRegion.cpp Normal file
View file

@ -0,0 +1,45 @@
#include "Layer.hpp"
#include "Print.hpp"
namespace Slic3r {
LayerRegion::LayerRegion(Layer *layer, PrintRegion *region)
: _layer(layer),
_region(region)
{
}
LayerRegion::~LayerRegion()
{
}
Layer*
LayerRegion::layer()
{
return this->_layer;
}
PrintRegion*
LayerRegion::region()
{
return this->_region;
}
Flow
LayerRegion::flow(FlowRole role, bool bridge, double width) const
{
return this->_region->flow(
role,
this->_layer->height,
bridge,
this->_layer->id() == 0,
width,
*this->_layer->object()
);
}
#ifdef SLIC3RXS
REGISTER_CLASS(LayerRegion, "Layer::Region");
#endif
}

View file

@ -45,321 +45,6 @@ template class PrintState<PrintStep>;
template class PrintState<PrintObjectStep>;
PrintRegion::PrintRegion(Print* print)
: _print(print)
{
}
PrintRegion::~PrintRegion()
{
}
Print*
PrintRegion::print()
{
return this->_print;
}
Flow
PrintRegion::flow(FlowRole role, double layer_height, bool bridge, bool first_layer, double width, const PrintObject &object) const
{
ConfigOptionFloatOrPercent config_width;
if (width != -1) {
// use the supplied custom width, if any
config_width.value = width;
config_width.percent = false;
} else {
// otherwise, get extrusion width from configuration
// (might be an absolute value, or a percent value, or zero for auto)
if (first_layer && this->_print->config.first_layer_extrusion_width.value > 0) {
config_width = this->_print->config.first_layer_extrusion_width;
} else if (role == frExternalPerimeter) {
config_width = this->config.external_perimeter_extrusion_width;
} else if (role == frPerimeter) {
config_width = this->config.perimeter_extrusion_width;
} else if (role == frInfill) {
config_width = this->config.infill_extrusion_width;
} else if (role == frSolidInfill) {
config_width = this->config.solid_infill_extrusion_width;
} else if (role == frTopSolidInfill) {
config_width = this->config.top_infill_extrusion_width;
} else {
CONFESS("Unknown role");
}
}
if (config_width.value == 0) {
config_width = object.config.extrusion_width;
}
// get the configured nozzle_diameter for the extruder associated
// to the flow role requested
size_t extruder; // 1-based
if (role == frPerimeter || role == frExternalPerimeter) {
extruder = this->config.perimeter_extruder;
} else if (role == frInfill || role == frSolidInfill || role == frTopSolidInfill) {
extruder = this->config.infill_extruder;
} else {
CONFESS("Unknown role $role");
}
double nozzle_diameter = this->_print->config.nozzle_diameter.get_at(extruder-1);
return Flow::new_from_config_width(role, config_width, nozzle_diameter, layer_height, bridge ? this->config.bridge_flow_ratio : 0);
}
#ifdef SLIC3RXS
REGISTER_CLASS(PrintRegion, "Print::Region");
#endif
PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox)
: _print(print),
_model_object(model_object),
typed_slices(false)
{
region_volumes.resize(this->_print->regions.size());
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
{
// Translate meshes so that our toolpath generation algorithms work with smaller
// XY coordinates; this translation is an optimization and not strictly required.
