Organic supports: Speed up by slicing branches and merging polygons

at the same time, thus reducing memory consumption.
This commit is contained in:
Vojtech Bubnik 2023-04-19 09:57:03 +02:00
parent 4a05973ea8
commit bdedea3072

View File

@ -1464,17 +1464,21 @@ static void generate_initial_areas(
const size_t num_support_roof_layers = mesh_group_settings.support_roof_enable ? (mesh_group_settings.support_roof_height + config.layer_height / 2) / config.layer_height : 0; const size_t num_support_roof_layers = mesh_group_settings.support_roof_enable ? (mesh_group_settings.support_roof_height + config.layer_height / 2) / config.layer_height : 0;
const bool roof_enabled = num_support_roof_layers > 0; const bool roof_enabled = num_support_roof_layers > 0;
const bool force_tip_to_roof = sqr<double>(config.min_radius) * M_PI > mesh_group_settings.minimum_roof_area && roof_enabled; const bool force_tip_to_roof = sqr<double>(config.min_radius) * M_PI > mesh_group_settings.minimum_roof_area && roof_enabled;
//FIXME mesh_group_settings.support_angle does not apply to enforcers and also it does not apply to automatic support angle (by half the external perimeter width).
//used by max_overhang_insert_lag, only if not min_xy_dist.
const coord_t max_overhang_speed = mesh_group_settings.support_angle < 0.5 * M_PI ? coord_t(tan(mesh_group_settings.support_angle) * config.layer_height) : std::numeric_limits<coord_t>::max();
// cap for how much layer below the overhang a new support point may be added, as other than with regular support every new inserted point // cap for how much layer below the overhang a new support point may be added, as other than with regular support every new inserted point
// may cause extra material and time cost. Could also be an user setting or differently calculated. Idea is that if an overhang // may cause extra material and time cost. Could also be an user setting or differently calculated. Idea is that if an overhang
// does not turn valid in double the amount of layers a slope of support angle would take to travel xy_distance, nothing reasonable will come from it. // does not turn valid in double the amount of layers a slope of support angle would take to travel xy_distance, nothing reasonable will come from it.
// The 2*z_distance_delta is only a catch for when the support angle is very high. // The 2*z_distance_delta is only a catch for when the support angle is very high.
// Used only if not min_xy_dist. // Used only if not min_xy_dist.
const coord_t max_overhang_insert_lag = config.z_distance_top_layers > 0 ? coord_t max_overhang_insert_lag = 0;
std::max<coord_t>(round_up_divide(config.xy_distance, max_overhang_speed / 2), 2 * config.z_distance_top_layers) : if (config.z_distance_top_layers > 0) {
0; max_overhang_insert_lag = 2 * config.z_distance_top_layers;
if (mesh_group_settings.support_angle > EPSILON && mesh_group_settings.support_angle < 0.5 * M_PI - EPSILON) {
//FIXME mesh_group_settings.support_angle does not apply to enforcers and also it does not apply to automatic support angle (by half the external perimeter width).
//used by max_overhang_insert_lag, only if not min_xy_dist.
const auto max_overhang_speed = coord_t(tan(mesh_group_settings.support_angle) * config.layer_height);
max_overhang_insert_lag = std::max(max_overhang_insert_lag, round_up_divide(config.xy_distance, max_overhang_speed / 2));
}
}
size_t num_support_layers; size_t num_support_layers;
int raft_contact_layer_idx; int raft_contact_layer_idx;
@ -3709,8 +3713,9 @@ static std::pair<int, int> discretize_circle(const Vec3f &center, const Vec3f &n
return { begin, int(pts.size()) }; return { begin, int(pts.size()) };
} }
static void extrude_branch( // Returns Z span of the generated mesh.
const std::vector<SupportElement*> &path, static std::pair<float, float> extrude_branch(
const std::vector<const SupportElement*> &path,
const TreeSupportSettings &config, const TreeSupportSettings &config,
const SlicingParameters &slicing_params, const SlicingParameters &slicing_params,
const std::vector<SupportElements> &move_bounds, const std::vector<SupportElements> &move_bounds,
@ -3727,6 +3732,8 @@ static void extrude_branch(
// char fname[2048]; // char fname[2048];
// static int irun = 0; // static int irun = 0;
float zmin, zmax;
