time estimator wip
This commit is contained in:
parent
7308017ee8
commit
bc3d184d7c
4 changed files with 876 additions and 2 deletions
|
@ -60,7 +60,6 @@ include(${PerlEmbed_TEMP_INCLUDE})
|
|||
file(REMOVE ${PerlEmbed_TEMP_INCLUDE})
|
||||
unset(PerlEmbed_TEMP_INCLUDE)
|
||||
|
||||
if (PerlEmbed_DEBUG)
|
||||
# First show the configuration extracted by FindPerl & FindPerlLibs:
|
||||
message(STATUS " PERL_INCLUDE_PATH = ${PERL_INCLUDE_PATH}")
|
||||
message(STATUS " PERL_LIBRARY = ${PERL_LIBRARY}")
|
||||
|
@ -79,7 +78,6 @@ if (PerlEmbed_DEBUG)
|
|||
message(STATUS " LD = ${PerlEmbed_LD}")
|
||||
message(STATUS " PerlEmbed_LDFLAGS = ${PerlEmbed_LDFLAGS}")
|
||||
message(STATUS " PerlEmbed_LDDLFLAGS = ${PerlEmbed_LDDLFLAGS}")
|
||||
endif()
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
|
||||
|
|
|
@ -5,6 +5,13 @@
|
|||
#include "GCode/PrintExtents.hpp"
|
||||
#include "GCode/WipeTowerPrusaMM.hpp"
|
||||
|
||||
//############################################################################################################
|
||||
#include "GCodeTimeEstimator.hpp"
|
||||
#ifdef WIN32
|
||||
#include "enrico/wintimer.h"
|
||||
#endif // WIN32
|
||||
//############################################################################################################
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdlib>
|
||||
#include <math.h>
|
||||
|
@ -374,6 +381,87 @@ bool GCode::do_export(Print *print, const char *path)
|
|||
|
||||
if (! result)
|
||||
boost::nowide::remove(path_tmp.c_str());
|
||||
|
||||
//############################################################################################################
|
||||
#ifdef WIN32
|
||||
WinTimer timer;
|
||||
timer.Start();
|
||||
#endif // WIN32
|
||||
|
||||
My_GCodeTimeEstimator timeEstimator;
|
||||
timeEstimator.parse_file(path);
|
||||
#ifdef WIN32
|
||||
double timeParse = timer.GetElapsedTimeSec();
|
||||
#endif // WIN32
|
||||
timeEstimator.calculate_time();
|
||||
#ifdef WIN32
|
||||
double timeCalculate = timer.GetElapsedTimeSec();
|
||||
#endif // WIN32
|
||||
std::cout << std::endl << ">>> estimated time: " << timeEstimator.get_time() << " seconds." << std::endl << std::endl;
|
||||
|
||||
#ifdef WIN32
|
||||
std::cout << std::endl << "parse_file() -> Time: " << timeParse << std::endl << std::endl;
|
||||
std::cout << std::endl << "calculate_file() -> Time: " << timeCalculate - timeParse << std::endl << std::endl;
|
||||
#endif // WIN32
|
||||
|
||||
/*
|
||||
unsigned int i = 0;
|
||||
const My_GCodeTimeEstimator::BlocksList& blocks = timeEstimator.get_blocks();
|
||||
float maxXYZ[3] = { 0.0f, 0.0f, 0.0f };
|
||||
unsigned int maxID[3] = { 0, 0, 0 };
|
||||
for (const My_GCodeTimeEstimator::Block& block : blocks)
|
||||
{
|
||||
++i;
|
||||
std::cout << std::endl << "Block: "
|
||||
<< i
|
||||
<< " ("
|
||||
<< block.delta_pos[My_GCodeTimeEstimator::X]
|
||||
<< ", "
|
||||
<< block.delta_pos[My_GCodeTimeEstimator::Y]
|
||||
<< ", "
|
||||
<< block.delta_pos[My_GCodeTimeEstimator::Z]
|
||||
<< ") - f: "
|
||||
<< block.feedrate
|
||||
<< " - a: "
|
||||
<< block.acceleration
|
||||
<< " - s: ("
|
||||
<< block.entry_feedrate
|
||||
<< ", "
|
||||
<< block.exit_feedrate
|
||||
<< ")"
|
||||
<< std::endl;
|
||||
|
||||
float dx = ::abs(block.delta_pos[My_GCodeTimeEstimator::X]);
|
||||
float dy = ::abs(block.delta_pos[My_GCodeTimeEstimator::Y]);
