Deal with infinite box.

This commit is contained in:
tamasmeszaros 2019-07-03 15:06:10 +02:00
parent 320f2ecefd
commit bc315f4c2c
6 changed files with 175 additions and 128 deletions

View file

@ -41,25 +41,25 @@ template<> struct HolesContainer<PolygonImpl> { using Type = ClipperLib::Paths;
namespace pointlike { namespace pointlike {
// Tell libnest2d how to extract the X coord from a ClipperPoint object // Tell libnest2d how to extract the X coord from a ClipperPoint object
template<> inline TCoord<PointImpl> x(const PointImpl& p) template<> inline ClipperLib::cInt x(const PointImpl& p)
{ {
return p.X; return p.X;
} }
// Tell libnest2d how to extract the Y coord from a ClipperPoint object // Tell libnest2d how to extract the Y coord from a ClipperPoint object
template<> inline TCoord<PointImpl> y(const PointImpl& p) template<> inline ClipperLib::cInt y(const PointImpl& p)
{ {
return p.Y; return p.Y;
} }
// Tell libnest2d how to extract the X coord from a ClipperPoint object // Tell libnest2d how to extract the X coord from a ClipperPoint object
template<> inline TCoord<PointImpl>& x(PointImpl& p) template<> inline ClipperLib::cInt& x(PointImpl& p)
{ {
return p.X; return p.X;
} }
// Tell libnest2d how to extract the Y coord from a ClipperPoint object // Tell libnest2d how to extract the Y coord from a ClipperPoint object
template<> inline TCoord<PointImpl>& y(PointImpl& p) template<> inline ClipperLib::cInt& y(PointImpl& p)
{ {
return p.Y; return p.Y;
} }

View file

@ -166,7 +166,9 @@ public:
using Tag = BoxTag; using Tag = BoxTag;
using PointType = P; using PointType = P;
inline _Box(const P& p = {TCoord<P>(0), TCoord<P>(0)}); inline _Box(const P& center = {TCoord<P>(0), TCoord<P>(0)}):
_Box(TCoord<P>(0), TCoord<P>(0), center) {}
inline _Box(const P& p, const P& pp): inline _Box(const P& p, const P& pp):
PointPair<P>({p, pp}) {} PointPair<P>({p, pp}) {}
@ -189,6 +191,8 @@ public:
inline Unit area() const BP2D_NOEXCEPT { inline Unit area() const BP2D_NOEXCEPT {
return Unit(width())*height(); return Unit(width())*height();
} }
static inline _Box infinite(const P &center);
}; };
template<class S> struct PointType<_Box<S>> { template<class S> struct PointType<_Box<S>> {
@ -463,12 +467,19 @@ inline _Box<P>::_Box(TCoord<P> width, TCoord<P> height, const P & center) :
modulo(height, TCoord<P>(2))}}) {} modulo(height, TCoord<P>(2))}}) {}
template<class P> template<class P>
inline _Box<P>::_Box(const P& center) { inline _Box<P> _Box<P>::infinite(const P& center) {
using C = TCoord<P>; using C = TCoord<P>;
TCoord<P> M = std::max(getX(center), getY(center)) - _Box<P> ret;
std::numeric_limits<C>::lowest();
maxCorner() = center + P{M, M}; // It is important for Mx and My to be strictly less than half of the
minCorner() = center - P{M, M}; // range of type C. width(), height() and area() will not overflow this way.
C Mx = C((std::numeric_limits<C>::lowest() + 2 * getX(center)) / 2.01);
C My = C((std::numeric_limits<C>::lowest() + 2 * getY(center)) / 2.01);
ret.maxCorner() = center - P{Mx, My};
ret.minCorner() = center + P{Mx, My};
return ret;
} }
template<class P> template<class P>
@ -478,7 +489,7 @@ inline P _Box<P>::center() const BP2D_NOEXCEPT {
using Coord = TCoord<P>; using Coord = TCoord<P>;
P ret = { // No rounding here, we dont know if these are int coords P ret = { // No rounding here, we dont know if these are int coords
Coord( (getX(minc) + getX(maxc)) / Coord(2) ), Coord( (getX(minc) + getX(maxc)) / Coord(2) ),
Coord( (getY(minc) + getY(maxc)) / Coord(2) ) Coord( (getY(minc) + getY(maxc)) / Coord(2) )
}; };

