replace triangulation in SupportSpotGenerator with triangle formula and winding number
Use the same apporach in computation of polygon area principal components
This commit is contained in:
parent
96762a2119
commit
bdcb773202
@ -82,12 +82,11 @@ inline std::tuple<Vec2d, double> detect_bridging_direction(const Polygons &to_co
|
||||
|
||||
if (floating_polylines.empty()) {
|
||||
// consider this area anchored from all sides, pick bridging direction that will likely yield shortest bridges
|
||||
//use 3mm resolution (should be quite fast, and rough estimation should not cause any problems here)
|
||||
auto [pc1, pc2] = compute_principal_components(overhang_area, 3.0);
|
||||
if (pc2 == Vec2d::Zero()) { // overhang may be smaller than resolution. In this case, any direction is ok
|
||||
auto [pc1, pc2] = compute_principal_components(overhang_area);
|
||||
if (pc2 == Vec2f::Zero()) { // overhang may be smaller than resolution. In this case, any direction is ok
|
||||
return {Vec2d{1.0,0.0}, 0.0};
|
||||
} else {
|
||||
return {pc2.normalized(), 0.0};
|
||||
return {pc2.normalized().cast<double>(), 0.0};
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3,53 +3,97 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
|
||||
std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, const double unscaled_resolution)
|
||||
{
|
||||
// USING UNSCALED VALUES
|
||||
const Vec2d pixel_size = Vec2d(unscaled_resolution, unscaled_resolution);
|
||||
const auto bb = get_extents(polys);
|
||||
const Vec2i pixel_count = unscaled(bb.size()).cwiseQuotient(pixel_size).cast<int>() + Vec2i::Ones();
|
||||
|
||||
std::vector<Linef> lines{};
|
||||
for (Line l : to_lines(polys)) { lines.emplace_back(unscaled(l.a), unscaled(l.b)); }
|
||||
AABBTreeIndirect::Tree<2, double> tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(lines);
|
||||
auto is_inside = [&](const Vec2d &point) {
|
||||
size_t nearest_line_index_out = 0;
|
||||
Vec2d nearest_point_out = Vec2d::Zero();
|
||||
auto distance = AABBTreeLines::squared_distance_to_indexed_lines(lines, tree, point, nearest_line_index_out, nearest_point_out);
|
||||
if (distance < 0) return false;
|
||||
const Linef &line = lines[nearest_line_index_out];
|
||||
Vec2d v1 = line.b - line.a;
|
||||
Vec2d v2 = point - line.a;
|
||||
if ((v1.x() * v2.y()) - (v1.y() * v2.x()) > 0.0) { return true; }
|
||||
return false;
|
||||
|
||||
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
|
||||
// none of the values is divided/normalized by area.
|
||||
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
|
||||
// f(x,y) = x^2 for second moment of area
|
||||
// and f(x,y) = x*y for second moment of area covariance
|
||||
std::tuple<float, Vec2f, Vec2f, float> compute_moments_of_area_of_triangle(const Vec2f &a, const Vec2f &b, const Vec2f &c)
|
||||
{
|
||||
// based on the following guide:
|
||||
// Denote the vertices of S by a, b, c. Then the map
|
||||
// g:(u,v)↦a+u(b−a)+v(c−a) ,
|
||||
// which in coordinates appears as
|
||||
// g:(u,v)↦{x(u,v)y(u,v)=a1+u(b1−a1)+v(c1−a1)=a2+u(b2−a2)+v(c2−a2) ,(1)
|
||||
// obviously maps S′ bijectively onto S. Therefore the transformation formula for multiple integrals steps into action, and we obtain
|
||||
// ∫Sf(x,y)d(x,y)=∫S′f(x(u,v),y(u,v))∣∣Jg(u,v)∣∣ d(u,v) .
|
||||
// In the case at hand the Jacobian determinant is a constant: From (1) we obtain
|
||||
// Jg(u,v)=det[xuyuxvyv]=(b1−a1)(c2−a2)−(c1−a1)(b2−a2) .