|
||||
float dz = ::abs(block.delta_pos[My_GCodeTimeEstimator::Z]);
|
||||
|
||||
if (maxXYZ[My_GCodeTimeEstimator::X] < dx)
|
||||
{
|
||||
maxXYZ[My_GCodeTimeEstimator::X] = dx;
|
||||
maxID[My_GCodeTimeEstimator::X] = i;
|
||||
}
|
||||
|
||||
if (maxXYZ[My_GCodeTimeEstimator::Y] < dy)
|
||||
{
|
||||
maxXYZ[My_GCodeTimeEstimator::Y] = dy;
|
||||
maxID[My_GCodeTimeEstimator::Y] = i;
|
||||
}
|
||||
|
||||
if (maxXYZ[My_GCodeTimeEstimator::Z] < dz)
|
||||
{
|
||||
maxXYZ[My_GCodeTimeEstimator::Z] = dz;
|
||||
maxID[My_GCodeTimeEstimator::Z] = i;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << std::endl << "MAX DX: " << maxID[My_GCodeTimeEstimator::X] << " - " << maxXYZ[My_GCodeTimeEstimator::X] << std::endl;
|
||||
std::cout << std::endl << "MAX DY: " << maxID[My_GCodeTimeEstimator::Y] << " - " << maxXYZ[My_GCodeTimeEstimator::Y] << std::endl;
|
||||
std::cout << std::endl << "MAX DZ: " << maxID[My_GCodeTimeEstimator::Z] << " - " << maxXYZ[My_GCodeTimeEstimator::Z] << std::endl;
|
||||
|
||||
timeEstimator.print_counters();
|
||||
*/
|
||||
//############################################################################################################
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
@ -2,8 +2,592 @@
|
|||
#include <boost/bind.hpp>
|
||||
#include <cmath>
|
||||
|
||||
//###########################################################################################################
|
||||
#include <fstream>
|
||||
static const std::string AXIS_STR = "XYZE";
|
||||
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
|
||||
static const float MILLISEC_TO_SEC = 0.001f;
|
||||
static const float INCHES_TO_MM = 25.4f;
|
||||
static const float DEFAULT_FEEDRATE = 0.0f; // <<<<<<<<< FIND A PROPER VALUE
|
||||
static const float DEFAULT_ACCELERATION = 3000.0f;
|
||||
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 600.0f, 600.0f, 40.0f, 25.0f };
|
||||
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 100.0f, 10000.0f };
|
||||
|
||||
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from firmware
|
||||
// static const float DEFAULT_AXIS_MAX_JERK[] = { 20.0f, 20.0f, 0.4f, 5.0f }; / from CURA
|
||||
|
||||
static const float MINIMUM_FEEDRATE = 0.01f;
|
||||
static const float MINIMUM_PLANNER_SPEED = 0.05f; // <<<<<<<< WHAT IS THIS ???
|
||||
static const float FEEDRATE_THRESHOLD = 0.0001f;
|
||||
//###########################################################################################################
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
//###########################################################################################################
|
||||
float My_GCodeTimeEstimator::Block::move_length() const
|
||||
{
|
||||
float length = ::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
|
||||
return (length > 0.0f) ? length : ::abs(delta_pos[E]);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::Block::calculate_trapezoid()
|
||||
{
|
||||
float accelerate_distance = estimate_acceleration_distance(entry_feedrate, feedrate, acceleration);
|
||||
float decelerate_distance = estimate_acceleration_distance(feedrate, exit_feedrate, -acceleration);
|
||||
|
||||
float distance = move_length();
|
||||
|
||||
float plateau_distance = distance - accelerate_distance - decelerate_distance;
|
||||
|
||||
// Not enough space to reach the nominal feedrate.
