replace triangulation in SupportSpotGenerator with triangle formula and winding number

Use the same apporach in computation of polygon area principal components
This commit is contained in:
PavelMikus 2023-01-18 16:01:09 +01:00
parent 96762a2119
commit bdcb773202
4 changed files with 133 additions and 120 deletions

View File

@ -82,12 +82,11 @@ inline std::tuple<Vec2d, double> detect_bridging_direction(const Polygons &to_co
if (floating_polylines.empty()) { if (floating_polylines.empty()) {
// consider this area anchored from all sides, pick bridging direction that will likely yield shortest bridges // consider this area anchored from all sides, pick bridging direction that will likely yield shortest bridges
//use 3mm resolution (should be quite fast, and rough estimation should not cause any problems here) auto [pc1, pc2] = compute_principal_components(overhang_area);
auto [pc1, pc2] = compute_principal_components(overhang_area, 3.0); if (pc2 == Vec2f::Zero()) { // overhang may be smaller than resolution. In this case, any direction is ok
if (pc2 == Vec2d::Zero()) { // overhang may be smaller than resolution. In this case, any direction is ok
return {Vec2d{1.0,0.0}, 0.0}; return {Vec2d{1.0,0.0}, 0.0};
} else { } else {
return {pc2.normalized(), 0.0}; return {pc2.normalized().cast<double>(), 0.0};
} }
} }