|
||||
// Therefore we can write
|
||||
// ∫Sf(x,y)d(x,y)=∣∣Jg∣∣∫10∫1−u0f~(u,v) dv du ,
|
||||
// where f~ denotes the pullback of f to S′:
|
||||
// f~(u,v):=f(x(u,v),y(u,v)) .
|
||||
// Don't forget taking the absolute value of Jg!
|
||||
|
||||
float jacobian_determinant_abs = std::abs((b.x() - a.x()) * (c.y() - a.y()) - (c.x() - a.x()) * (b.y() - a.y()));
|
||||
|
||||
// coordinate transform: gx(u,v) = a.x + u * (b.x - a.x) + v * (c.x - a.x)
|
||||
// coordinate transform: gy(u,v) = a.y + u * (b.y - a.y) + v * (c.y - a.y)
|
||||
// second moment of area for x: f(x, y) = x^2;
|
||||
// f(gx(u,v), gy(u,v)) = gx(u,v)^2 = ... (long expanded form)
|
||||
|
||||
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
|
||||
// integral_0^1 integral_0^(1 - u) (a + u (b - a) + v (c - a))^2 dv du = 1/12 (a^2 + a (b + c) + b^2 + b c + c^2)
|
||||
|
||||
Vec2f second_moment_of_area_xy = jacobian_determinant_abs *
|
||||
(a.cwiseProduct(a) + b.cwiseProduct(b) + b.cwiseProduct(c) + c.cwiseProduct(c) +
|
||||
a.cwiseProduct(b + c)) /
|
||||
12.0f;
|
||||
// second moment of area covariance : f(x, y) = x*y;
|
||||
// f(gx(u,v), gy(u,v)) = gx(u,v)*gy(u,v) = ... (long expanded form)
|
||||
//(a_1 + u * (b_1 - a_1) + v * (c_1 - a_1)) * (a_2 + u * (b_2 - a_2) + v * (c_2 - a_2))
|
||||
// == (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2))
|
||||
|
||||
// intermediate result: integral_0^(1 - u) (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) dv =
|
||||
// 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2
|
||||
// b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) result = integral_0^1 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u -
|
||||
// 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) du =
|
||||
// 1/24 (a_2 (b_1 + c_1) + a_1 (2 a_2 + b_2 + c_2) + b_2 c_1 + b_1 c_2 + 2 b_1 b_2 + 2 c_1 c_2)
|
||||
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
|
||||
float second_moment_of_area_covariance = jacobian_determinant_abs * (1.0f / 24.0f) *
|
||||
(a.y() * (b.x() + c.x()) + a.x() * (2.0f * a.y() + b.y() + c.y()) + b.y() * c.x() +
|
||||
b.x() * c.y() + 2.0f * b.x() * b.y() + 2.0f * c.x() * c.y());
|
||||
|
||||
float area = jacobian_determinant_abs * 0.5f;
|
||||
|
||||
Vec2f first_moment_of_area_xy = jacobian_determinant_abs * (a + b + c) / 6.0f;
|
||||
|
||||
return {area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance};
|
||||
};
|
||||
|
||||
double pixel_area = pixel_size.x() * pixel_size.y();
|
||||
Vec2d centroid_accumulator = Vec2d::Zero();
|
||||
Vec2d second_moment_of_area_accumulator = Vec2d::Zero();
|
||||
double second_moment_of_area_covariance_accumulator = 0.0;
|
||||
double area = 0.0;
|
||||
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
|
||||
std::tuple<Vec2f, Vec2f> compute_principal_components(const Polygons &polys)
|
||||
{
|
||||
Vec2f centroid_accumulator = Vec2f::Zero();
|
||||
Vec2f second_moment_of_area_accumulator = Vec2f::Zero();
|
||||
float second_moment_of_area_covariance_accumulator = 0.0f;
|
||||
float area = 0.0f;
|
||||
|
||||
for (int x = 0; x < pixel_count.x(); x++) {
|
||||
for (int y = 0; y < pixel_count.y(); y++) {
|
||||
Vec2d position = unscaled(bb.min) + pixel_size.cwiseProduct(Vec2d{x, y});
|
||||
if (is_inside(position)) {
|
||||
area += pixel_area;
|
||||
centroid_accumulator += pixel_area * position;
|
||||
second_moment_of_area_accumulator += pixel_area * position.cwiseProduct(position);