View file

@ -581,8 +581,12 @@ public:
static inline double overfit(const Box& bb, const Box& bin) static inline double overfit(const Box& bb, const Box& bin)
{ {
auto wdiff = double(bb.width() - bin.width()); auto Bw = bin.width();
auto hdiff = double(bb.height() - bin.height()); auto Bh = bin.height();
auto mBw = -Bw;
auto mBh = -Bh;
auto wdiff = double(bb.width()) + mBw;
auto hdiff = double(bb.height()) + mBh;
double diff = 0; double diff = 0;
if(wdiff > 0) diff += wdiff; if(wdiff > 0) diff += wdiff;
if(hdiff > 0) diff += hdiff; if(hdiff > 0) diff += hdiff;

View file

@ -379,6 +379,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesTight)
for(Item& r2 : result) { for(Item& r2 : result) {
if(&r1 != &r2 ) { if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2); valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
ASSERT_TRUE(valid);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1)); valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid); ASSERT_TRUE(valid);
} }

View file

@ -58,19 +58,24 @@ namespace arrangement {
using namespace libnest2d; using namespace libnest2d;
namespace clppr = ClipperLib; namespace clppr = ClipperLib;
// Get the libnest2d types for clipper backend
using Item = _Item<clppr::Polygon>; using Item = _Item<clppr::Polygon>;
using Box = _Box<clppr::IntPoint>; using Box = _Box<clppr::IntPoint>;
using Circle = _Circle<clppr::IntPoint>; using Circle = _Circle<clppr::IntPoint>;
using Segment = _Segment<clppr::IntPoint>; using Segment = _Segment<clppr::IntPoint>;
using MultiPolygon = TMultiShape<clppr::Polygon>; using MultiPolygon = TMultiShape<clppr::Polygon>;
// The return value of nesting, a vector (for each logical bed) of Item
// reference vectors.
using PackGroup = _PackGroup<clppr::Polygon>; using PackGroup = _PackGroup<clppr::Polygon>;
// Summon the spatial indexing facilities from boost
namespace bgi = boost::geometry::index; namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>; using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >; using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>; using ItemGroup = std::vector<std::reference_wrapper<Item>>;
// A coefficient used in separating bigger items and smaller items.
const double BIG_ITEM_TRESHOLD = 0.02; const double BIG_ITEM_TRESHOLD = 0.02;
// Fill in the placer algorithm configuration with values carefully chosen for // Fill in the placer algorithm configuration with values carefully chosen for
@ -85,14 +90,14 @@ void fillConfig(PConf& pcfg) {
pcfg.starting_point = PConf::Alignment::CENTER; pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can // TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations // handle different rotations.
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 }; pcfg.rotations = { 0.0 };
// The accuracy of optimization. // The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well // Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.65f; pcfg.accuracy = 0.65f;
// Allow parallel execution.
pcfg.parallel = true; pcfg.parallel = true;
} }
@ -153,7 +158,7 @@ protected:
}; };
// Candidate item bounding box // Candidate item bounding box
auto ibb = sl::boundingBox(item.transformedShape()); auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item // Calculate the full bounding box of the pile with the candidate item
auto fullbb = sl::boundingBox(m_pilebb, ibb); auto fullbb = sl::boundingBox(m_pilebb, ibb);
@ -170,16 +175,39 @@ protected:
// Will hold the resulting score // Will hold the resulting score
double score = 0; double score = 0;
if(isBig(item.area()) || spatindex.empty()) { // Density is the pack density: how big is the arranged pile
// This branch is for the bigger items.. double density = 0;
const double N = m_norm;
auto norm = [N](double val) { return val / N; };
// Distinction of cases for the arrangement scene
enum e_cases {
// This branch is for big items in a mixed (big and small) scene
// OR for all items in a small-only scene.
BIG_ITEM,
auto minc = ibb.minCorner(); // bottom left corner // This branch is for the last big item in a mixed scene
auto maxc = ibb.maxCorner(); // top right corner LAST_BIG_ITEM,
// For small items in a mixed scene.
SMALL_ITEM
} compute_case;
bool bigitems = isBig(item.area()) || spatindex.empty();
if(bigitems && !remaining.empty()) compute_case = BIG_ITEM;
