Deal with infinite box.
This commit is contained in:
parent
320f2ecefd
commit
bc315f4c2c
@ -41,25 +41,25 @@ template<> struct HolesContainer<PolygonImpl> { using Type = ClipperLib::Paths;
|
||||
namespace pointlike {
|
||||
|
||||
// Tell libnest2d how to extract the X coord from a ClipperPoint object
|
||||
template<> inline TCoord<PointImpl> x(const PointImpl& p)
|
||||
template<> inline ClipperLib::cInt x(const PointImpl& p)
|
||||
{
|
||||
return p.X;
|
||||
}
|
||||
|
||||
// Tell libnest2d how to extract the Y coord from a ClipperPoint object
|
||||
template<> inline TCoord<PointImpl> y(const PointImpl& p)
|
||||
template<> inline ClipperLib::cInt y(const PointImpl& p)
|
||||
{
|
||||
return p.Y;
|
||||
}
|
||||
|
||||
// Tell libnest2d how to extract the X coord from a ClipperPoint object
|
||||
template<> inline TCoord<PointImpl>& x(PointImpl& p)
|
||||
template<> inline ClipperLib::cInt& x(PointImpl& p)
|
||||
{
|
||||
return p.X;
|
||||
}
|
||||
|
||||
// Tell libnest2d how to extract the Y coord from a ClipperPoint object
|
||||
template<> inline TCoord<PointImpl>& y(PointImpl& p)
|
||||
template<> inline ClipperLib::cInt& y(PointImpl& p)
|
||||
{
|
||||
return p.Y;
|
||||
}
|
||||
|
@ -166,7 +166,9 @@ public:
|
||||
using Tag = BoxTag;
|
||||
using PointType = P;
|
||||
|
||||
inline _Box(const P& p = {TCoord<P>(0), TCoord<P>(0)});
|
||||
inline _Box(const P& center = {TCoord<P>(0), TCoord<P>(0)}):
|
||||
_Box(TCoord<P>(0), TCoord<P>(0), center) {}
|
||||
|
||||
inline _Box(const P& p, const P& pp):
|
||||
PointPair<P>({p, pp}) {}
|
||||
|
||||
@ -189,6 +191,8 @@ public:
|
||||
inline Unit area() const BP2D_NOEXCEPT {
|
||||
return Unit(width())*height();
|
||||
}
|
||||
|
||||
static inline _Box infinite(const P ¢er);
|
||||
};
|
||||
|
||||
template<class S> struct PointType<_Box<S>> {
|
||||
@ -463,12 +467,19 @@ inline _Box<P>::_Box(TCoord<P> width, TCoord<P> height, const P & center) :
|
||||
modulo(height, TCoord<P>(2))}}) {}
|
||||
|
||||
template<class P>
|
||||
inline _Box<P>::_Box(const P& center) {
|
||||
inline _Box<P> _Box<P>::infinite(const P& center) {
|
||||
using C = TCoord<P>;
|
||||
TCoord<P> M = std::max(getX(center), getY(center)) -
|
||||
std::numeric_limits<C>::lowest();
|
||||
maxCorner() = center + P{M, M};
|
||||
minCorner() = center - P{M, M};
|
||||
_Box<P> ret;
|
||||
|
||||
// It is important for Mx and My to be strictly less than half of the
|
||||
// range of type C. width(), height() and area() will not overflow this way.