|
||||
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
|
||||
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
|
||||
if (plateau_distance < 0.0f)
|
||||
{
|
||||
accelerate_distance = clamp(0.0f, distance, intersection_distance(entry_feedrate, exit_feedrate, acceleration, distance));
|
||||
plateau_distance = 0.0f;
|
||||
}
|
||||
|
||||
trapezoid.distance = distance;
|
||||
trapezoid.accelerate_until = accelerate_distance;
|
||||
trapezoid.decelerate_after = accelerate_distance + plateau_distance;
|
||||
trapezoid.entry_feedrate = entry_feedrate;
|
||||
trapezoid.exit_feedrate = exit_feedrate;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
|
||||
{
|
||||
return ::sqrt(sqr(target_velocity) - 2.0f * acceleration * distance);
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
|
||||
{
|
||||
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
|
||||
{
|
||||
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::Block::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
|
||||
{
|
||||
float discriminant = sqr(initial_feedrate) + 2.0f * acceleration * distance;
|
||||
|
||||
// If discriminant is negative, we're moving in the wrong direction.
|
||||
// Making the discriminant 0 then gives the extremum of the parabola instead of the intersection.
|
||||
discriminant = std::max(0.0f, discriminant);
|
||||
return (-initial_feedrate + ::sqrt(discriminant)) / acceleration;
|
||||
}
|
||||
|
||||
My_GCodeTimeEstimator::My_GCodeTimeEstimator()
|
||||
{
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::parse(const std::string& gcode)
|
||||
{
|
||||
_reset();
|
||||
GCodeReader::parse(gcode, boost::bind(&My_GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::parse_file(const std::string& file)
|
||||
{
|
||||
_reset();
|
||||
GCodeReader::parse_file(file, boost::bind(&My_GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::calculate_time()
|
||||
{
|
||||
_time = get_additional_time();
|
||||
|
||||
for (const Block& block : _blocks)
|
||||
{
|
||||
const Block::Trapezoid& trapezoid = block.trapezoid;
|
||||
float plateau_distance = trapezoid.decelerate_after - trapezoid.accelerate_until;
|
||||
|
||||
_time += Block::acceleration_time_from_distance(block.entry_feedrate, trapezoid.accelerate_until, block.acceleration);
|
||||
_time += plateau_distance / block.feedrate;
|
||||
_time += Block::acceleration_time_from_distance(block.exit_feedrate, (trapezoid.distance - trapezoid.decelerate_after), block.acceleration);
|
||||
}
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
|
||||
{
|
||||
_state.axis[axis].position = position;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
|
||||
{
|
||||
_state.axis[axis].max_feedrate = feedrate_mm_sec;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
|
||||
{
|
||||
_state.axis[axis].max_acceleration = acceleration;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
|
||||
{
|
||||
_state.axis[axis].max_jerk = jerk;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_axis_position(EAxis axis) const
|
||||
{
|
||||
return _state.axis[axis].position;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
|
||||
{
|
||||
return _state.axis[axis].max_feedrate;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
|
||||
{
|
||||
return _state.axis[axis].max_acceleration;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
|
||||
{
|
||||
return _state.axis[axis].max_jerk;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
|
||||
{
|
||||
_state.feedrate = std::max(feedrate_mm_sec, MINIMUM_FEEDRATE);
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_feedrate() const
|
||||
{
|
||||
return _state.feedrate;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_acceleration(float acceleration)
|
||||
{
|
||||
_state.acceleration = acceleration;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_acceleration() const
|
||||
{
|
||||
return _state.acceleration;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_dialect(My_GCodeTimeEstimator::EDialect dialect)
|
||||
{
|
||||
_state.dialect = dialect;
|
||||
}
|
||||
|
||||
My_GCodeTimeEstimator::EDialect My_GCodeTimeEstimator::get_dialect() const
|
||||
{
|
||||
return _state.dialect;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_units(My_GCodeTimeEstimator::EUnits units)
|
||||
{
|
||||
_state.units = units;
|
||||
}
|
||||
|
||||
My_GCodeTimeEstimator::EUnits My_GCodeTimeEstimator::get_units() const
|
||||
{
|
||||
return _state.units;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_positioningType(My_GCodeTimeEstimator::EPositioningType type)
|
||||
{
|
||||
_state.positioningType = type;
|
||||
}
|
||||
|
||||
My_GCodeTimeEstimator::EPositioningType My_GCodeTimeEstimator::get_positioningType() const
|
||||