View File

@ -3,53 +3,97 @@
namespace Slic3r { namespace Slic3r {
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, const double unscaled_resolution)
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
// none of the values is divided/normalized by area.
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
// f(x,y) = x^2 for second moment of area
// and f(x,y) = x*y for second moment of area covariance
std::tuple<float, Vec2f, Vec2f, float> compute_moments_of_area_of_triangle(const Vec2f &a, const Vec2f &b, const Vec2f &c)
{ {
// USING UNSCALED VALUES // based on the following guide:
const Vec2d pixel_size = Vec2d(unscaled_resolution, unscaled_resolution); // Denote the vertices of S by a, b, c. Then the map
const auto bb = get_extents(polys); // g:(u,v)↦a+u(ba)+v(ca) ,
const Vec2i pixel_count = unscaled(bb.size()).cwiseQuotient(pixel_size).cast<int>() + Vec2i::Ones(); // which in coordinates appears as
// g:(u,v)↦{x(u,v)y(u,v)=a1+u(b1a1)+v(c1a1)=a2+u(b2a2)+v(c2a2) ,(1)
// obviously maps S bijectively onto S. Therefore the transformation formula for multiple integrals steps into action, and we obtain
// ∫Sf(x,y)d(x,y)=∫Sf(x(u,v),y(u,v))Jg(u,v) d(u,v) .
// In the case at hand the Jacobian determinant is a constant: From (1) we obtain
// Jg(u,v)=det[xuyuxvyv]=(b1a1)(c2a2)(c1a1)(b2a2) .
// Therefore we can write
// ∫Sf(x,y)d(x,y)=Jg∫10∫1u0f~(u,v) dv du ,
// where f~ denotes the pullback of f to S:
// f~(u,v):=f(x(u,v),y(u,v)) .
// Don't forget taking the absolute value of Jg!
std::vector<Linef> lines{}; float jacobian_determinant_abs = std::abs((b.x() - a.x()) * (c.y() - a.y()) - (c.x() - a.x()) * (b.y() - a.y()));
for (Line l : to_lines(polys)) { lines.emplace_back(unscaled(l.a), unscaled(l.b)); }
AABBTreeIndirect::Tree<2, double> tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(lines);
auto is_inside = [&](const Vec2d &point) {
size_t nearest_line_index_out = 0;
Vec2d nearest_point_out = Vec2d::Zero();
auto distance = AABBTreeLines::squared_distance_to_indexed_lines(lines, tree, point, nearest_line_index_out, nearest_point_out);
if (distance < 0) return false;
const Linef &line = lines[nearest_line_index_out];
Vec2d v1 = line.b - line.a;
Vec2d v2 = point - line.a;
if ((v1.x() * v2.y()) - (v1.y() * v2.x()) > 0.0) { return true; }
return false;
};
double pixel_area = pixel_size.x() * pixel_size.y(); // coordinate transform: gx(u,v) = a.x + u * (b.x - a.x) + v * (c.x - a.x)
Vec2d centroid_accumulator = Vec2d::Zero(); // coordinate transform: gy(u,v) = a.y + u * (b.y - a.y) + v * (c.y - a.y)
Vec2d second_moment_of_area_accumulator = Vec2d::Zero(); // second moment of area for x: f(x, y) = x^2;
double second_moment_of_area_covariance_accumulator = 0.0; // f(gx(u,v), gy(u,v)) = gx(u,v)^2 = ... (long expanded form)
double area = 0.0;
for (int x = 0; x < pixel_count.x(); x++) { // result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
for (int y = 0; y < pixel_count.y(); y++) { // integral_0^1 integral_0^(1 - u) (a + u (b - a) + v (c - a))^2 dv du = 1/12 (a^2 + a (b + c) + b^2 + b c + c^2)
Vec2d position = unscaled(bb.min) + pixel_size.cwiseProduct(Vec2d{x, y});
if (is_inside(position)) { Vec2f second_moment_of_area_xy = jacobian_determinant_abs *
area += pixel_area; (a.cwiseProduct(a) + b.cwiseProduct(b) + b.cwiseProduct(c) + c.cwiseProduct(c) +
centroid_accumulator += pixel_area * position; a.cwiseProduct(b + c)) /
second_moment_of_area_accumulator += pixel_area * position.cwiseProduct(position); 12.0f;
second_moment_of_area_covariance_accumulator += pixel_area * position.x() * position.y(); // second moment of area covariance : f(x, y) = x*y;
} // f(gx(u,v), gy(u,v)) = gx(u,v)*gy(u,v) = ... (long expanded form)
//(a_1 + u * (b_1 - a_1) + v * (c_1 - a_1)) * (a_2 + u * (b_2 - a_2) + v * (c_2 - a_2))
// == (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2))
// intermediate result: integral_0^(1 - u) (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) dv =
// 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2
// b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) result = integral_0^1 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u -
// 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) du =