// A cloned mesh will be aligned to 0 before slicing in _slice_region() since we
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
this->_copies_shift = Point(
scale_(modobj_bbox.min.x), scale_(modobj_bbox.min.y));
// TODO: $self->_trigger_copies;
// Scale the object size and store it
Pointf3 size = modobj_bbox.size();
this->size = Point3(scale_(size.x), scale_(size.y), scale_(size.z));
}
}
PrintObject::~PrintObject()
{
}
Print*
PrintObject::print()
{
return this->_print;
}
ModelObject*
PrintObject::model_object()
{
return this->_model_object;
}
void
PrintObject::add_region_volume(int region_id, int volume_id)
{
if (region_id >= region_volumes.size()) {
region_volumes.resize(region_id + 1);
}
region_volumes[region_id].push_back(volume_id);
}
size_t
PrintObject::layer_count()
{
return this->layers.size();
}
void
PrintObject::clear_layers()
{
for (int i = this->layers.size()-1; i >= 0; --i)
this->delete_layer(i);
}
Layer*
PrintObject::get_layer(int idx)
{
return this->layers.at(idx);
}
Layer*
PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
Layer* layer = new Layer(id, this, height, print_z, slice_z);
layers.push_back(layer);
return layer;
}
void
PrintObject::delete_layer(int idx)
{
LayerPtrs::iterator i = this->layers.begin() + idx;
delete *i;
this->layers.erase(i);
}
size_t
PrintObject::support_layer_count()
{
return this->support_layers.size();
}
void
PrintObject::clear_support_layers()
{
for (int i = this->support_layers.size()-1; i >= 0; --i)
this->delete_support_layer(i);
}
SupportLayer*
PrintObject::get_support_layer(int idx)
{
return this->support_layers.at(idx);
}
SupportLayer*
PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z,
coordf_t slice_z)
{
SupportLayer* layer = new SupportLayer(id, this, height, print_z, slice_z);
support_layers.push_back(layer);
return layer;
}
void
PrintObject::delete_support_layer(int idx)
{
SupportLayerPtrs::iterator i = this->support_layers.begin() + idx;
delete *i;
this->support_layers.erase(i);
}
bool
PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
std::set<PrintObjectStep> steps;
// this method only accepts PrintObjectConfig and PrintRegionConfig option keys
for (std::vector<t_config_option_key>::const_iterator opt_key = opt_keys.begin(); opt_key != opt_keys.end(); ++opt_key) {
if (*opt_key == "perimeters"
|| *opt_key == "extra_perimeters"
|| *opt_key == "gap_fill_speed"
|| *opt_key == "overhangs"
|| *opt_key == "perimeter_extrusion_width"
|| *opt_key == "thin_walls"
|| *opt_key == "external_perimeters_first") {
steps.insert(posPerimeters);
} else if (*opt_key == "resolution"
|| *opt_key == "layer_height"
|| *opt_key == "first_layer_height"
|| *opt_key == "xy_size_compensation"
|| *opt_key == "raft_layers") {
steps.insert(posSlice);
} else if (*opt_key == "support_material"
|| *opt_key == "support_material_angle"
|| *opt_key == "support_material_extruder"
|| *opt_key == "support_material_extrusion_width"
|| *opt_key == "support_material_interface_layers"
|| *opt_key == "support_material_interface_extruder"
|| *opt_key == "support_material_interface_spacing"
|| *opt_key == "support_material_interface_speed"
|| *opt_key == "support_material_pattern"
|| *opt_key == "support_material_spacing"
|| *opt_key == "support_material_threshold"
|| *opt_key == "dont_support_bridges") {
steps.insert(posSupportMaterial);