|
||||
second_moment_of_area_covariance_accumulator += pixel_area * position.x() * position.y();
|
||||
}
|
||||
for (const Polygon &poly : polys) {
|
||||
Vec2f p0 = unscaled(poly.first_point()).cast<float>();
|
||||
for (size_t i = 2; i < poly.points.size(); i++) {
|
||||
Vec2f p1 = unscaled(poly.points[i - 1]).cast<float>();
|
||||
Vec2f p2 = unscaled(poly.points[i]).cast<float>();
|
||||
|
||||
float sign = cross2(p1 - p0, p2 - p1) > 0 ? 1.0f : -1.0f;
|
||||
|
||||
auto [triangle_area, first_moment_of_area, second_moment_area,
|
||||
second_moment_of_area_covariance] = compute_moments_of_area_of_triangle(p0, p1, p2);
|
||||
area += sign * triangle_area;
|
||||
centroid_accumulator += sign * first_moment_of_area;
|
||||
second_moment_of_area_accumulator += sign * second_moment_area;
|
||||
second_moment_of_area_covariance_accumulator += sign * second_moment_of_area_covariance;
|
||||
}
|
||||
}
|
||||
|
||||
if (area <= 0.0) {
|
||||
return {Vec2d::Zero(), Vec2d::Zero()};
|
||||
return {Vec2f::Zero(), Vec2f::Zero()};
|
||||
}
|
||||
|
||||
Vec2d centroid = centroid_accumulator / area;
|
||||
Vec2d variance = second_moment_of_area_accumulator / area - centroid.cwiseProduct(centroid);
|
||||
Vec2f centroid = centroid_accumulator / area;
|
||||
Vec2f variance = second_moment_of_area_accumulator / area - centroid.cwiseProduct(centroid);
|
||||
double covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y();
|
||||
#if 0
|
||||
std::cout << "area : " << area << std::endl;
|
||||
@ -58,7 +102,7 @@ std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, con
|
||||
std::cout << "covariance : " << covariance << std::endl;
|
||||
#endif
|
||||
if (abs(covariance) < EPSILON) {
|
||||
std::tuple<Vec2d, Vec2d> result{Vec2d{variance.x(), 0.0}, Vec2d{0.0, variance.y()}};
|
||||
std::tuple<Vec2f, Vec2f> result{Vec2f{variance.x(), 0.0}, Vec2f{0.0, variance.y()}};
|
||||
if (variance.y() > variance.x()) {
|
||||
return {std::get<1>(result), std::get<0>(result)};
|
||||
} else
|
||||
@ -72,12 +116,12 @@ std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, con
|
||||
// Eigenvalues are solutions to det(C - lI) = 0, where l is the eigenvalue and I unit matrix
|
||||
// Eigenvector for eigenvalue l is any vector v such that Cv = lv
|
||||
|
||||
double eigenvalue_a = 0.5 * (variance.x() + variance.y() +
|
||||
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4 * covariance * covariance));
|
||||
double eigenvalue_b = 0.5 * (variance.x() + variance.y() -
|
||||
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4 * covariance * covariance));
|
||||
Vec2d eigenvector_a{(eigenvalue_a - variance.y()) / covariance, 1.0};
|
||||
Vec2d eigenvector_b{(eigenvalue_b - variance.y()) / covariance, 1.0};
|
||||
float eigenvalue_a = 0.5f * (variance.x() + variance.y() +
|
||||
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4.0f * covariance * covariance));
|
||||
float eigenvalue_b = 0.5f * (variance.x() + variance.y() -
|
||||
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4.0f * covariance * covariance));
|
||||
Vec2f eigenvector_a{(eigenvalue_a - variance.y()) / covariance, 1.0f};
|
||||
Vec2f eigenvector_b{(eigenvalue_b - variance.y()) / covariance, 1.0f};
|
||||
|
||||
#if 0
|
||||
std::cout << "eigenvalue_a: " << eigenvalue_a << std::endl;
|
||||
|
@ -9,8 +9,15 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
|
||||
// none of the values is divided/normalized by area.
