Add tests for EigenMesh3D raycaster with hole support.

Tests fail! Supports are intersecting the object when holes are added.
This commit is contained in:
tamasmeszaros 2020-01-08 17:10:11 +01:00
parent a3a99d7a07
commit bb62f36df3
9 changed files with 541 additions and 400 deletions

View File

@ -6,6 +6,7 @@
#include <libslic3r/SLA/Contour3D.hpp> #include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp> #include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/SupportTreeBuilder.hpp> #include <libslic3r/SLA/SupportTreeBuilder.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <boost/log/trivial.hpp> #include <boost/log/trivial.hpp>
@ -247,4 +248,40 @@ bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
return true; return true;
} }
void cut_drainholes(std::vector<ExPolygons> & obj_slices,
const std::vector<float> &slicegrid,
float closing_radius,
const sla::DrainHoles & holes,
std::function<void(void)> thr)
{
TriangleMesh mesh;
for (const sla::DrainHole &holept : holes) {
auto r = double(holept.radius);
auto h = double(holept.height);
sla::Contour3D hole = sla::cylinder(r, h);
Eigen::Quaterniond q;
q.setFromTwoVectors(Vec3d{0., 0., 1.}, holept.normal.cast<double>());
for(auto& p : hole.points) p = q * p + holept.pos.cast<double>();
mesh.merge(sla::to_triangle_mesh(hole));
}
if (mesh.empty()) return;
mesh.require_shared_vertices();
TriangleMeshSlicer slicer(&mesh);
std::vector<ExPolygons> hole_slices;
slicer.slice(slicegrid, closing_radius, &hole_slices, thr);
if (obj_slices.size() != hole_slices.size())
BOOST_LOG_TRIVIAL(warning)
<< "Sliced object and drain-holes layer count does not match!";
size_t until = std::min(obj_slices.size(), hole_slices.size());
for (size_t i = 0; i < until; ++i)
obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
}
}} // namespace Slic3r::sla }} // namespace Slic3r::sla

View File

@ -17,6 +17,7 @@ struct HollowingConfig
double min_thickness = 2.; double min_thickness = 2.;
double quality = 0.5; double quality = 0.5;
double closing_distance = 0.5; double closing_distance = 0.5;
bool enabled = true;
}; };
struct DrainHole struct DrainHole
@ -57,6 +58,12 @@ std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh &mesh,
const HollowingConfig & = {}, const HollowingConfig & = {},
const JobController &ctl = {}); const JobController &ctl = {});
void cut_drainholes(std::vector<ExPolygons> & obj_slices,
const std::vector<float> &slicegrid,
float closing_radius,
const sla::DrainHoles & holes,
std::function<void(void)> thr);
} }
} }

View File

@ -79,7 +79,6 @@ SLAPrint::Steps::Steps(SLAPrint *print)
void SLAPrint::Steps::hollow_model(SLAPrintObject &po) void SLAPrint::Steps::hollow_model(SLAPrintObject &po)
{ {
if (!po.m_config.hollowing_enable.getBool()) { if (!po.m_config.hollowing_enable.getBool()) {
BOOST_LOG_TRIVIAL(info) << "Skipping hollowing step!"; BOOST_LOG_TRIVIAL(info) << "Skipping hollowing step!";
po.m_hollowing_data.reset(); po.m_hollowing_data.reset();
@ -102,42 +101,6 @@ void SLAPrint::Steps::hollow_model(SLAPrintObject &po)
BOOST_LOG_TRIVIAL(warning) << "Hollowed interior is empty!"; BOOST_LOG_TRIVIAL(warning) << "Hollowed interior is empty!";
} }
static void cut_drainholes(std::vector<ExPolygons> & obj_slices,
const std::vector<float> &slicegrid,
float closing_radius,
const sla::DrainHoles & holes,
std::function<void(void)> thr)
{
TriangleMesh mesh;
for (const sla::DrainHole &holept : holes) {
auto r = double(holept.radius);
auto h = double(holept.height);
sla::Contour3D hole = sla::cylinder(r, h);
Eigen::Quaterniond q;
q.setFromTwoVectors(Vec3d{0., 0., 1.}, holept.normal.cast<double>());
for(auto& p : hole.points) p = q * p + holept.pos.cast<double>();
mesh.merge(sla::to_triangle_mesh(hole));
}
if (mesh.empty()) return;
mesh.require_shared_vertices();
TriangleMeshSlicer slicer(&mesh);
std::vector<ExPolygons> hole_slices;
slicer.slice(slicegrid, closing_radius, &hole_slices, thr);
if (obj_slices.size() != hole_slices.size())
BOOST_LOG_TRIVIAL(warning)
<< "Sliced object and drain-holes layer count does not match!";
size_t until = std::min(obj_slices.size(), hole_slices.size());
for (size_t i = 0; i < until; ++i)
obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
}
// The slicing will be performed on an imaginary 1D grid which starts from // The slicing will be performed on an imaginary 1D grid which starts from
// the bottom of the bounding box created around the supported model. So // the bottom of the bounding box created around the supported model. So
// the first layer which is usually thicker will be part of the supports // the first layer which is usually thicker will be part of the supports