} else if (*opt_key == "interface_shells"
|| *opt_key == "infill_only_where_needed"
|| *opt_key == "bottom_solid_layers"
|| *opt_key == "top_solid_layers"
|| *opt_key == "infill_extruder"
|| *opt_key == "infill_extrusion_width") {
steps.insert(posPrepareInfill);
} else if (*opt_key == "fill_angle"
|| *opt_key == "fill_pattern"
|| *opt_key == "solid_fill_pattern"
|| *opt_key == "infill_every_layers"
|| *opt_key == "solid_infill_below_area"
|| *opt_key == "solid_infill_every_layers"
|| *opt_key == "top_infill_extrusion_width") {
steps.insert(posInfill);
} else if (*opt_key == "fill_density"
|| *opt_key == "solid_infill_extrusion_width") {
steps.insert(posPerimeters);
steps.insert(posPrepareInfill);
} else if (*opt_key == "external_perimeter_extrusion_width"
|| *opt_key == "perimeter_extruder") {
steps.insert(posPerimeters);
steps.insert(posSupportMaterial);
} else if (*opt_key == "bridge_flow_ratio") {
steps.insert(posPerimeters);
steps.insert(posInfill);
} else if (*opt_key == "seam_position"
|| *opt_key == "support_material_speed"
|| *opt_key == "bridge_speed"
|| *opt_key == "external_perimeter_speed"
|| *opt_key == "infill_speed"
|| *opt_key == "perimeter_speed"
|| *opt_key == "small_perimeter_speed"
|| *opt_key == "solid_infill_speed"
|| *opt_key == "top_solid_infill_speed") {
// these options only affect G-code export, so nothing to invalidate
} else {
// for legacy, if we can't handle this option let's invalidate all steps
return this->invalidate_all_steps();
}
}
bool invalidated = false;
for (std::set<PrintObjectStep>::const_iterator step = steps.begin(); step != steps.end(); ++step) {
if (this->invalidate_step(*step)) invalidated = true;
}
return invalidated;
}
bool
PrintObject::invalidate_step(PrintObjectStep step)
{
bool invalidated = this->state.invalidate(step);
// propagate to dependent steps
if (step == posPerimeters) {
this->invalidate_step(posPrepareInfill);
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
} else if (step == posPrepareInfill) {
this->invalidate_step(posInfill);
} else if (step == posInfill) {
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
} else if (step == posSlice) {
this->invalidate_step(posPerimeters);
this->invalidate_step(posSupportMaterial);
}
return invalidated;
}
bool
PrintObject::invalidate_all_steps()
{
// make a copy because when invalidating steps the iterators are not working anymore
std::set<PrintObjectStep> steps = this->state.started;
bool invalidated = false;
for (std::set<PrintObjectStep>::const_iterator step = steps.begin(); step != steps.end(); ++step) {
if (this->invalidate_step(*step)) invalidated = true;
}
return invalidated;
}
#ifdef SLIC3RXS
REGISTER_CLASS(PrintObject, "Print::Object");
#endif
Print::Print()
: total_used_filament(0),
total_extruded_volume(0)

254
xs/src/PrintObject.cpp Normal file
View file

@ -0,0 +1,254 @@
#include "Print.hpp"
#include "BoundingBox.hpp"
namespace Slic3r {
PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox)
: _print(print),
_model_object(model_object),
typed_slices(false)
{
region_volumes.resize(this->_print->regions.size());
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
{
// Translate meshes so that our toolpath generation algorithms work with smaller
// XY coordinates; this translation is an optimization and not strictly required.