|
||||
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
|
||||
// f(x,y) = x^2 for second moment of area
|
||||
// and f(x,y) = x*y for second moment of area covariance
|
||||
std::tuple<float, Vec2f, Vec2f, float> compute_moments_of_area_of_triangle(const Vec2f &a, const Vec2f &b, const Vec2f &c);
|
||||
|
||||
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
|
||||
std::tuple<Vec2d, Vec2d> compute_principal_components(const Polygons &polys, const double unscaled_resolution);
|
||||
std::tuple<Vec2f, Vec2f> compute_principal_components(const Polygons &polys);
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "SupportSpotsGenerator.hpp"
|
||||
|
||||
#include "BoundingBox.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "ExtrusionEntity.hpp"
|
||||
#include "ExtrusionEntityCollection.hpp"
|
||||
@ -7,6 +8,7 @@
|
||||
#include "Line.hpp"
|
||||
#include "Point.hpp"
|
||||
#include "Polygon.hpp"
|
||||
#include "PrincipalComponents2D.hpp"
|
||||
#include "Print.hpp"
|
||||
#include "PrintBase.hpp"
|
||||
#include "Tesselate.hpp"
|
||||
@ -117,13 +119,14 @@ public:
|
||||
|
||||
size_t to_cell_index(const Vec3i &cell_coords) const
|
||||
{
|
||||
#ifdef DETAILED_DEBUG_LOGS
|
||||
assert(cell_coords.x() >= 0);
|
||||
assert(cell_coords.x() < cell_count.x());
|
||||
assert(cell_coords.y() >= 0);
|
||||
assert(cell_coords.y() < cell_count.y());
|
||||
assert(cell_coords.z() >= 0);
|
||||
assert(cell_coords.z() < cell_count.z());
|
||||
|
||||
#endif
|
||||
return cell_coords.z() * cell_count.x() * cell_count.y() + cell_coords.y() * cell_count.x() + cell_coords.x();
|
||||
}
|
||||
|
||||
@ -244,6 +247,7 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
|
||||
|
||||
const float flow_width = get_flow_width(layer_region, entity->role());
|
||||
|
||||
// Compute only unsigned distance - prev_layer_lines can contain unconnected paths, thus the sign of the distance is unreliable
|
||||
std::vector<ExtendedPoint> annotated_points = estimate_points_properties<true, true, false, false>(entity->as_polyline().points,
|
||||
prev_layer_lines, flow_width,
|
||||
params.bridge_distance);
|
||||
@ -262,6 +266,7 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
|
||||
prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) :
|
||||
ExtrusionLine{};
|
||||
|
||||
// correctify the distance sign using slice polygons
|
||||
float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f;
|
||||
curr_point.distance *= sign;
|
||||
|
||||
@ -297,84 +302,39 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
|
||||
}
|
||||
}
|
||||
|
||||
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
|
||||
// none of the values is divided/normalized by area.