{
|
||||
return _state.positioningType;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::add_additional_time(float timeSec)
|
||||
{
|
||||
_state.additional_time += timeSec;
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_additional_time() const
|
||||
{
|
||||
return _state.additional_time;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::set_default()
|
||||
{
|
||||
set_units(Millimeters);
|
||||
set_dialect(Unknown);
|
||||
set_positioningType(Absolute);
|
||||
|
||||
set_feedrate(DEFAULT_FEEDRATE);
|
||||
set_acceleration(DEFAULT_ACCELERATION);
|
||||
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
EAxis axis = (EAxis)a;
|
||||
set_axis_max_feedrate(axis, DEFAULT_AXIS_MAX_FEEDRATE[a]);
|
||||
set_axis_max_acceleration(axis, DEFAULT_AXIS_MAX_ACCELERATION[a]);
|
||||
set_axis_max_jerk(axis, DEFAULT_AXIS_MAX_JERK[a]);
|
||||
}
|
||||
}
|
||||
|
||||
float My_GCodeTimeEstimator::get_time() const
|
||||
{
|
||||
return _time;
|
||||
}
|
||||
|
||||
const My_GCodeTimeEstimator::BlocksList& My_GCodeTimeEstimator::get_blocks() const
|
||||
{
|
||||
return _blocks;
|
||||
}
|
||||
|
||||
// void My_GCodeTimeEstimator::print_counters() const
|
||||
// {
|
||||
// std::cout << std::endl;
|
||||
// for (const CmdToCounterMap::value_type& counter : _cmdCounters)
|
||||
// {
|
||||
// std::cout << counter.first << " : " << counter.second << std::endl;
|
||||
// }
|
||||
// }
|
||||
|
||||
void My_GCodeTimeEstimator::_reset()
|
||||
{
|
||||
// _cmdCounters.clear();
|
||||
|
||||
_blocks.clear();
|
||||
|
||||
set_default();
|
||||
set_axis_position(X, 0.0f);
|
||||
set_axis_position(Y, 0.0f);
|
||||
set_axis_position(Z, 0.0f);
|
||||
|
||||
_state.additional_time = 0.0f;
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
if (line.cmd.length() > 1)
|
||||
{
|
||||
switch (line.cmd[0])
|
||||
{
|
||||
case 'G':
|
||||
{
|
||||
switch (::atoi(&line.cmd[1]))
|
||||
{
|
||||
case 1: // Move
|
||||
{
|
||||
_processG1(line);
|
||||
break;
|
||||
}
|
||||
case 4: // Dwell
|
||||
{
|
||||
_processG4(line);
|
||||
break;
|
||||
}
|
||||
case 20: // Set Units to Inches
|
||||
{
|
||||
_processG20(line);
|
||||
break;
|
||||
}
|
||||
case 21: // Set Units to Millimeters
|
||||
{
|
||||
_processG21(line);
|
||||
break;
|
||||
}
|
||||
case 28: // Move to Origin (Home)
|
||||
{
|
||||
_processG28(line);
|
||||
break;
|
||||
}
|
||||
case 90: // Set to Absolute Positioning
|
||||
{
|
||||
_processG90(line);
|
||||
break;
|
||||
}
|
||||
case 91: // Set to Relative Positioning
|
||||
{
|
||||
_processG91(line);
|
||||
break;
|
||||
}
|
||||
case 92: // Set Position
|
||||
{
|
||||
_processG92(line);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case 'M':
|
||||
{
|
||||
switch (::atoi(&line.cmd[1]))
|
||||
{
|
||||
case 109: // Set Extruder Temperature and Wait
|
||||
{
|
||||
_processM109(line);
|
||||
break;
|
||||
}
|
||||
case 203: // Set maximum feedrate
|
||||
{
|
||||
_processM203(line);
|
||||
break;
|
||||
}
|
||||
case 204: // Set default acceleration
|
||||
{
|
||||
_processM204(line);
|
||||
break;
|
||||
}
|
||||
case 566: // Set allowable instantaneous speed change
|
||||
{
|
||||
_processM566(line);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// CmdToCounterMap::iterator it = _cmdCounters.find(line.cmd);
|
||||
// if (it == _cmdCounters.end())
|
||||
// _cmdCounters.insert(CmdToCounterMap::value_type(line.cmd, 1));
|
||||
// else
|
||||
// ++it->second;
|
||||
}
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
float lengthsScaleFactor = (get_units() == Inches) ? INCHES_TO_MM : 1.0f;
|
||||
|
||||
// gets position changes from line, if present
|
||||
float new_pos[Num_Axis];
|
||||
|
||||
if (get_positioningType() == Absolute)
|
||||
{
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
new_pos[a] = line.has(AXIS_STR[a]) ? line.get_float(AXIS_STR[a]) * lengthsScaleFactor : get_axis_position((EAxis)a);
|
||||
}
|
||||
}
|
||||
else // get_positioningType() == Relative
|
||||
{
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
new_pos[a] = get_axis_position((EAxis)a);
|
||||
new_pos[a] += (line.has(AXIS_STR[a]) ? line.get_float(AXIS_STR[a]) * lengthsScaleFactor : 0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// updates feedrate from line, if present
|
||||
if (line.has('F'))
|
||||
set_feedrate(line.get_float('F') * MMMIN_TO_MMSEC);
|
||||
|
||||
// fills block data
|
||||
Block block;
|
||||
|
||||
// calculates block movement deltas
|
||||
float max_abs_delta = 0.0f;
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
block.delta_pos[a] = new_pos[a] - get_axis_position((EAxis)a);
|
||||
max_abs_delta = std::max(max_abs_delta, ::abs(block.delta_pos[a]));
|
||||
}
|
||||
|
||||
// is it a move ?