// A cloned mesh will be aligned to 0 before slicing in _slice_region() since we
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
this->_copies_shift = Point(
scale_(modobj_bbox.min.x), scale_(modobj_bbox.min.y));
// TODO: $self->_trigger_copies;
// Scale the object size and store it
Pointf3 size = modobj_bbox.size();
this->size = Point3(scale_(size.x), scale_(size.y), scale_(size.z));
}
}
PrintObject::~PrintObject()
{
}
Print*
PrintObject::print()
{
return this->_print;
}
ModelObject*
PrintObject::model_object()
{
return this->_model_object;
}
void
PrintObject::add_region_volume(int region_id, int volume_id)
{
if (region_id >= region_volumes.size()) {
region_volumes.resize(region_id + 1);
}
region_volumes[region_id].push_back(volume_id);
}
size_t
PrintObject::layer_count()
{
return this->layers.size();
}
void
PrintObject::clear_layers()
{
for (int i = this->layers.size()-1; i >= 0; --i)
this->delete_layer(i);
}
Layer*
PrintObject::get_layer(int idx)
{
return this->layers.at(idx);
}
Layer*
PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
Layer* layer = new Layer(id, this, height, print_z, slice_z);
layers.push_back(layer);
return layer;
}
void
PrintObject::delete_layer(int idx)
{
LayerPtrs::iterator i = this->layers.begin() + idx;
delete *i;
this->layers.erase(i);
}
size_t
PrintObject::support_layer_count()
{
return this->support_layers.size();
}
void
PrintObject::clear_support_layers()
{
for (int i = this->support_layers.size()-1; i >= 0; --i)
this->delete_support_layer(i);
}
SupportLayer*
PrintObject::get_support_layer(int idx)
{
return this->support_layers.at(idx);
}
SupportLayer*
PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z,
coordf_t slice_z)
{
SupportLayer* layer = new SupportLayer(id, this, height, print_z, slice_z);
support_layers.push_back(layer);
return layer;
}
void
PrintObject::delete_support_layer(int idx)
{
SupportLayerPtrs::iterator i = this->support_layers.begin() + idx;
delete *i;
this->support_layers.erase(i);
}
bool
PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
std::set<PrintObjectStep> steps;
// this method only accepts PrintObjectConfig and PrintRegionConfig option keys
for (std::vector<t_config_option_key>::const_iterator opt_key = opt_keys.begin(); opt_key != opt_keys.end(); ++opt_key) {
if (*opt_key == "perimeters"
|| *opt_key == "extra_perimeters"
|| *opt_key == "gap_fill_speed"
|| *opt_key == "overhangs"
|| *opt_key == "perimeter_extrusion_width"
|| *opt_key == "thin_walls"
|| *opt_key == "external_perimeters_first") {
steps.insert(posPerimeters);
} else if (*opt_key == "resolution"
|| *opt_key == "layer_height"
|| *opt_key == "first_layer_height"
|| *opt_key == "xy_size_compensation"
|| *opt_key == "raft_layers") {
steps.insert(posSlice);
} else if (*opt_key == "support_material"
|| *opt_key == "support_material_angle"
|| *opt_key == "support_material_extruder"
|| *opt_key == "support_material_extrusion_width"
|| *opt_key == "support_material_interface_layers"
|| *opt_key == "support_material_interface_extruder"
|| *opt_key == "support_material_interface_spacing"
|| *opt_key == "support_material_interface_speed"
|| *opt_key == "support_material_pattern"
|| *opt_key == "support_material_spacing"
|| *opt_key == "support_material_threshold"
|| *opt_key == "dont_support_bridges") {
steps.insert(posSupportMaterial);
} else if (*opt_key == "interface_shells"
|| *opt_key == "infill_only_where_needed"
|| *opt_key == "bottom_solid_layers"
|| *opt_key == "top_solid_layers"
|| *opt_key == "infill_extruder"
|| *opt_key == "infill_extrusion_width") {
steps.insert(posPrepareInfill);
} else if (*opt_key == "fill_angle"
|| *opt_key == "fill_pattern"
|| *opt_key == "solid_fill_pattern"
|| *opt_key == "infill_every_layers"
|| *opt_key == "solid_infill_below_area"
|| *opt_key == "solid_infill_every_layers"
|| *opt_key == "top_infill_extrusion_width") {
steps.insert(posInfill);
} else if (*opt_key == "fill_density"
|| *opt_key == "solid_infill_extrusion_width") {
steps.insert(posPerimeters);
steps.insert(posPrepareInfill);
} else if (*opt_key == "external_perimeter_extrusion_width"