|
||||
C Mx = C((std::numeric_limits<C>::lowest() + 2 * getX(center)) / 2.01);
|
||||
C My = C((std::numeric_limits<C>::lowest() + 2 * getY(center)) / 2.01);
|
||||
|
||||
ret.maxCorner() = center - P{Mx, My};
|
||||
ret.minCorner() = center + P{Mx, My};
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class P>
|
||||
@ -478,7 +489,7 @@ inline P _Box<P>::center() const BP2D_NOEXCEPT {
|
||||
|
||||
using Coord = TCoord<P>;
|
||||
|
||||
P ret = { // No rounding here, we dont know if these are int coords
|
||||
P ret = { // No rounding here, we dont know if these are int coords
|
||||
Coord( (getX(minc) + getX(maxc)) / Coord(2) ),
|
||||
Coord( (getY(minc) + getY(maxc)) / Coord(2) )
|
||||
};
|
||||
|
@ -581,8 +581,12 @@ public:
|
||||
|
||||
static inline double overfit(const Box& bb, const Box& bin)
|
||||
{
|
||||
auto wdiff = double(bb.width() - bin.width());
|
||||
auto hdiff = double(bb.height() - bin.height());
|
||||
auto Bw = bin.width();
|
||||
auto Bh = bin.height();
|
||||
auto mBw = -Bw;
|
||||
auto mBh = -Bh;
|
||||
auto wdiff = double(bb.width()) + mBw;
|
||||
auto hdiff = double(bb.height()) + mBh;
|
||||
double diff = 0;
|
||||
if(wdiff > 0) diff += wdiff;
|
||||
if(hdiff > 0) diff += hdiff;
|
||||
|
@ -379,6 +379,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesTight)
|
||||
for(Item& r2 : result) {
|
||||
if(&r1 != &r2 ) {
|
||||
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
|
||||
ASSERT_TRUE(valid);
|
||||
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
|
||||
ASSERT_TRUE(valid);
|
||||
}
|
||||
|
@ -58,19 +58,24 @@ namespace arrangement {
|
||||
using namespace libnest2d;
|
||||
namespace clppr = ClipperLib;
|
||||
|
||||
// Get the libnest2d types for clipper backend
|
||||
using Item = _Item<clppr::Polygon>;
|
||||
using Box = _Box<clppr::IntPoint>;
|
||||
using Circle = _Circle<clppr::IntPoint>;
|
||||
using Segment = _Segment<clppr::IntPoint>;
|
||||
using MultiPolygon = TMultiShape<clppr::Polygon>;
|
||||
|
||||
// The return value of nesting, a vector (for each logical bed) of Item
|
||||
// reference vectors.
|
||||
using PackGroup = _PackGroup<clppr::Polygon>;
|
||||
|
||||
// Summon the spatial indexing facilities from boost
|
||||
namespace bgi = boost::geometry::index;
|
||||
|
||||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
|
||||
|
||||
// A coefficient used in separating bigger items and smaller items.
|
||||
const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
|
||||
// Fill in the placer algorithm configuration with values carefully chosen for
|
||||
@ -85,14 +90,14 @@ void fillConfig(PConf& pcfg) {
|
||||
pcfg.starting_point = PConf::Alignment::CENTER;
|
||||
|
||||
// TODO cannot use rotations until multiple objects of same geometry can
|
||||
// handle different rotations
|
||||
// arranger.useMinimumBoundigBoxRotation();
|
||||
// handle different rotations.
|
||||
pcfg.rotations = { 0.0 };
|
||||
|
||||
// The accuracy of optimization.
|
||||
// Goes from 0.0 to 1.0 and scales performance as well
|
||||
pcfg.accuracy = 0.65f;
|
||||
|
||||
|
||||
// Allow parallel execution.
|
||||
pcfg.parallel = true;
|
||||
}
|
||||
|
||||
@ -153,7 +158,7 @@ protected:
|
||||
};
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = sl::boundingBox(item.transformedShape());
|
||||
auto ibb = item.boundingBox();
|
||||
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
auto fullbb = sl::boundingBox(m_pilebb, ibb);
|
||||
@ -170,16 +175,39 @@ protected:
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
|
||||
if(isBig(item.area()) || spatindex.empty()) {
|
||||
// This branch is for the bigger items..
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
double density = 0;
|
||||
|
||||
const double N = m_norm;
|
||||
auto norm = [N](double val) { return val / N; };
|
||||
|
||||
// Distinction of cases for the arrangement scene
|
||||
enum e_cases {
|
||||
// This branch is for big items in a mixed (big and small) scene
|
||||
// OR for all items in a small-only scene.
|
||||
BIG_ITEM,
|
||||
|
||||
auto minc = ibb.minCorner(); // bottom left corner
|
||||
auto maxc = ibb.maxCorner(); // top right corner
|
||||
// This branch is for the last big item in a mixed scene
|
||||
LAST_BIG_ITEM,
|
||||
|
||||
// For small items in a mixed scene.