|
||||
if (max_abs_delta == 0.0f)
|
||||
return;
|
||||
|
||||
// calculates block feedrate
|
||||
float feedrate = get_feedrate();
|
||||
|
||||
float distance = block.move_length();
|
||||
float invDistance = 1.0f / distance;
|
||||
|
||||
float axis_feedrate[Num_Axis];
|
||||
float min_feedrate_factor = 1.0f;
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
axis_feedrate[a] = feedrate * ::abs(block.delta_pos[a]) * invDistance;
|
||||
if (axis_feedrate[a] > 0.0f)
|
||||
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / axis_feedrate[a]);
|
||||
}
|
||||
|
||||
block.feedrate = min_feedrate_factor * feedrate;
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
axis_feedrate[a] *= min_feedrate_factor;
|
||||
}
|
||||
|
||||
// calculates block acceleration
|
||||
float acceleration = get_acceleration();
|
||||
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
float axis_max_acceleration = get_axis_max_acceleration((EAxis)a);
|
||||
if (acceleration * ::abs(block.delta_pos[a]) * invDistance > axis_max_acceleration)
|
||||
acceleration = axis_max_acceleration;
|
||||
}
|
||||
|
||||
block.acceleration = acceleration;
|
||||
|
||||
// calculates block exit feedrate
|
||||
float exit_feedrate = block.feedrate;
|
||||
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
float half_axis_max_jerk = 0.5f * get_axis_max_jerk((EAxis)a);
|
||||
if (axis_feedrate[a] > half_axis_max_jerk)
|
||||
exit_feedrate = std::min(exit_feedrate, half_axis_max_jerk);
|
||||
}
|
||||
|
||||
block.exit_feedrate = exit_feedrate;
|
||||
|
||||
// calculates block entry feedrate
|
||||
float vmax_junction = exit_feedrate;
|
||||
if (!_blocks.empty() && (_prev.feedrate > FEEDRATE_THRESHOLD))
|
||||
{
|
||||
vmax_junction = block.feedrate;
|
||||
float vmax_junction_factor = 1.0f;
|
||||
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
float abs_delta_axis_feedrate = ::abs(axis_feedrate[a] - _prev.axis_feedrate[a]);
|
||||
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
|
||||
if (abs_delta_axis_feedrate > axis_max_jerk)
|
||||
vmax_junction_factor = std::min(vmax_junction_factor, axis_max_jerk / abs_delta_axis_feedrate);
|
||||
}
|
||||
|
||||
// limit vmax to not exceed previous feedrate
|
||||
vmax_junction = std::min(_prev.feedrate, vmax_junction * vmax_junction_factor);
|
||||
}
|
||||
|
||||
block.entry_feedrate = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance));
|
||||
|
||||
// calculates block trapezoid
|
||||
block.calculate_trapezoid();
|
||||
|
||||
// updates previous cache
|
||||
_prev.feedrate = feedrate;
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
_prev.axis_feedrate[a] = axis_feedrate[a];
|
||||
}
|
||||
|
||||
// updates axis positions
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
set_axis_position((EAxis)a, new_pos[a]);
|
||||
}
|
||||
|
||||
// adds block to blocks list
|
||||
_blocks.push_back(block);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
EDialect dialect = get_dialect();
|
||||
|
||||
if (line.has('P'))
|
||||
add_additional_time(line.get_float('P') * MILLISEC_TO_SEC);
|
||||
|
||||
// see: http://reprap.org/wiki/G-code#G4:_Dwell
|
||||
if ((dialect == Repetier) ||
|
||||
(dialect == Marlin) ||
|
||||
(dialect == Smoothieware) ||
|
||||
(dialect == RepRapFirmware))
|
||||
{
|
||||
if (line.has('S'))
|
||||
add_additional_time(line.get_float('S'));
|
||||
}
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
set_units(Inches);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
set_units(Millimeters);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// todo
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
set_positioningType(Absolute);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// >>>>>>>> THERE ARE DIALECT VARIANTS
|
||||
|
||||
set_positioningType(Relative);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// todo
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// todo
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
EDialect dialect = get_dialect();