else if (bigitems && remaining.empty()) compute_case = LAST_BIG_ITEM;
else compute_case = SMALL_ITEM;
switch (compute_case) {
case BIG_ITEM: {
const clppr::IntPoint& minc = ibb.minCorner(); // bottom left corner
const clppr::IntPoint& maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners // top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)}; clppr::IntPoint top_left{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)}; clppr::IntPoint bottom_right{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the // Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen. // five anchor points and the smallest will be chosen.
std::array<double, 5> dists; std::array<double, 5> dists;
@ -189,79 +217,75 @@ protected:
dists[2] = pl::distance(ibb.center(), cc); dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc); dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc); dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
double dist = *(std::min_element(dists.begin(), dists.end())) / m_norm;
double bindist = pl::distance(ibb.center(), bincenter) / m_norm;
dist = 0.8*dist + 0.2*bindist;
// Density is the pack density: how big is the arranged pile
double density = 0;
if(remaining.empty()) {
auto mp = m_merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
placers::EdgeCache<clppr::Polygon> ec(chull);
double circ = ec.circumference() / m_norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / m_norm;
score = 0.5*circ + 0.5*bcirc;
} else {
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item
// aligned with its neighbors. We will check the alignment
// with all neighbors and return the score for the best
// alignment. So it is enough for the candidate to be
// aligned with only one item.
auto alignment_score = 1.0;
auto querybb = item.boundingBox();
density = std::sqrt((fullbb.width() / m_norm )*
(fullbb.height() / m_norm));
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(spatindex.size());
if(isBig(item.area())) {
spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
} else {
smalls_spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
}
// now get the score for the best alignment
for(auto& e : result) {
auto idx = e.second;
Item& p = m_items[idx];
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = sl::boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
}
// The final mix of the score is the balance between the // The smalles distance from the arranged pile center:
// distance from the full pile center, the pack density and double dist = norm(*(std::min_element(dists.begin(), dists.end())));
// the alignment with the neighbors double bindist = norm(pl::distance(ibb.center(), bincenter));
if (result.empty()) dist = 0.8 * dist + 0.2*bindist;
score = 0.5 * dist + 0.5 * density;
else // Prepare a variable for the alignment score.
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score; // This will indicate: how well is the candidate item
// aligned with its neighbors. We will check the alignment
// with all neighbors and return the score for the best
// alignment. So it is enough for the candidate to be
// aligned with only one item.
auto alignment_score = 1.0;
auto query = bgi::intersects(ibb);
auto& index = isBig(item.area()) ? spatindex : smalls_spatindex;
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(index.size());
index.query(query, std::back_inserter(result));
// now get the score for the best alignment
for(auto& e : result) {
auto idx = e.second;
Item& p = m_items[idx];
auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = sl::boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
} }
} else {
density = std::sqrt(norm(fullbb.width()) * norm(fullbb.height()));
// The final mix of the score is the balance between the
// distance from the full pile center, the pack density and
// the alignment with the neighbors
if (result.empty())
score = 0.5 * dist + 0.5 * density;
else
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
break;
}
case LAST_BIG_ITEM: {
auto mp = m_merged_pile;
mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp);
placers::EdgeCache<clppr::Polygon> ec(chull);
double circ = norm(ec.circumference());
double bcirc = 2.0 * norm(fullbb.width() + fullbb.height());
score = 0.5 * circ + 0.5 * bcirc;
break;
}
case SMALL_ITEM: {
// Here there are the small items that should be placed around the // Here there are the small items that should be placed around the