View File

@ -1,5 +1,8 @@
get_filename_component(_TEST_NAME ${CMAKE_CURRENT_LIST_DIR} NAME) get_filename_component(_TEST_NAME ${CMAKE_CURRENT_LIST_DIR} NAME)
add_executable(${_TEST_NAME}_tests ${_TEST_NAME}_tests_main.cpp sla_print_tests.cpp) add_executable(${_TEST_NAME}_tests ${_TEST_NAME}_tests_main.cpp
sla_print_tests.cpp
sla_test_utils.hpp sla_test_utils.cpp
sla_raycast_tests.cpp)
target_link_libraries(${_TEST_NAME}_tests test_common libslic3r) target_link_libraries(${_TEST_NAME}_tests test_common libslic3r)
set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests") set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests")

View File

@ -2,369 +2,9 @@
#include <unordered_map> #include <unordered_map>
#include <random> #include <random>
#include <catch2/catch.hpp> #include "sla_test_utils.hpp"
// Debug
#include <fstream>
#include "libslic3r/libslic3r.h"
#include "libslic3r/Format/OBJ.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/SLA/Pad.hpp"
#include "libslic3r/SLA/SupportTreeBuilder.hpp"
#include "libslic3r/SLA/SupportTreeBuildsteps.hpp"
#include "libslic3r/SLA/SupportPointGenerator.hpp"
#include "libslic3r/SLA/Raster.hpp"
#include "libslic3r/SLA/ConcaveHull.hpp"
#include "libslic3r/MTUtils.hpp"
#include "libslic3r/SVG.hpp"
#include "libslic3r/Format/OBJ.hpp"
#if defined(WIN32) || defined(_WIN32)
#define PATH_SEPARATOR R"(\)"
#else
#define PATH_SEPARATOR R"(/)"
#endif
namespace { namespace {
using namespace Slic3r;
TriangleMesh load_model(const std::string &obj_filename)
{
TriangleMesh mesh;
auto fpath = TEST_DATA_DIR PATH_SEPARATOR + obj_filename;
load_obj(fpath.c_str(), &mesh);
return mesh;
}
enum e_validity {
ASSUME_NO_EMPTY = 1,
ASSUME_MANIFOLD = 2,
ASSUME_NO_REPAIR = 4
};
void check_validity(const TriangleMesh &input_mesh,
int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD |
ASSUME_NO_REPAIR)
{
TriangleMesh mesh{input_mesh};
if (flags & ASSUME_NO_EMPTY) {
REQUIRE_FALSE(mesh.empty());
} else if (mesh.empty())
return; // If it can be empty and it is, there is nothing left to do.
REQUIRE(stl_validate(&mesh.stl));
bool do_update_shared_vertices = false;
mesh.repair(do_update_shared_vertices);
if (flags & ASSUME_NO_REPAIR) {
REQUIRE_FALSE(mesh.needed_repair());
}
if (flags & ASSUME_MANIFOLD) {
mesh.require_shared_vertices();
if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
REQUIRE(mesh.is_manifold());
}
}
struct PadByproducts
{
ExPolygons model_contours;
ExPolygons support_contours;
TriangleMesh mesh;
};
void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
{
REQUIRE(polys.size() >=hull.size());
double polys_area = 0;
for (const ExPolygon &p : polys) polys_area += p.area();
double cchull_area = 0;
for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
REQUIRE(cchull_area >= Approx(polys_area));
size_t cchull_holes = 0;
for (const Slic3r::Polygon &p : hull)
cchull_holes += p.is_clockwise() ? 1 : 0;
REQUIRE(cchull_holes == 0);
Polygons intr = diff(to_polygons(polys), hull);
REQUIRE(intr.empty());
}
void test_concave_hull(const ExPolygons &polys) {
sla::PadConfig pcfg;
Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
_test_concave_hull(cchull.polygons(), polys);
coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
Polygons waffl = sla::offset_waffle_style(cchull, delta);
_test_concave_hull(to_polygons(wafflex), polys);
_test_concave_hull(waffl, polys);
}
void test_pad(const std::string & obj_filename,
const sla::PadConfig &padcfg,
PadByproducts & out)
{
REQUIRE(padcfg.validate().empty());
TriangleMesh mesh = load_model(obj_filename);
REQUIRE_FALSE(mesh.empty());
// Create pad skeleton only from the model
Slic3r::sla::pad_blueprint(mesh, out.model_contours);
test_concave_hull(out.model_contours);
REQUIRE_FALSE(out.model_contours.empty());
// Create the pad geometry for the model contours only
Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
check_validity(out.mesh);
auto bb = out.mesh.bounding_box();
REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
}
void test_pad(const std::string & obj_filename,
const sla::PadConfig &padcfg = {})
{
PadByproducts byproducts;
test_pad(obj_filename, padcfg, byproducts);
}
struct SupportByproducts
{
std::string obj_fname;
std::vector<float> slicegrid;
std::vector<ExPolygons> model_slices;
sla::SupportTreeBuilder supporttree;
TriangleMesh input_mesh;
};
const constexpr float CLOSING_RADIUS = 0.005f;
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
const sla::SupportConfig &cfg)
{
double gnd = stree.ground_level;
double H1 = cfg.max_solo_pillar_height_mm;
double H2 = cfg.max_dual_pillar_height_mm;
for (const sla::Head &head : stree.heads()) {
REQUIRE((!head.is_valid() || head.pillar_id != sla::ID_UNSET ||
head.bridge_id != sla::ID_UNSET));
}
for (const sla::Pillar &pillar : stree.pillars()) {
if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
double h = pillar.height;
if (h > H1) REQUIRE(pillar.links >= 1);
else if(h > H2) { REQUIRE(pillar.links >= 2); }
}
REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
}
double max_bridgelen = 0.;
auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
Vec3d n = bridge.endp - bridge.startp;
double d = sla::distance(n);
max_brlen = std::max(d, max_brlen);
double z = n.z();
double polar = std::acos(z / d);
double slope = -polar + PI / 2.;
REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
};
for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm);
max_bridgelen = 0;
for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
REQUIRE(max_bridgelen <= md);
}
void test_supports(const std::string & obj_filename,
const sla::SupportConfig &supportcfg,
SupportByproducts & out)
{
using namespace Slic3r;
TriangleMesh mesh = load_model(obj_filename);
REQUIRE_FALSE(mesh.empty());
TriangleMeshSlicer slicer{&mesh};
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
out.slicegrid = grid(float(gnd), float(zmax), layer_h);
slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{});
// Create the special index-triangle mesh with spatial indexing which
// is the input of the support point and support mesh generators
sla::EigenMesh3D emesh{mesh};
// Create the support point generator
sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, out.model_slices,
out.slicegrid, autogencfg,
[] {}, [](int) {}};
// Get the calculated support points.
std::vector<sla::SupportPoint> support_points = point_gen.output();
int validityflags = ASSUME_NO_REPAIR;
// If there is no elevation, support points shall be removed from the
// bottom of the object.
if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
sla::remove_bottom_points(support_points, zmin,
supportcfg.base_height_mm);
} else {
// Should be support points at least on the bottom of the model
REQUIRE_FALSE(support_points.empty());
// Also the support mesh should not be empty.
validityflags |= ASSUME_NO_EMPTY;
}
// Generate the actual support tree
sla::SupportTreeBuilder treebuilder;
treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg});
check_support_tree_integrity(treebuilder, supportcfg);
const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
check_validity(output_mesh, validityflags);
// Quick check if the dimensions and placement of supports are correct
auto obb = output_mesh.bounding_box();
double allowed_zmin = zmin - supportcfg.object_elevation_mm;
if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
REQUIRE(obb.min.z() >= allowed_zmin);
REQUIRE(obb.max.z() <= zmax);
// Move out the support tree into the byproducts, we can examine it further
// in various tests.
out.obj_fname = std::move(obj_filename);
out.supporttree = std::move(treebuilder);
out.input_mesh = std::move(mesh);
}
void test_supports(const std::string & obj_filename,
const sla::SupportConfig &supportcfg = {})
{
SupportByproducts byproducts;
test_supports(obj_filename, supportcfg, byproducts);
}
void export_failed_case(const std::vector<ExPolygons> &support_slices,
const SupportByproducts &byproducts)
{
for (size_t n = 0; n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
std::stringstream ss;
if (!intersections.empty()) {
ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
SVG svg(ss.str());
svg.draw(sup_slice, "green");
svg.draw(mod_slice, "blue");
svg.draw(intersections, "red");
svg.Close();
}
}
TriangleMesh m;
byproducts.supporttree.retrieve_full_mesh(m);
m.merge(byproducts.input_mesh);
m.repair();
m.require_shared_vertices();
m.WriteOBJFile(byproducts.obj_fname.c_str());
}
void test_support_model_collision(
const std::string & obj_filename,
const sla::SupportConfig &input_supportcfg = {})
{
SupportByproducts byproducts;
sla::SupportConfig supportcfg = input_supportcfg;
// Set head penetration to a small negative value which should ensure that
// the supports will not touch the model body.
supportcfg.head_penetration_mm = -0.15;
// TODO: currently, the tailheads penetrating into the model body do not
// respect the penetration parameter properly. No issues were reported so
// far but we should definitely fix this.
supportcfg.ground_facing_only = true;
test_supports(obj_filename, supportcfg, byproducts);
// Slice the support mesh given the slice grid of the model.
std::vector<ExPolygons> support_slices =
byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
// The slices originate from the same slice grid so the numbers must match
bool support_mesh_is_empty =
byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() &&
byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty();
if (support_mesh_is_empty)
REQUIRE(support_slices.empty());
else
REQUIRE(support_slices.size() == byproducts.model_slices.size());
bool notouch = true;
for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
notouch = notouch && intersections.empty();
}
if (!notouch) export_failed_case(support_slices, byproducts);
REQUIRE(notouch);
}
const char *const BELOW_PAD_TEST_OBJECTS[] = { const char *const BELOW_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj", "20mm_cube.obj",