|
||||
|
||||
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
|
||||
if (dialect == Repetier)
|
||||
return;
|
||||
|
||||
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
|
||||
float factor = (dialect == Marlin) ? 1.0f : MMMIN_TO_MMSEC;
|
||||
|
||||
if (line.has('X'))
|
||||
set_axis_max_feedrate(X, line.get_float('X') * factor);
|
||||
|
||||
if (line.has('Y'))
|
||||
set_axis_max_feedrate(Y, line.get_float('Y') * factor);
|
||||
|
||||
if (line.has('Z'))
|
||||
set_axis_max_feedrate(Z, line.get_float('Z') * factor);
|
||||
|
||||
if (line.has('E'))
|
||||
set_axis_max_feedrate(E, line.get_float('E') * factor);
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
if (line.has('S'))
|
||||
set_acceleration(line.get_float('S')); // <<<< Is this correct ?
|
||||
|
||||
if (line.has('T'))
|
||||
{
|
||||
// what to do ?
|
||||
}
|
||||
}
|
||||
|
||||
void My_GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
if (line.has('X'))
|
||||
set_axis_max_jerk(X, line.get_float('X') * MMMIN_TO_MMSEC);
|
||||
|
||||
if (line.has('Y'))
|
||||
set_axis_max_jerk(Y, line.get_float('Y') * MMMIN_TO_MMSEC);
|
||||
|
||||
if (line.has('Z'))
|
||||
set_axis_max_jerk(Z, line.get_float('Z') * MMMIN_TO_MMSEC);
|
||||
|
||||
if (line.has('E'))
|
||||
set_axis_max_jerk(E, line.get_float('E') * MMMIN_TO_MMSEC);
|
||||
}
|
||||
//###########################################################################################################
|
||||
|
||||
void
|
||||
GCodeTimeEstimator::parse(const std::string &gcode)
|
||||
{
|
||||
|
|
|
@ -6,6 +6,210 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
//###########################################################################################################
|
||||
class My_GCodeTimeEstimator : public GCodeReader
|
||||
{
|
||||
public:
|
||||
enum EUnits : unsigned char
|
||||
{
|
||||
Millimeters,
|
||||
Inches
|
||||
};
|
||||
|
||||
enum EAxis : unsigned char
|
||||
{
|
||||
X,
|
||||
Y,
|
||||
Z,
|
||||
E,
|
||||
Num_Axis
|
||||
};
|
||||
|
||||
enum EDialect : unsigned char
|
||||
{
|
||||
Unknown,
|
||||
Marlin,
|
||||
Repetier,
|
||||
Smoothieware,
|
||||
RepRapFirmware,
|
||||
Teacup,
|
||||
Num_Dialects
|
||||
};
|
||||
|
||||
enum EPositioningType
|
||||
{
|
||||
Absolute,
|
||||
Relative
|
||||
};
|
||||
|
||||
private:
|
||||
struct Axis
|
||||
{
|
||||
float position; // mm
|
||||
float max_feedrate; // mm/s
|
||||
float max_acceleration; // mm/s^2
|
||||
float max_jerk; // mm/s
|
||||
};
|
||||
|
||||
struct State
|
||||
{
|
||||
EDialect dialect;
|
||||
EUnits units;
|
||||
EPositioningType positioningType;
|
||||
Axis axis[Num_Axis];
|
||||
float feedrate; // mm/s
|
||||
float acceleration; // mm/s^2
|
||||
float additional_time; // s
|
||||
};
|
||||
|
||||
struct PreviousBlockCache
|
||||
{
|
||||
float feedrate; // mm/s
|
||||
float axis_feedrate[Num_Axis]; // mm/s
|
||||
};
|
||||
|
||||
public:
|
||||
struct Block
|
||||
{
|
||||
struct Trapezoid
|
||||
{
|
||||
float distance; // mm
|
||||
float accelerate_until; // mm
|
||||
float decelerate_after; // mm
|
||||
float entry_feedrate; // mm/s
|
||||
float exit_feedrate; // mm/s
|
||||
};
|
||||
|
||||
float delta_pos[Num_Axis]; // mm
|
||||
float feedrate; // mm/s
|
||||
float acceleration; // mm/s^2
|
||||
float entry_feedrate; // mm/s
|
||||
float exit_feedrate; // mm/s
|
||||
|
||||
Trapezoid trapezoid;
|
||||
|
||||
// Returns the length of the move covered by this block, in mm
|
||||
float move_length() const;
|
||||
|
||||
void calculate_trapezoid();
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
static float max_allowable_speed(float acceleration, float target_velocity, float distance);
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the given acceleration:
|
||||
static float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration);
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance);
|
||||
|
||||
// This function gives the time it needs to accelerate from an initial speed to reach a final distance.