|
||||
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
|
||||
// f(x,y) = x^2 for second moment of area
|
||||
// and f(x,y) = x*y for second moment of area covariance
|
||||
std::tuple<float, Vec2f, Vec2f, float> compute_triangle_moments_of_area(const Vec2f &a, const Vec2f &b, const Vec2f &c)
|
||||
{
|
||||
// based on the following guide:
|
||||
// Denote the vertices of S by a, b, c. Then the map
|
||||
// g:(u,v)↦a+u(b−a)+v(c−a) ,
|
||||
// which in coordinates appears as
|
||||
// g:(u,v)↦{x(u,v)y(u,v)=a1+u(b1−a1)+v(c1−a1)=a2+u(b2−a2)+v(c2−a2) ,(1)
|
||||
// obviously maps S′ bijectively onto S. Therefore the transformation formula for multiple integrals steps into action, and we obtain
|
||||
// ∫Sf(x,y)d(x,y)=∫S′f(x(u,v),y(u,v))∣∣Jg(u,v)∣∣ d(u,v) .
|
||||
// In the case at hand the Jacobian determinant is a constant: From (1) we obtain
|
||||
// Jg(u,v)=det[xuyuxvyv]=(b1−a1)(c2−a2)−(c1−a1)(b2−a2) .
|
||||
// Therefore we can write
|
||||
// ∫Sf(x,y)d(x,y)=∣∣Jg∣∣∫10∫1−u0f~(u,v) dv du ,
|
||||
// where f~ denotes the pullback of f to S′:
|
||||
// f~(u,v):=f(x(u,v),y(u,v)) .
|
||||
// Don't forget taking the absolute value of Jg!
|
||||
|
||||
float jacobian_determinant_abs = std::abs((b.x() - a.x()) * (c.y() - a.y()) - (c.x() - a.x()) * (b.y() - a.y()));
|
||||
|
||||
// coordinate transform: gx(u,v) = a.x + u * (b.x - a.x) + v * (c.x - a.x)
|
||||
// coordinate transform: gy(u,v) = a.y + u * (b.y - a.y) + v * (c.y - a.y)
|
||||
// second moment of area for x: f(x, y) = x^2;
|
||||
// f(gx(u,v), gy(u,v)) = gx(u,v)^2 = ... (long expanded form)
|
||||
|
||||
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
|
||||
// integral_0^1 integral_0^(1 - u) (a + u (b - a) + v (c - a))^2 dv du = 1/12 (a^2 + a (b + c) + b^2 + b c + c^2)
|
||||
|
||||
Vec2f second_moment_of_area_xy = jacobian_determinant_abs *
|
||||
(a.cwiseProduct(a) + b.cwiseProduct(b) + b.cwiseProduct(c) + c.cwiseProduct(c) +
|
||||
a.cwiseProduct(b + c)) /
|
||||
12.0f;
|
||||
// second moment of area covariance : f(x, y) = x*y;
|
||||
// f(gx(u,v), gy(u,v)) = gx(u,v)*gy(u,v) = ... (long expanded form)
|
||||
//(a_1 + u * (b_1 - a_1) + v * (c_1 - a_1)) * (a_2 + u * (b_2 - a_2) + v * (c_2 - a_2))
|
||||
// == (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2))
|
||||
|
||||
// intermediate result: integral_0^(1 - u) (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) dv =
|
||||
// 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2
|
||||
// b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) result = integral_0^1 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u -
|
||||
// 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) du =
|
||||
// 1/24 (a_2 (b_1 + c_1) + a_1 (2 a_2 + b_2 + c_2) + b_2 c_1 + b_1 c_2 + 2 b_1 b_2 + 2 c_1 c_2)
|
||||
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
|
||||
float second_moment_of_area_covariance = jacobian_determinant_abs * (1.0f / 24.0f) *
|
||||
(a.y() * (b.x() + c.x()) + a.x() * (2.0f * a.y() + b.y() + c.y()) + b.y() * c.x() +
|
||||
b.x() * c.y() + 2.0f * b.x() * b.y() + 2.0f * c.x() * c.y());
|
||||
|
||||
float area = jacobian_determinant_abs * 0.5f;
|
||||
|
||||
Vec2f first_moment_of_area_xy = jacobian_determinant_abs * (a + b + c) / 6.0f;
|
||||
|
||||
return {area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance};