View File

@ -0,0 +1,61 @@
#include <catch2/catch.hpp>
#include <test_utils.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#include "sla_test_utils.hpp"
using namespace Slic3r;
// Create a simple scene with a 20mm cube and a big hole in the front wall
// with 5mm radius. Then shoot rays from interesting positions and see where
// they land.
TEST_CASE("Raycaster with loaded drillholes", "[sla_raycast]")
{
// Load the cube and make it hollow.
TriangleMesh cube = load_model("20mm_cube.obj");
sla::HollowingConfig hcfg;
std::unique_ptr<TriangleMesh> cube_inside = sla::generate_interior(cube, hcfg);
REQUIRE(cube_inside);
// Helper bb
auto boxbb = cube.bounding_box();
// Create the big 10mm long drainhole in the front wall.
Vec3f center = boxbb.center().cast<float>();
Vec3f p = {center.x(), 0., center.z()};
Vec3f normal = {0.f, 1.f, 0.f};
float radius = 5.f;
float hole_length = 10.;
sla::DrainHoles holes = { sla::DrainHole{p, normal, radius, hole_length} };
cube.merge(*cube_inside);
cube.require_shared_vertices();
sla::EigenMesh3D emesh{cube};
emesh.load_holes(holes);
Vec3d s = center.cast<double>();
SECTION("Fire from center, should hit the interior wall") {
auto hit = emesh.query_ray_hit(s, {0, 1., 0.});
REQUIRE(hit.distance() == Approx(boxbb.size().x() / 2 - hcfg.min_thickness));
}
SECTION("Fire upward from hole center, hit distance equals the radius") {
s.y() = hcfg.min_thickness / 2;
auto hit = emesh.query_ray_hit(s, {0, 0., 1.});
REQUIRE(hit.distance() == Approx(radius));
}
// Shouldn't this hit the inside wall through the hole?
SECTION("Fire from outside, hit the back side of the hole cylinder.") {
s.y() = -1.;
auto hit = emesh.query_ray_hit(s, {0, 1., 0.});
REQUIRE(hit.distance() == Approx(hole_length + 1.f));
}
SECTION("Check for support tree correctness") {
test_support_model_collision("20mm_cube.obj", {}, hcfg, holes);
}
}