// already processed bigger items. // already processed bigger items.
// No need to play around with the anchor points, the center will be // No need to play around with the anchor points, the center will be
// just fine for small items // just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / m_norm; score = norm(pl::distance(ibb.center(), bigbb.center()));
break;
}
} }
return std::make_tuple(score, fullbb); return std::make_tuple(score, fullbb);
@ -276,7 +300,8 @@ public:
std::function<bool(void)> stopcond) std::function<bool(void)> stopcond)
: m_pck(bin, dist) : m_pck(bin, dist)
, m_bin(bin) , m_bin(bin)
, m_norm(std::sqrt(sl::area(bin))) , m_bin_area(sl::area(bin))
, m_norm(std::sqrt(m_bin_area))
{ {
fillConfig(m_pconf); fillConfig(m_pconf);
@ -349,8 +374,6 @@ public:
} }
}; };
template<> std::function<double(const Item&)> AutoArranger<Box>::get_objfn() template<> std::function<double(const Item&)> AutoArranger<Box>::get_objfn()
{ {
auto bincenter = m_bin.center(); auto bincenter = m_bin.center();
@ -612,46 +635,51 @@ bool arrange(ArrangeablePtrs & arrangables,
auto& cfn = stopcondition; auto& cfn = stopcondition;
switch (bedhint.type) { switch (bedhint.type) {
case BedShapeType::BOX: { // case BedShapeType::BOX: {
// Create the arranger for the box shaped bed // // Create the arranger for the box shaped bed
BoundingBox bbb = bedhint.shape.box; // BoundingBox bbb = bedhint.shape.box;
bbb.min -= Point{md, md}, bbb.max += Point{md, md}; // bbb.min -= Point{md, md}, bbb.max += Point{md, md};
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}}; // Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
binwidth = coord_t(binbb.width()); // binwidth = coord_t(binbb.width());
_arrange(items, fixeditems, binbb, min_obj_distance, progressind, cfn); // _arrange(items, fixeditems, binbb, min_obj_distance, progressind, cfn);
break; // break;
} // }
case BedShapeType::CIRCLE: { // case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ; // auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c); // auto cc = to_lnCircle(c);
binwidth = scaled(c.radius()); // binwidth = scaled(c.radius());
_arrange(items, fixeditems, cc, min_obj_distance, progressind, cfn); // _arrange(items, fixeditems, cc, min_obj_distance, progressind, cfn);
break; // break;
} // }
case BedShapeType::IRREGULAR: { // case BedShapeType::IRREGULAR: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon); // auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour)); // auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
BoundingBox polybb(bedhint.shape.polygon); // BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X)); // binwidth = (polybb.max(X) - polybb.min(X));
_arrange(items, fixeditems, irrbed, min_obj_distance, progressind, cfn); // _arrange(items, fixeditems, irrbed, min_obj_distance, progressind, cfn);
break; // break;
} // }
case BedShapeType::INFINITE: { // case BedShapeType::INFINITE: {
// const InfiniteBed& nobin = bedhint.shape.infinite; // const InfiniteBed& nobin = bedhint.shape.infinite;
//Box infbb{{nobin.center.x(), nobin.center.y()}}; // Box infbb{{nobin.center.x(), nobin.center.y()}};
Box infbb;
// _arrange(items, fixeditems, infbb, min_obj_distance, progressind, cfn);
// break;
// }
// case BedShapeType::UNKNOWN: {
// // We know nothing about the bed, let it be infinite and zero centered
// _arrange(items, fixeditems, Box{}, min_obj_distance, progressind, cfn);
// break;
// }
default: {
Box infbb = Box::infinite({bedhint.shape.box.center().x(), bedhint.shape.box.center().y()});
_arrange(items, fixeditems, infbb, min_obj_distance, progressind, cfn); _arrange(items, fixeditems, infbb, min_obj_distance, progressind, cfn);
break; break;
} }
case BedShapeType::UNKNOWN: {
// We know nothing about the bed, let it be infinite and zero centered
_arrange(items, fixeditems, Box{}, min_obj_distance, progressind, cfn);
break;
}
}; };
if(stopcondition()) return false; if(stopcondition()) return false;

View file

@ -398,6 +398,9 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
// } // }
// o->invalidate_bounding_box(); // o->invalidate_bounding_box();
// } // }
// return true;
size_t count = 0; size_t count = 0;
for (auto obj : objects) count += obj->instances.size(); for (auto obj : objects) count += obj->instances.size();