|
||||
SMALL_ITEM
|
||||
} compute_case;
|
||||
|
||||
bool bigitems = isBig(item.area()) || spatindex.empty();
|
||||
if(bigitems && !remaining.empty()) compute_case = BIG_ITEM;
|
||||
else if (bigitems && remaining.empty()) compute_case = LAST_BIG_ITEM;
|
||||
else compute_case = SMALL_ITEM;
|
||||
|
||||
switch (compute_case) {
|
||||
case BIG_ITEM: {
|
||||
const clppr::IntPoint& minc = ibb.minCorner(); // bottom left corner
|
||||
const clppr::IntPoint& maxc = ibb.maxCorner(); // top right corner
|
||||
|
||||
// top left and bottom right corners
|
||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
|
||||
clppr::IntPoint top_left{getX(minc), getY(maxc)};
|
||||
clppr::IntPoint bottom_right{getX(maxc), getY(minc)};
|
||||
|
||||
// Now the distance of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
std::array<double, 5> dists;
|
||||
@ -189,79 +217,75 @@ protected:
|
||||
dists[2] = pl::distance(ibb.center(), cc);
|
||||
dists[3] = pl::distance(top_left, cc);
|
||||
dists[4] = pl::distance(bottom_right, cc);
|
||||
|
||||
// The smalles distance from the arranged pile center:
|
||||
double dist = *(std::min_element(dists.begin(), dists.end())) / m_norm;
|
||||
double bindist = pl::distance(ibb.center(), bincenter) / m_norm;
|
||||
dist = 0.8*dist + 0.2*bindist;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
double density = 0;
|
||||
|
||||
if(remaining.empty()) {
|
||||
|
||||
auto mp = m_merged_pile;
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
placers::EdgeCache<clppr::Polygon> ec(chull);
|
||||
|
||||
double circ = ec.circumference() / m_norm;
|
||||
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / m_norm;
|
||||
score = 0.5*circ + 0.5*bcirc;
|
||||
|
||||
} else {
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item
|
||||
// aligned with its neighbors. We will check the alignment
|
||||
// with all neighbors and return the score for the best
|
||||
// alignment. So it is enough for the candidate to be
|
||||
// aligned with only one item.
|
||||
auto alignment_score = 1.0;
|
||||
|
||||
auto querybb = item.boundingBox();
|
||||
density = std::sqrt((fullbb.width() / m_norm )*
|
||||
(fullbb.height() / m_norm));
|
||||
|
||||
// Query the spatial index for the neighbors
|
||||
std::vector<SpatElement> result;
|
||||
result.reserve(spatindex.size());
|
||||
if(isBig(item.area())) {
|
||||
spatindex.query(bgi::intersects(querybb),
|
||||
std::back_inserter(result));
|
||||
} else {
|
||||
smalls_spatindex.query(bgi::intersects(querybb),
|
||||
std::back_inserter(result));
|
||||
}
|
||||
|
||||
// now get the score for the best alignment
|
||||
for(auto& e : result) {
|
||||
auto idx = e.second;
|
||||
Item& p = m_items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = sl::boundingBox(p.boundingBox(), ibb);
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
}
|
||||
}
|
||||
|
||||
// The final mix of the score is the balance between the
|
||||
// distance from the full pile center, the pack density and
|
||||
// the alignment with the neighbors
|
||||
if (result.empty())
|
||||
score = 0.5 * dist + 0.5 * density;
|
||||
else
|
||||
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
|
||||
// The smalles distance from the arranged pile center:
|
||||
double dist = norm(*(std::min_element(dists.begin(), dists.end())));
|
||||
double bindist = norm(pl::distance(ibb.center(), bincenter));
|
||||
dist = 0.8 * dist + 0.2*bindist;
|
||||
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item
|
||||
// aligned with its neighbors. We will check the alignment
|
||||
// with all neighbors and return the score for the best
|
||||
// alignment. So it is enough for the candidate to be
|
||||
// aligned with only one item.
|
||||
auto alignment_score = 1.0;
|
||||
|
||||
auto query = bgi::intersects(ibb);
|
||||
auto& index = isBig(item.area()) ? spatindex : smalls_spatindex;
|
||||
|
||||
// Query the spatial index for the neighbors
|
||||
std::vector<SpatElement> result;
|
||||
result.reserve(index.size());
|
||||
|
||||
index.query(query, std::back_inserter(result));
|
||||
|
||||
// now get the score for the best alignment
|
||||
for(auto& e : result) {
|
||||
auto idx = e.second;
|
||||
Item& p = m_items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = sl::boundingBox(p.boundingBox(), ibb);
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
density = std::sqrt(norm(fullbb.width()) * norm(fullbb.height()));
|
||||
|
||||
// The final mix of the score is the balance between the
|
||||
// distance from the full pile center, the pack density and
|
||||
// the alignment with the neighbors
|
||||
if (result.empty())
|
||||
score = 0.5 * dist + 0.5 * density;
|
||||
else
|
||||
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
|
||||
|
||||
break;
|
||||
}
|
||||
case LAST_BIG_ITEM: {
|
||||
auto mp = m_merged_pile;
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
placers::EdgeCache<clppr::Polygon> ec(chull);
|
||||
|
||||
double circ = norm(ec.circumference());
|
||||
double bcirc = 2.0 * norm(fullbb.width() + fullbb.height());
|
||||
score = 0.5 * circ + 0.5 * bcirc;
|
||||
break;
|
||||
}
|
||||
case SMALL_ITEM: {
|
||||
// Here there are the small items that should be placed around the
|
||||
// already processed bigger items.