View File

@ -0,0 +1,297 @@
#include "sla_test_utils.hpp"
void test_support_model_collision(const std::string &obj_filename,
const sla::SupportConfig &input_supportcfg,
const sla::HollowingConfig &hollowingcfg,
const sla::DrainHoles &drainholes)
{
SupportByproducts byproducts;
sla::SupportConfig supportcfg = input_supportcfg;
// Set head penetration to a small negative value which should ensure that
// the supports will not touch the model body.
supportcfg.head_penetration_mm = -0.15;
// TODO: currently, the tailheads penetrating into the model body do not
// respect the penetration parameter properly. No issues were reported so
// far but we should definitely fix this.
supportcfg.ground_facing_only = true;
test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts);
// Slice the support mesh given the slice grid of the model.
std::vector<ExPolygons> support_slices =
byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
// The slices originate from the same slice grid so the numbers must match
bool support_mesh_is_empty =
byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() &&
byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty();
if (support_mesh_is_empty)
REQUIRE(support_slices.empty());
else
REQUIRE(support_slices.size() == byproducts.model_slices.size());
bool notouch = true;
for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
notouch = notouch && intersections.empty();
}
/*if (!notouch) */export_failed_case(support_slices, byproducts);
REQUIRE(notouch);
}
void export_failed_case(const std::vector<ExPolygons> &support_slices, const SupportByproducts &byproducts)
{
for (size_t n = 0; n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
std::stringstream ss;
if (!intersections.empty()) {
ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
SVG svg(ss.str());
svg.draw(sup_slice, "green");
svg.draw(mod_slice, "blue");
svg.draw(intersections, "red");
svg.Close();
}
}
TriangleMesh m;
byproducts.supporttree.retrieve_full_mesh(m);
m.merge(byproducts.input_mesh);
m.repair();
m.require_shared_vertices();
m.WriteOBJFile(byproducts.obj_fname.c_str());
}
void test_supports(const std::string &obj_filename,
const sla::SupportConfig &supportcfg,
const sla::HollowingConfig &hollowingcfg,
const sla::DrainHoles &drainholes,
SupportByproducts &out)
{
using namespace Slic3r;
TriangleMesh mesh = load_model(obj_filename);
REQUIRE_FALSE(mesh.empty());
if (hollowingcfg.enabled) {
auto inside = sla::generate_interior(mesh, hollowingcfg);
REQUIRE(inside);
mesh.merge(*inside);
mesh.require_shared_vertices();
}
TriangleMeshSlicer slicer{&mesh};
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
out.slicegrid = grid(float(gnd), float(zmax), layer_h);
slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{});
sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{});
// Create the special index-triangle mesh with spatial indexing which
// is the input of the support point and support mesh generators
sla::EigenMesh3D emesh{mesh};
if (hollowingcfg.enabled)
emesh.load_holes(drainholes);
// Create the support point generator
sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, out.model_slices, out.slicegrid,
autogencfg, [] {}, [](int) {}};
// Get the calculated support points.
std::vector<sla::SupportPoint> support_points = point_gen.output();
int validityflags = ASSUME_NO_REPAIR;
// If there is no elevation, support points shall be removed from the
// bottom of the object.
if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
sla::remove_bottom_points(support_points, zmin,
supportcfg.base_height_mm);
} else {
// Should be support points at least on the bottom of the model
REQUIRE_FALSE(support_points.empty());
// Also the support mesh should not be empty.
validityflags |= ASSUME_NO_EMPTY;
}
// Generate the actual support tree
sla::SupportTreeBuilder treebuilder;
treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg});