|| *opt_key == "perimeter_extruder") {
steps.insert(posPerimeters);
steps.insert(posSupportMaterial);
} else if (*opt_key == "bridge_flow_ratio") {
steps.insert(posPerimeters);
steps.insert(posInfill);
} else if (*opt_key == "seam_position"
|| *opt_key == "support_material_speed"
|| *opt_key == "bridge_speed"
|| *opt_key == "external_perimeter_speed"
|| *opt_key == "infill_speed"
|| *opt_key == "perimeter_speed"
|| *opt_key == "small_perimeter_speed"
|| *opt_key == "solid_infill_speed"
|| *opt_key == "top_solid_infill_speed") {
// these options only affect G-code export, so nothing to invalidate
} else {
// for legacy, if we can't handle this option let's invalidate all steps
return this->invalidate_all_steps();
}
}
bool invalidated = false;
for (std::set<PrintObjectStep>::const_iterator step = steps.begin(); step != steps.end(); ++step) {
if (this->invalidate_step(*step)) invalidated = true;
}
return invalidated;
}
bool
PrintObject::invalidate_step(PrintObjectStep step)
{
bool invalidated = this->state.invalidate(step);
// propagate to dependent steps
if (step == posPerimeters) {
this->invalidate_step(posPrepareInfill);
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
} else if (step == posPrepareInfill) {
this->invalidate_step(posInfill);
} else if (step == posInfill) {
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
} else if (step == posSlice) {
this->invalidate_step(posPerimeters);
this->invalidate_step(posSupportMaterial);
}
return invalidated;
}
bool
PrintObject::invalidate_all_steps()
{
// make a copy because when invalidating steps the iterators are not working anymore
std::set<PrintObjectStep> steps = this->state.started;
bool invalidated = false;
for (std::set<PrintObjectStep>::const_iterator step = steps.begin(); step != steps.end(); ++step) {
if (this->invalidate_step(*step)) invalidated = true;
}
return invalidated;
}
#ifdef SLIC3RXS
REGISTER_CLASS(PrintObject, "Print::Object");
#endif
}

70
xs/src/PrintRegion.cpp Normal file
View file

@ -0,0 +1,70 @@
#include "Print.hpp"
namespace Slic3r {
PrintRegion::PrintRegion(Print* print)
: _print(print)
{
}
PrintRegion::~PrintRegion()
{
}
Print*
PrintRegion::print()
{
return this->_print;
}
Flow
PrintRegion::flow(FlowRole role, double layer_height, bool bridge, bool first_layer, double width, const PrintObject &object) const
{
ConfigOptionFloatOrPercent config_width;
if (width != -1) {
// use the supplied custom width, if any
config_width.value = width;
config_width.percent = false;
} else {
// otherwise, get extrusion width from configuration
// (might be an absolute value, or a percent value, or zero for auto)
if (first_layer && this->_print->config.first_layer_extrusion_width.value > 0) {
config_width = this->_print->config.first_layer_extrusion_width;
} else if (role == frExternalPerimeter) {
config_width = this->config.external_perimeter_extrusion_width;
} else if (role == frPerimeter) {
config_width = this->config.perimeter_extrusion_width;
} else if (role == frInfill) {
config_width = this->config.infill_extrusion_width;
} else if (role == frSolidInfill) {
config_width = this->config.solid_infill_extrusion_width;
} else if (role == frTopSolidInfill) {
config_width = this->config.top_infill_extrusion_width;
} else {
CONFESS("Unknown role");
}
}
if (config_width.value == 0) {
config_width = object.config.extrusion_width;
}
// get the configured nozzle_diameter for the extruder associated
// to the flow role requested
size_t extruder; // 1-based
if (role == frPerimeter || role == frExternalPerimeter) {
extruder = this->config.perimeter_extruder;
} else if (role == frInfill || role == frSolidInfill || role == frTopSolidInfill) {
extruder = this->config.infill_extruder;
} else {
CONFESS("Unknown role $role");
}
double nozzle_diameter = this->_print->config.nozzle_diameter.get_at(extruder-1);
return Flow::new_from_config_width(role, config_width, nozzle_diameter, layer_height, bridge ? this->config.bridge_flow_ratio : 0);
}
#ifdef SLIC3RXS
REGISTER_CLASS(PrintRegion, "Print::Region");
#endif
}