|
||||
// No need to play around with the anchor points, the center will be
|
||||
// just fine for small items
|
||||
score = pl::distance(ibb.center(), bigbb.center()) / m_norm;
|
||||
score = norm(pl::distance(ibb.center(), bigbb.center()));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_tuple(score, fullbb);
|
||||
@ -276,7 +300,8 @@ public:
|
||||
std::function<bool(void)> stopcond)
|
||||
: m_pck(bin, dist)
|
||||
, m_bin(bin)
|
||||
, m_norm(std::sqrt(sl::area(bin)))
|
||||
, m_bin_area(sl::area(bin))
|
||||
, m_norm(std::sqrt(m_bin_area))
|
||||
{
|
||||
fillConfig(m_pconf);
|
||||
|
||||
@ -349,8 +374,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<> std::function<double(const Item&)> AutoArranger<Box>::get_objfn()
|
||||
{
|
||||
auto bincenter = m_bin.center();
|
||||
@ -612,46 +635,51 @@ bool arrange(ArrangeablePtrs & arrangables,
|
||||
auto& cfn = stopcondition;
|
||||
|
||||
switch (bedhint.type) {
|
||||
case BedShapeType::BOX: {
|
||||
// Create the arranger for the box shaped bed
|
||||
BoundingBox bbb = bedhint.shape.box;
|
||||
bbb.min -= Point{md, md}, bbb.max += Point{md, md};
|
||||
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
|
||||
binwidth = coord_t(binbb.width());
|
||||
// case BedShapeType::BOX: {
|
||||
// // Create the arranger for the box shaped bed
|
||||
// BoundingBox bbb = bedhint.shape.box;
|
||||
// bbb.min -= Point{md, md}, bbb.max += Point{md, md};
|
||||
// Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
|
||||
// binwidth = coord_t(binbb.width());
|
||||
|
||||
_arrange(items, fixeditems, binbb, min_obj_distance, progressind, cfn);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::CIRCLE: {
|
||||
auto c = bedhint.shape.circ;
|
||||
auto cc = to_lnCircle(c);
|
||||
binwidth = scaled(c.radius());
|
||||
// _arrange(items, fixeditems, binbb, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// case BedShapeType::CIRCLE: {
|
||||
// auto c = bedhint.shape.circ;
|
||||
// auto cc = to_lnCircle(c);
|
||||
// binwidth = scaled(c.radius());
|
||||
|
||||
_arrange(items, fixeditems, cc, min_obj_distance, progressind, cfn);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::IRREGULAR: {
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
|
||||
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
|
||||
BoundingBox polybb(bedhint.shape.polygon);
|
||||
binwidth = (polybb.max(X) - polybb.min(X));
|
||||
// _arrange(items, fixeditems, cc, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// case BedShapeType::IRREGULAR: {
|
||||
// auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
|
||||
// auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
|
||||
// BoundingBox polybb(bedhint.shape.polygon);
|
||||
// binwidth = (polybb.max(X) - polybb.min(X));
|
||||
|
||||
_arrange(items, fixeditems, irrbed, min_obj_distance, progressind, cfn);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::INFINITE: {
|
||||
// const InfiniteBed& nobin = bedhint.shape.infinite;
|
||||
//Box infbb{{nobin.center.x(), nobin.center.y()}};
|
||||
Box infbb;
|
||||
// _arrange(items, fixeditems, irrbed, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// case BedShapeType::INFINITE: {
|
||||
// const InfiniteBed& nobin = bedhint.shape.infinite;
|
||||
// Box infbb{{nobin.center.x(), nobin.center.y()}};
|
||||
|
||||
// _arrange(items, fixeditems, infbb, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
// case BedShapeType::UNKNOWN: {
|
||||
// // We know nothing about the bed, let it be infinite and zero centered
|
||||
// _arrange(items, fixeditems, Box{}, min_obj_distance, progressind, cfn);
|
||||
// break;
|
||||
// }
|
||||
default: {
|
||||
Box infbb = Box::infinite({bedhint.shape.box.center().x(), bedhint.shape.box.center().y()});
|
||||
|
||||
_arrange(items, fixeditems, infbb, min_obj_distance, progressind, cfn);
|
||||
break;
|
||||
}
|
||||
case BedShapeType::UNKNOWN: {
|
||||
// We know nothing about the bed, let it be infinite and zero centered
|
||||
_arrange(items, fixeditems, Box{}, min_obj_distance, progressind, cfn);
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
if(stopcondition()) return false;
|
||||
|
@ -398,6 +398,9 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
||||
// }
|
||||
// o->invalidate_bounding_box();
|
||||
// }
|
||||
|
||||
// return true;
|
||||
|
||||
size_t count = 0;
|
||||
for (auto obj : objects) count += obj->instances.size();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user