check_support_tree_integrity(treebuilder, supportcfg);
const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
check_validity(output_mesh, validityflags);
// Quick check if the dimensions and placement of supports are correct
auto obb = output_mesh.bounding_box();
double allowed_zmin = zmin - supportcfg.object_elevation_mm;
if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
REQUIRE(obb.min.z() >= allowed_zmin);
REQUIRE(obb.max.z() <= zmax);
// Move out the support tree into the byproducts, we can examine it further
// in various tests.
out.obj_fname = std::move(obj_filename);
out.supporttree = std::move(treebuilder);
out.input_mesh = std::move(mesh);
}
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
const sla::SupportConfig &cfg)
{
double gnd = stree.ground_level;
double H1 = cfg.max_solo_pillar_height_mm;
double H2 = cfg.max_dual_pillar_height_mm;
for (const sla::Head &head : stree.heads()) {
REQUIRE((!head.is_valid() || head.pillar_id != sla::ID_UNSET ||
head.bridge_id != sla::ID_UNSET));
}
for (const sla::Pillar &pillar : stree.pillars()) {
if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
double h = pillar.height;
if (h > H1) REQUIRE(pillar.links >= 1);
else if(h > H2) { REQUIRE(pillar.links >= 2); }
}
REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
}
double max_bridgelen = 0.;
auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
Vec3d n = bridge.endp - bridge.startp;
double d = sla::distance(n);
max_brlen = std::max(d, max_brlen);
double z = n.z();
double polar = std::acos(z / d);
double slope = -polar + PI / 2.;
REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
};
for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm);
max_bridgelen = 0;
for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
REQUIRE(max_bridgelen <= md);
}
void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out)
{
REQUIRE(padcfg.validate().empty());
TriangleMesh mesh = load_model(obj_filename);
REQUIRE_FALSE(mesh.empty());
// Create pad skeleton only from the model
Slic3r::sla::pad_blueprint(mesh, out.model_contours);
test_concave_hull(out.model_contours);
REQUIRE_FALSE(out.model_contours.empty());
// Create the pad geometry for the model contours only
Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
check_validity(out.mesh);
auto bb = out.mesh.bounding_box();
REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
}
static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
{
REQUIRE(polys.size() >=hull.size());
double polys_area = 0;
for (const ExPolygon &p : polys) polys_area += p.area();
double cchull_area = 0;
for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
REQUIRE(cchull_area >= Approx(polys_area));
size_t cchull_holes = 0;
for (const Slic3r::Polygon &p : hull)
cchull_holes += p.is_clockwise() ? 1 : 0;
REQUIRE(cchull_holes == 0);
Polygons intr = diff(to_polygons(polys), hull);
REQUIRE(intr.empty());
}
void test_concave_hull(const ExPolygons &polys) {
sla::PadConfig pcfg;
Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
_test_concave_hull(cchull.polygons(), polys);
coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
Polygons waffl = sla::offset_waffle_style(cchull, delta);
_test_concave_hull(to_polygons(wafflex), polys);
_test_concave_hull(waffl, polys);
}
void check_validity(const TriangleMesh &input_mesh, int flags)
{
TriangleMesh mesh{input_mesh};
if (flags & ASSUME_NO_EMPTY) {
REQUIRE_FALSE(mesh.empty());
} else if (mesh.empty())
return; // If it can be empty and it is, there is nothing left to do.
REQUIRE(stl_validate(&mesh.stl));
bool do_update_shared_vertices = false;
mesh.repair(do_update_shared_vertices);
if (flags & ASSUME_NO_REPAIR) {
REQUIRE_FALSE(mesh.needed_repair());
}
if (flags & ASSUME_MANIFOLD) {
mesh.require_shared_vertices();
if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
REQUIRE(mesh.is_manifold());
}
}