|
||||
static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration);
|
||||
};
|
||||
|
||||
typedef std::vector<Block> BlocksList;
|
||||
|
||||
private:
|
||||
// typedef std::map<std::string, unsigned int> CmdToCounterMap;
|
||||
// CmdToCounterMap _cmdCounters;
|
||||
|
||||
State _state;
|
||||
PreviousBlockCache _prev;
|
||||
BlocksList _blocks;
|
||||
float _time; // s
|
||||
|
||||
public:
|
||||
My_GCodeTimeEstimator();
|
||||
|
||||
void parse(const std::string& gcode);
|
||||
void parse_file(const std::string& file);
|
||||
|
||||
void calculate_time();
|
||||
|
||||
void set_axis_position(EAxis axis, float position);
|
||||
void set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec);
|
||||
void set_axis_max_acceleration(EAxis axis, float acceleration);
|
||||
void set_axis_max_jerk(EAxis axis, float jerk);
|
||||
|
||||
float get_axis_position(EAxis axis) const;
|
||||
float get_axis_max_feedrate(EAxis axis) const;
|
||||
float get_axis_max_acceleration(EAxis axis) const;
|
||||
float get_axis_max_jerk(EAxis axis) const;
|
||||
|
||||
void set_feedrate(float feedrate_mm_sec);
|
||||
float get_feedrate() const;
|
||||
|
||||
void set_acceleration(float acceleration);
|
||||
float get_acceleration() const;
|
||||
|
||||
void set_dialect(EDialect dialect);
|
||||
EDialect get_dialect() const;
|
||||
|
||||
void set_units(EUnits units);
|
||||
EUnits get_units() const;
|
||||
|
||||
void set_positioningType(EPositioningType type);
|
||||
EPositioningType get_positioningType() const;
|
||||
|
||||
void add_additional_time(float timeSec);
|
||||
float get_additional_time() const;
|
||||
|
||||
void set_default();
|
||||
|
||||
// returns estimated time in seconds
|
||||
float get_time() const;
|
||||
|
||||
const BlocksList& get_blocks() const;
|
||||
|
||||
// void print_counters() const;
|
||||
|
||||
private:
|
||||
void _reset();
|
||||
|
||||
// Processes GCode line
|
||||
void _process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Move
|
||||
void _processG1(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Dwell
|
||||
void _processG4(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Units to Inches
|
||||
void _processG20(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Units to Millimeters
|
||||
void _processG21(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Move to Origin (Home)
|
||||
void _processG28(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set to Absolute Positioning
|
||||
void _processG90(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set to Relative Positioning
|
||||
void _processG91(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Position
|
||||
void _processG92(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Extruder Temperature and Wait
|
||||
void _processM109(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set maximum feedrate
|
||||
void _processM203(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set default acceleration
|
||||
void _processM204(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set allowable instantaneous speed change
|
||||
void _processM566(const GCodeReader::GCodeLine& line);
|
||||
};
|
||||
//###########################################################################################################
|
||||
|
||||
class GCodeTimeEstimator : public GCodeReader {
|
||||
public:
|
||||
float time = 0; // in seconds
|
||||
|
|
Loading…
Reference in a new issue