|
||||
};
|
||||
|
||||
SliceConnection estimate_slice_connection(size_t slice_idx, const Layer *layer)
|
||||
{
|
||||
SliceConnection connection;
|
||||
|
||||
const LayerSlice &slice = layer->lslices_ex[slice_idx];
|
||||
ExPolygon slice_poly = layer->lslices[slice_idx];
|
||||
Polygons slice_polys = to_polygons(layer->lslices[slice_idx]);
|
||||
BoundingBox slice_bb = get_extents(slice_polys);
|
||||
const Layer *lower_layer = layer->lower_layer;
|
||||
|
||||
ExPolygons below_polys{};
|
||||
for (const auto &link : slice.overlaps_below) { below_polys.push_back(lower_layer->lslices[link.slice_idx]); }
|
||||
ExPolygons overlap = intersection_ex({slice_poly}, below_polys);
|
||||
ExPolygons below{};
|
||||
for (const auto &link : slice.overlaps_below) { below.push_back(lower_layer->lslices[link.slice_idx]); }
|
||||
Polygons below_polys = to_polygons(below);
|
||||
|
||||
BoundingBox below_bb = get_extents(below_polys);
|
||||
|
||||
Polygons overlap = intersection(ClipperUtils::clip_clipper_polygons_with_subject_bbox(slice_polys, below_bb),
|
||||
ClipperUtils::clip_clipper_polygons_with_subject_bbox(below_polys, slice_bb));
|
||||
|
||||
for (const Polygon &poly : overlap) {
|
||||
Vec2f p0 = unscaled(poly.first_point()).cast<float>();
|
||||
for (size_t i = 2; i < poly.points.size(); i++) {
|
||||
Vec2f p1 = unscaled(poly.points[i - 1]).cast<float>();
|
||||
Vec2f p2 = unscaled(poly.points[i]).cast<float>();
|
||||
|
||||
float sign = cross2(p1 - p0, p2 - p1) > 0 ? 1.0f : -1.0f;
|
||||
|
||||
std::vector<Vec2f> triangles = triangulate_expolygons_2f(overlap);
|
||||
for (size_t idx = 0; idx < triangles.size(); idx += 3) {
|
||||
auto [area, first_moment_of_area, second_moment_area,
|
||||
second_moment_of_area_covariance] = compute_triangle_moments_of_area(triangles[idx], triangles[idx + 1], triangles[idx + 2]);
|
||||
connection.area += area;
|
||||
connection.centroid_accumulator += Vec3f(first_moment_of_area.x(), first_moment_of_area.y(), layer->print_z * area);
|
||||
connection.second_moment_of_area_accumulator += second_moment_area;
|
||||
connection.second_moment_of_area_covariance_accumulator += second_moment_of_area_covariance;
|
||||
second_moment_of_area_covariance] = compute_moments_of_area_of_triangle(p0, p1, p2);
|
||||
connection.area += sign * area;
|
||||
connection.centroid_accumulator += sign * Vec3f(first_moment_of_area.x(), first_moment_of_area.y(), layer->print_z * area);
|
||||
connection.second_moment_of_area_accumulator += sign * second_moment_area;
|
||||
connection.second_moment_of_area_covariance_accumulator += sign * second_moment_of_area_covariance;
|
||||
}
|
||||
}
|
||||
|
||||
return connection;
|
||||
@ -973,6 +933,9 @@ void estimate_malformations(LayerPtrs &layers, const Params ¶ms)
|
||||
std::vector<ExtrusionLine> current_layer_lines;
|
||||
for (const LayerRegion *layer_region : l->regions()) {
|
||||
for (const ExtrusionEntity *extrusion : layer_region->perimeters().flatten().entities) {
|
||||
|
||||
if (!extrusion->role().is_external_perimeter()) continue;
|
||||
|
||||
Points extrusion_pts;
|
||||
extrusion->collect_points(extrusion_pts);
|
||||
float flow_width = get_flow_width(layer_region, extrusion->role());
|
||||
|
Loading…
Reference in New Issue
Block a user