Parametric tolerance for Gyroid infill

This commit is contained in:
Yuri D'Elia 2019-06-20 00:27:22 +02:00
parent b6936a46e3
commit b9901f1730

View file

@ -55,43 +55,52 @@ static inline Polyline make_wave(
return polyline;
}
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip, double tolerance)
{
std::vector<Vec2d> points;
double dx = M_PI_4; // very coarse spacing to begin with
double dx = M_PI_2; // exact coordinates on main inflexion lobes
double limit = std::min(2*M_PI, width);
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
x = std::min(x, limit);
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
}
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
// we will add one more point on each side:
const double tolerance = .1;
for (unsigned int i=1;i<points.size()-1;++i) {
auto& lp = points[i-1]; // left point
auto& tp = points[i]; // this point
Vec2d lrv = tp - lp;
auto& rp = points[i+1]; // right point
// calculate distance of the point to the line:
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
if (dist_mm > tolerance) { // if the difference from straight line is more than this
double x = 0.5f * (points[i-1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
x = 0.5f * (points[i+1](0) + points[i](0));
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
// we added the points to the end, but need them all in order
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
// decrement i so we also check the first newly added point
--i;
// piecewise increase in resolution up to requested tolerance
for(;;)
{
size_t size = points.size();
for (unsigned int i = 1;i < size; ++i) {
auto& lp = points[i-1]; // left point
auto& rp = points[i]; // right point
double x = lp(0) + (rp(0) - lp(0)) / 2;
double y = f(x, z_sin, z_cos, vertical, flip);
Vec2d ip = {x, y};
if (std::abs(cross2(Vec2d(ip - lp), Vec2d(ip - rp))) > sqr(tolerance)) {
points.emplace_back(std::move(ip));
}
}
if (size == points.size())
break;
else
{
// insert new points in order
std::sort(points.begin(), points.end(),
[](const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0); });
}
}
return points;
}
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
{
const double scaleFactor = scale_(line_spacing) / density_adjusted;
// tolerance (in scaled units)
// TODO: should consider layer thickness
const double tolerance = line_spacing / 2 / unscale<double>(scaleFactor);
//scale factor for 5% : 8 712 388
// 1z = 10^-6 mm ?
const double z = gridZ / scaleFactor;
@ -109,9 +118,9 @@ static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double
std::swap(width,height);
}
std::vector<Vec2d> one_period_odd = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
std::vector<Vec2d> one_period_odd = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip, tolerance); // creates one period of the waves, so it doesn't have to be recalculated all the time
flip = !flip; // even polylines are a bit shifted
std::vector<Vec2d> one_period_even = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip);
std::vector<Vec2d> one_period_even = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip, tolerance);
Polylines result;
for (double y0 = lower_bound; y0 < upper_bound + EPSILON; y0 += M_PI) {