// 1/24 (a_2 (b_1 + c_1) + a_1 (2 a_2 + b_2 + c_2) + b_2 c_1 + b_1 c_2 + 2 b_1 b_2 + 2 c_1 c_2)
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
float second_moment_of_area_covariance = jacobian_determinant_abs * (1.0f / 24.0f) *
(a.y() * (b.x() + c.x()) + a.x() * (2.0f * a.y() + b.y() + c.y()) + b.y() * c.x() +
b.x() * c.y() + 2.0f * b.x() * b.y() + 2.0f * c.x() * c.y());
float area = jacobian_determinant_abs * 0.5f;
Vec2f first_moment_of_area_xy = jacobian_determinant_abs * (a + b + c) / 6.0f;
return {area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance};
};
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
std::tuple<Vec2f, Vec2f> compute_principal_components(const Polygons &polys)
{
Vec2f centroid_accumulator = Vec2f::Zero();
Vec2f second_moment_of_area_accumulator = Vec2f::Zero();
float second_moment_of_area_covariance_accumulator = 0.0f;
float area = 0.0f;
for (const Polygon &poly : polys) {
Vec2f p0 = unscaled(poly.first_point()).cast<float>();
for (size_t i = 2; i < poly.points.size(); i++) {
Vec2f p1 = unscaled(poly.points[i - 1]).cast<float>();
Vec2f p2 = unscaled(poly.points[i]).cast<float>();
float sign = cross2(p1 - p0, p2 - p1) > 0 ? 1.0f : -1.0f;
auto [triangle_area, first_moment_of_area, second_moment_area,
second_moment_of_area_covariance] = compute_moments_of_area_of_triangle(p0, p1, p2);
area += sign * triangle_area;
centroid_accumulator += sign * first_moment_of_area;
second_moment_of_area_accumulator += sign * second_moment_area;
second_moment_of_area_covariance_accumulator += sign * second_moment_of_area_covariance;
} }
} }
if (area <= 0.0) { if (area <= 0.0) {
return {Vec2d::Zero(), Vec2d::Zero()}; return {Vec2f::Zero(), Vec2f::Zero()};
} }
Vec2d centroid = centroid_accumulator / area; Vec2f centroid = centroid_accumulator / area;
Vec2d variance = second_moment_of_area_accumulator / area - centroid.cwiseProduct(centroid); Vec2f variance = second_moment_of_area_accumulator / area - centroid.cwiseProduct(centroid);
double covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y(); double covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y();
#if 0 #if 0
std::cout << "area : " << area << std::endl; std::cout << "area : " << area << std::endl;
@ -58,7 +102,7 @@ std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, con
std::cout << "covariance : " << covariance << std::endl; std::cout << "covariance : " << covariance << std::endl;
#endif #endif
if (abs(covariance) < EPSILON) { if (abs(covariance) < EPSILON) {
std::tuple<Vec2d, Vec2d> result{Vec2d{variance.x(), 0.0}, Vec2d{0.0, variance.y()}}; std::tuple<Vec2f, Vec2f> result{Vec2f{variance.x(), 0.0}, Vec2f{0.0, variance.y()}};
if (variance.y() > variance.x()) { if (variance.y() > variance.x()) {
return {std::get<1>(result), std::get<0>(result)}; return {std::get<1>(result), std::get<0>(result)};
} else } else
@ -72,12 +116,12 @@ std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, con
// Eigenvalues are solutions to det(C - lI) = 0, where l is the eigenvalue and I unit matrix // Eigenvalues are solutions to det(C - lI) = 0, where l is the eigenvalue and I unit matrix
// Eigenvector for eigenvalue l is any vector v such that Cv = lv // Eigenvector for eigenvalue l is any vector v such that Cv = lv
double eigenvalue_a = 0.5 * (variance.x() + variance.y() + float eigenvalue_a = 0.5f * (variance.x() + variance.y() +
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4 * covariance * covariance)); sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4.0f * covariance * covariance));
double eigenvalue_b = 0.5 * (variance.x() + variance.y() - float eigenvalue_b = 0.5f * (variance.x() + variance.y() -
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4 * covariance * covariance)); sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4.0f * covariance * covariance));
Vec2d eigenvector_a{(eigenvalue_a - variance.y()) / covariance, 1.0}; Vec2f eigenvector_a{(eigenvalue_a - variance.y()) / covariance, 1.0f};
Vec2d eigenvector_b{(eigenvalue_b - variance.y()) / covariance, 1.0}; Vec2f eigenvector_b{(eigenvalue_b - variance.y()) / covariance, 1.0f};
#if 0 #if 0
std::cout << "eigenvalue_a: " << eigenvalue_a << std::endl; std::cout << "eigenvalue_a: " << eigenvalue_a << std::endl;