View File

@ -0,0 +1,112 @@
#ifndef SLA_TEST_UTILS_HPP
#define SLA_TEST_UTILS_HPP
#include <catch2/catch.hpp>
#include <test_utils.hpp>
// Debug
#include <fstream>
#include "libslic3r/libslic3r.h"
#include "libslic3r/Format/OBJ.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/SLA/Pad.hpp"
#include "libslic3r/SLA/SupportTreeBuilder.hpp"
#include "libslic3r/SLA/SupportTreeBuildsteps.hpp"
#include "libslic3r/SLA/SupportPointGenerator.hpp"
#include "libslic3r/SLA/Raster.hpp"
#include "libslic3r/SLA/ConcaveHull.hpp"
#include "libslic3r/MTUtils.hpp"
#include "libslic3r/SVG.hpp"
#include "libslic3r/Format/OBJ.hpp"
using namespace Slic3r;
enum e_validity {
ASSUME_NO_EMPTY = 1,
ASSUME_MANIFOLD = 2,
ASSUME_NO_REPAIR = 4
};
void check_validity(const TriangleMesh &input_mesh,
int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD |
ASSUME_NO_REPAIR);
struct PadByproducts
{
ExPolygons model_contours;
ExPolygons support_contours;
TriangleMesh mesh;
};
void test_concave_hull(const ExPolygons &polys);
void test_pad(const std::string & obj_filename,
const sla::PadConfig &padcfg,
PadByproducts & out);
inline void test_pad(const std::string & obj_filename,
const sla::PadConfig &padcfg = {})
{
PadByproducts byproducts;
test_pad(obj_filename, padcfg, byproducts);
}
struct SupportByproducts
{
std::string obj_fname;
std::vector<float> slicegrid;
std::vector<ExPolygons> model_slices;
sla::SupportTreeBuilder supporttree;
TriangleMesh input_mesh;
};
const constexpr float CLOSING_RADIUS = 0.005f;
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
const sla::SupportConfig &cfg);
void test_supports(const std::string &obj_filename,
const sla::SupportConfig &supportcfg,
const sla::HollowingConfig &hollowingcfg,
const sla::DrainHoles &drainholes,
SupportByproducts &out);
inline void test_supports(const std::string &obj_filename,
const sla::SupportConfig &supportcfg,
SupportByproducts &out)
{
sla::HollowingConfig hcfg;
hcfg.enabled = false;
test_supports(obj_filename, supportcfg, hcfg, {}, out);
}
inline void test_supports(const std::string &obj_filename,
const sla::SupportConfig &supportcfg = {})
{
SupportByproducts byproducts;
test_supports(obj_filename, supportcfg, byproducts);
}
void export_failed_case(const std::vector<ExPolygons> &support_slices,
const SupportByproducts &byproducts);
void test_support_model_collision(
const std::string &obj_filename,
const sla::SupportConfig &input_supportcfg,
const sla::HollowingConfig &hollowingcfg,
const sla::DrainHoles &drainholes);
inline void test_support_model_collision(
const std::string &obj_filename,
const sla::SupportConfig &input_supportcfg = {})
{
sla::HollowingConfig hcfg;
hcfg.enabled = false;
test_support_model_collision(obj_filename, input_supportcfg, hcfg, {});
}
#endif // SLA_TEST_UTILS_HPP

21
tests/test_utils.hpp Normal file
View File

@ -0,0 +1,21 @@
#ifndef SLIC3R_TEST_UTILS
#define SLIC3R_TEST_UTILS
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/Format/OBJ.hpp>
#if defined(WIN32) || defined(_WIN32)
#define PATH_SEPARATOR R"(\)"
#else
#define PATH_SEPARATOR R"(/)"
#endif
inline Slic3r::TriangleMesh load_model(const std::string &obj_filename)
{
Slic3r::TriangleMesh mesh;
auto fpath = TEST_DATA_DIR PATH_SEPARATOR + obj_filename;
Slic3r::load_obj(fpath.c_str(), &mesh);
return mesh;
}
#endif // SLIC3R_TEST_UTILS