EdgeGrid::signed_distance_edges() to provide the pedal point.

Removed 20_print.t test.
This commit is contained in:
bubnikv 2019-10-30 10:18:56 +01:00
parent 9e8ce66f70
commit ba39ee6f12
3 changed files with 148 additions and 20 deletions

View file

@ -113,6 +113,7 @@ void EdgeGrid::Grid::create(const ExPolygonCollection &expolygons, coord_t resol
// m_contours has been initialized. Now fill in the edge grid.
void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
{
assert(resolution > 0);
// 1) Measure the bounding box.
for (size_t i = 0; i < m_contours.size(); ++ i) {
const Slic3r::Points &pts = *m_contours[i];
@ -1017,8 +1018,139 @@ float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const
return f;
}
bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment) const {
EdgeGrid::Grid::ClosestPointResult EdgeGrid::Grid::closest_point(const Point &pt, coord_t search_radius) const
{
BoundingBox bbox;
bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1));
bbox.defined = true;
// Upper boundary, round to grid and test validity.
bbox.max(0) += search_radius;
bbox.max(1) += search_radius;
ClosestPointResult result;
if (bbox.max(0) < 0 || bbox.max(1) < 0)
return result;
bbox.max(0) /= m_resolution;
bbox.max(1) /= m_resolution;
if ((size_t)bbox.max(0) >= m_cols)
bbox.max(0) = m_cols - 1;
if ((size_t)bbox.max(1) >= m_rows)
bbox.max(1) = m_rows - 1;
// Lower boundary, round to grid and test validity.
bbox.min(0) -= search_radius;
bbox.min(1) -= search_radius;
if (bbox.min(0) < 0)
bbox.min(0) = 0;
if (bbox.min(1) < 0)
bbox.min(1) = 0;
bbox.min(0) /= m_resolution;
bbox.min(1) /= m_resolution;
// Is the interval empty?
if (bbox.min(0) > bbox.max(0) ||
bbox.min(1) > bbox.max(1))
return result;
// Traverse all cells in the bounding box.
double d_min = double(search_radius);
// Signum of the distance field at pt.
int sign_min = 0;
double l2_seg_min = 1.;
for (int r = bbox.min(1); r <= bbox.max(1); ++ r) {
for (int c = bbox.min(0); c <= bbox.max(0); ++ c) {
const Cell &cell = m_cells[r * m_cols + c];
for (size_t i = cell.begin; i < cell.end; ++ i) {
const size_t contour_idx = m_cell_data[i].first;
const Slic3r::Points &pts = *m_contours[contour_idx];
size_t ipt = m_cell_data[i].second;
// End points of the line segment.
const Slic3r::Point &p1 = pts[ipt];
const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1];
const Slic3r::Point v_seg = p2 - p1;
const Slic3r::Point v_pt = pt - p1;
// dot(p2-p1, pt-p1)
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
// l2 of seg
int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
if (t_pt < 0) {
// Closest to p1.
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
if (dabs < d_min) {
// Previous point.
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
Slic3r::Point v_seg_prev = p1 - p0;
int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1));
if (t2_pt > 0) {
// Inside the wedge between the previous and the next segment.
d_min = dabs;
// Set the signum depending on whether the vertex is convex or reflex.
int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0));
assert(det != 0);
sign_min = (det > 0) ? 1 : -1;
result.contour_idx = contour_idx;
result.start_point_idx = ipt;
result.t = 0.;
#ifndef NDEBUG
Vec2d vfoot = (p1 - pt).cast<double>();
double dist_foot = vfoot.norm();
double dist_foot_err = dist_foot - d_min;
assert(std::abs(dist_foot_err) < 1e-7 * d_min);
#endif /* NDEBUG */
}
}
}
else if (t_pt > l2_seg) {
// Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell.
continue;
} else {
// Closest to the segment.
assert(t_pt >= 0 && t_pt <= l2_seg);
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
double d = double(d_seg) / sqrt(double(l2_seg));
double dabs = std::abs(d);
if (dabs < d_min) {
d_min = dabs;
sign_min = (d_seg < 0) ? -1 : ((d_seg == 0) ? 0 : 1);
l2_seg_min = l2_seg;
result.contour_idx = contour_idx;
result.start_point_idx = ipt;
result.t = t_pt;
#ifndef NDEBUG
Vec2d foot = p1.cast<double>() * (1. - result.t / l2_seg_min) + p2.cast<double>() * (result.t / l2_seg_min);
Vec2d vfoot = foot - pt.cast<double>();
double dist_foot = vfoot.norm();
double dist_foot_err = dist_foot - d_min;
assert(std::abs(dist_foot_err) < 1e-7 * d_min);
#endif /* NDEBUG */
}
}
}
}
}
if (result.contour_idx != -1 && d_min <= double(search_radius)) {
result.distance = d_min * sign_min;
result.t /= l2_seg_min;
assert(result.t >= 0. && result.t < 1.);
#ifndef NDEBUG
{
const Slic3r::Points &pts = *m_contours[result.contour_idx];
const Slic3r::Point &p1 = pts[result.start_point_idx];
const Slic3r::Point &p2 = pts[(result.start_point_idx + 1 == pts.size()) ? 0 : result.start_point_idx + 1];
Vec2d vfoot;
if (result.t == 0)
vfoot = p1.cast<double>() - pt.cast<double>();
else
vfoot = p1.cast<double>() * (1. - result.t) + p2.cast<double>() * result.t - pt.cast<double>();
double dist_foot = vfoot.norm();
double dist_foot_err = dist_foot - std::abs(result.distance);
assert(std::abs(dist_foot_err) < 1e-7 * std::abs(result.distance));
}
#endif /* NDEBUG */
} else
result = ClosestPointResult();
return result;
}
bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment) const
{
BoundingBox bbox;
bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1));
bbox.defined = true;
@ -1047,7 +1179,7 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu
bbox.min(1) > bbox.max(1))
return false;
// Traverse all cells in the bounding box.
float d_min = search_radius;
double d_min = double(search_radius);
// Signum of the distance field at pt.
int sign_min = 0;
bool on_segment = false;

View file

@ -46,7 +46,19 @@ public:
float signed_distance_bilinear(const Point &pt) const;
// Calculate a signed distance to the contours in search_radius from the point.
bool signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment = NULL) const;
struct ClosestPointResult {
size_t contour_idx = size_t(-1);
size_t start_point_idx = size_t(-1);
// Signed distance to the closest point.
double distance = std::numeric_limits<double>::max();
// Parameter of the closest point on edge starting with start_point_idx <0, 1)
double t = 0.;
bool valid() const { return contour_idx != size_t(-1); }
};
ClosestPointResult closest_point(const Point &pt, coord_t search_radius) const;
bool signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment = nullptr) const;
// Calculate a signed distance to the contours in search_radius from the point. If no edge is found in search_radius,
// return an interpolated value from m_signed_distance_field, if it exists.

View file

@ -1,16 +0,0 @@
#!/usr/bin/perl
use strict;
use warnings;
use Slic3r::XS;
use Test::More tests => 3;
{
my $print = Slic3r::Print->new;
isa_ok $print, 'Slic3r::Print';
isa_ok $print->config, 'Slic3r::Config::Static::Ref';
isa_ok $print->placeholder_parser, 'Slic3r::GCode::PlaceholderParser::Ref';
}
__END__