View File

@ -9,8 +9,15 @@
namespace Slic3r { namespace Slic3r {
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
// none of the values is divided/normalized by area.
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
// f(x,y) = x^2 for second moment of area
// and f(x,y) = x*y for second moment of area covariance
std::tuple<float, Vec2f, Vec2f, float> compute_moments_of_area_of_triangle(const Vec2f &a, const Vec2f &b, const Vec2f &c);
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first // returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, const double unscaled_resolution); std::tuple<Vec2f, Vec2f> compute_principal_components(const Polygons &polys);
} }

View File

@ -1,5 +1,6 @@
#include "SupportSpotsGenerator.hpp" #include "SupportSpotsGenerator.hpp"
#include "BoundingBox.hpp"
#include "ExPolygon.hpp" #include "ExPolygon.hpp"
#include "ExtrusionEntity.hpp" #include "ExtrusionEntity.hpp"
#include "ExtrusionEntityCollection.hpp" #include "ExtrusionEntityCollection.hpp"
@ -7,6 +8,7 @@
#include "Line.hpp" #include "Line.hpp"
#include "Point.hpp" #include "Point.hpp"
#include "Polygon.hpp" #include "Polygon.hpp"
#include "PrincipalComponents2D.hpp"
#include "Print.hpp" #include "Print.hpp"
#include "PrintBase.hpp" #include "PrintBase.hpp"
#include "Tesselate.hpp" #include "Tesselate.hpp"
@ -117,13 +119,14 @@ public:
size_t to_cell_index(const Vec3i &cell_coords) const size_t to_cell_index(const Vec3i &cell_coords) const
{ {
#ifdef DETAILED_DEBUG_LOGS
assert(cell_coords.x() >= 0); assert(cell_coords.x() >= 0);
assert(cell_coords.x() < cell_count.x()); assert(cell_coords.x() < cell_count.x());
assert(cell_coords.y() >= 0); assert(cell_coords.y() >= 0);
assert(cell_coords.y() < cell_count.y()); assert(cell_coords.y() < cell_count.y());
assert(cell_coords.z() >= 0); assert(cell_coords.z() >= 0);
assert(cell_coords.z() < cell_count.z()); assert(cell_coords.z() < cell_count.z());
#endif
return cell_coords.z() * cell_count.x() * cell_count.y() + cell_coords.y() * cell_count.x() + cell_coords.x(); return cell_coords.z() * cell_count.x() * cell_count.y() + cell_coords.y() * cell_count.x() + cell_coords.x();
} }
@ -244,6 +247,7 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
const float flow_width = get_flow_width(layer_region, entity->role()); const float flow_width = get_flow_width(layer_region, entity->role());
// Compute only unsigned distance - prev_layer_lines can contain unconnected paths, thus the sign of the distance is unreliable
std::vector<ExtendedPoint> annotated_points = estimate_points_properties<true, true, false, false>(entity->as_polyline().points, std::vector<ExtendedPoint> annotated_points = estimate_points_properties<true, true, false, false>(entity->as_polyline().points,
prev_layer_lines, flow_width, prev_layer_lines, flow_width,
params.bridge_distance); params.bridge_distance);
@ -262,6 +266,7 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) : prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) :
ExtrusionLine{}; ExtrusionLine{};
// correctify the distance sign using slice polygons
float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f;
curr_point.distance *= sign; curr_point.distance *= sign;
@ -297,84 +302,39 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
} }
} }
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
// none of the values is divided/normalized by area.
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
// f(x,y) = x^2 for second moment of area
// and f(x,y) = x*y for second moment of area covariance
std::tuple<float, Vec2f, Vec2f, float> compute_triangle_moments_of_area(const Vec2f &a, const Vec2f &b, const Vec2f &c)
{
// based on the following guide:
// Denote the vertices of S by a, b, c. Then the map
// g:(u,v)↦a+u(ba)+v(ca) ,
// which in coordinates appears as
// g:(u,v)↦{x(u,v)y(u,v)=a1+u(b1a1)+v(c1a1)=a2+u(b2a2)+v(c2a2) ,(1)
// obviously maps S bijectively onto S. Therefore the transformation formula for multiple integrals steps into action, and we obtain
// ∫Sf(x,y)d(x,y)=∫Sf(x(u,v),y(u,v))Jg(u,v) d(u,v) .
// In the case at hand the Jacobian determinant is a constant: From (1) we obtain
// Jg(u,v)=det[xuyuxvyv]=(b1a1)(c2a2)(c1a1)(b2a2) .
// Therefore we can write
// ∫Sf(x,y)d(x,y)=Jg∫10∫1u0f~(u,v) dv du ,
// where f~ denotes the pullback of f to S:
// f~(u,v):=f(x(u,v),y(u,v)) .
// Don't forget taking the absolute value of Jg!
float jacobian_determinant_abs = std::abs((b.x() - a.x()) * (c.y() - a.y()) - (c.x() - a.x()) * (b.y() - a.y()));
// coordinate transform: gx(u,v) = a.x + u * (b.x - a.x) + v * (c.x - a.x)
// coordinate transform: gy(u,v) = a.y + u * (b.y - a.y) + v * (c.y - a.y)
// second moment of area for x: f(x, y) = x^2;
// f(gx(u,v), gy(u,v)) = gx(u,v)^2 = ... (long expanded form)
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
// integral_0^1 integral_0^(1 - u) (a + u (b - a) + v (c - a))^2 dv du = 1/12 (a^2 + a (b + c) + b^2 + b c + c^2)
Vec2f second_moment_of_area_xy = jacobian_determinant_abs *
(a.cwiseProduct(a) + b.cwiseProduct(b) + b.cwiseProduct(c) + c.cwiseProduct(c) +
a.cwiseProduct(b + c)) /
12.0f;
// second moment of area covariance : f(x, y) = x*y;
// f(gx(u,v), gy(u,v)) = gx(u,v)*gy(u,v) = ... (long expanded form)
//(a_1 + u * (b_1 - a_1) + v * (c_1 - a_1)) * (a_2 + u * (b_2 - a_2) + v * (c_2 - a_2))
// == (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2))
// intermediate result: integral_0^(1 - u) (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) dv =
// 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2
// b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) result = integral_0^1 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u -
// 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) du =
// 1/24 (a_2 (b_1 + c_1) + a_1 (2 a_2 + b_2 + c_2) + b_2 c_1 + b_1 c_2 + 2 b_1 b_2 + 2 c_1 c_2)
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
float second_moment_of_area_covariance = jacobian_determinant_abs * (1.0f / 24.0f) *
(a.y() * (b.x() + c.x()) + a.x() * (2.0f * a.y() + b.y() + c.y()) + b.y() * c.x() +
b.x() * c.y() + 2.0f * b.x() * b.y() + 2.0f * c.x() * c.y());
float area = jacobian_determinant_abs * 0.5f;
Vec2f first_moment_of_area_xy = jacobian_determinant_abs * (a + b + c) / 6.0f;
return {area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance};
};
SliceConnection estimate_slice_connection(size_t slice_idx, const Layer *layer) SliceConnection estimate_slice_connection(size_t slice_idx, const Layer *layer)
{ {
SliceConnection connection; SliceConnection connection;
const LayerSlice &slice = layer->lslices_ex[slice_idx]; const LayerSlice &slice = layer->lslices_ex[slice_idx];
ExPolygon slice_poly = layer->lslices[slice_idx]; Polygons slice_polys = to_polygons(layer->lslices[slice_idx]);
BoundingBox slice_bb = get_extents(slice_polys);
const Layer *lower_layer = layer->lower_layer; const Layer *lower_layer = layer->lower_layer;
ExPolygons below_polys{}; ExPolygons below{};
for (const auto &link : slice.overlaps_below) { below_polys.push_back(lower_layer->lslices[link.slice_idx]); } for (const auto &link : slice.overlaps_below) { below.push_back(lower_layer->lslices[link.slice_idx]); }
ExPolygons overlap = intersection_ex({slice_poly}, below_polys); Polygons below_polys = to_polygons(below);
std::vector<Vec2f> triangles = triangulate_expolygons_2f(overlap); BoundingBox below_bb = get_extents(below_polys);
for (size_t idx = 0; idx < triangles.size(); idx += 3) {
auto [area, first_moment_of_area, second_moment_area, Polygons overlap = intersection(ClipperUtils::clip_clipper_polygons_with_subject_bbox(slice_polys, below_bb),
second_moment_of_area_covariance] = compute_triangle_moments_of_area(triangles[idx], triangles[idx + 1], triangles[idx + 2]); ClipperUtils::clip_clipper_polygons_with_subject_bbox(below_polys, slice_bb));
connection.area += area;
connection.centroid_accumulator += Vec3f(first_moment_of_area.x(), first_moment_of_area.y(), layer->print_z * area); for (const Polygon &poly : overlap) {
connection.second_moment_of_area_accumulator += second_moment_area; Vec2f p0 = unscaled(poly.first_point()).cast<float>();
connection.second_moment_of_area_covariance_accumulator += second_moment_of_area_covariance; for (size_t i = 2; i < poly.points.size(); i++) {
Vec2f p1 = unscaled(poly.points[i - 1]).cast<float>();
Vec2f p2 = unscaled(poly.points[i]).cast<float>();
float sign = cross2(p1 - p0, p2 - p1) > 0 ? 1.0f : -1.0f;
auto [area, first_moment_of_area, second_moment_area,
second_moment_of_area_covariance] = compute_moments_of_area_of_triangle(p0, p1, p2);
connection.area += sign * area;
connection.centroid_accumulator += sign * Vec3f(first_moment_of_area.x(), first_moment_of_area.y(), layer->print_z * area);
connection.second_moment_of_area_accumulator += sign * second_moment_area;
connection.second_moment_of_area_covariance_accumulator += sign * second_moment_of_area_covariance;
}
} }
return connection; return connection;
@ -973,6 +933,9 @@ void estimate_malformations(LayerPtrs &layers, const Params &params)
std::vector<ExtrusionLine> current_layer_lines; std::vector<ExtrusionLine> current_layer_lines;
for (const LayerRegion *layer_region : l->regions()) { for (const LayerRegion *layer_region : l->regions()) {
for (const ExtrusionEntity *extrusion : layer_region->perimeters().flatten().entities) { for (const ExtrusionEntity *extrusion : layer_region->perimeters().flatten().entities) {
if (!extrusion->role().is_external_perimeter()) continue;
Points extrusion_pts; Points extrusion_pts;
extrusion->collect_points(extrusion_pts); extrusion->collect_points(extrusion_pts);
float flow_width = get_flow_width(layer_region, extrusion->role()); float flow_width = get_flow_width(layer_region, extrusion->role());