for (size_t ipath = 1; ipath < path.size(); ++ ipath) { for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
const SupportElement &prev = *path[ipath - 1]; const SupportElement &prev = *path[ipath - 1];
const SupportElement &current = *path[ipath]; const SupportElement &current = *path[ipath];
@ -3743,6 +3750,7 @@ static void extrude_branch(
angle_step = M_PI / (2. * nsteps); angle_step = M_PI / (2. * nsteps);
int ifan = int(result.vertices.size()); int ifan = int(result.vertices.size());
result.vertices.emplace_back((p1 - nprev * radius).cast<float>()); result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
zmin = result.vertices.back().z();
float angle = angle_step; float angle = angle_step;
for (int i = 1; i < nsteps; ++ i, angle += angle_step) { for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices); std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
@ -3773,6 +3781,7 @@ static void extrude_branch(
} }
int ifan = int(result.vertices.size()); int ifan = int(result.vertices.size());
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>()); result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
zmax = result.vertices.back().z();
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second); triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun); // sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname); // its_write_obj(result, fname);
@ -3800,6 +3809,8 @@ static void extrude_branch(
} }
#endif #endif
} }
return std::make_pair(zmin, zmax);
} }
#endif #endif
@ -4121,15 +4132,13 @@ static void organic_smooth_branches_avoid_collisions(
#endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW #endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Organic specific: Smooth branches and produce one cummulative mesh to be sliced. // Organic specific: Smooth branches and produce one cummulative mesh to be sliced.
static indexed_triangle_set draw_branches( static std::vector<Polygons> draw_branches(
PrintObject &print_object, PrintObject &print_object,
const TreeModelVolumes &volumes, TreeModelVolumes &volumes,
const TreeSupportSettings &config, const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds, std::vector<SupportElements> &move_bounds,
std::function<void()> throw_on_cancel) std::function<void()> throw_on_cancel)
{ {
static int irun = 0;
// All SupportElements are put into a layer independent storage to improve parallelization. // All SupportElements are put into a layer independent storage to improve parallelization.
std::vector<std::pair<SupportElement*, int>> elements_with_link_down; std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
std::vector<size_t> linear_data_layers; std::vector<size_t> linear_data_layers;
@ -4176,127 +4185,188 @@ static indexed_triangle_set draw_branches(
organic_smooth_branches_avoid_collisions(print_object, volumes, config, move_bounds, elements_with_link_down, linear_data_layers, throw_on_cancel); organic_smooth_branches_avoid_collisions(print_object, volumes, config, move_bounds, elements_with_link_down, linear_data_layers, throw_on_cancel);
// Reduce memory footprint. After this point only finalize_interface_and_support_areas() will use volumes and from that only collisions with zero radius will be used.
volumes.clear_all_but_object_collision();
// Unmark all nodes. // Unmark all nodes.
for (SupportElements &elements : move_bounds) for (SupportElements &elements : move_bounds)
for (SupportElement &element : elements) for (SupportElement &element : elements)
element.state.marked = false; element.state.marked = false;
// Traverse all nodes, generate tubes. // Traverse all nodes, generate tubes.
// Traversal stack with nodes and thier current parent // Traversal stack with nodes and their current parent
const SlicingParameters &slicing_params = print_object.slicing_parameters();
std::vector<SupportElement*> path;
indexed_triangle_set cummulative_mesh;
indexed_triangle_set partial_mesh;
indexed_triangle_set temp_mesh;
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements &layer = move_bounds[layer_idx];
SupportElements &layer_above = move_bounds[layer_idx + 1];
for (SupportElement &start_element : layer) struct Branch {
if (! start_element.state.marked && ! start_element.parents.empty()) { std::vector<const SupportElement*> path;
bool has_root{ false };
bool has_tip { false };
};
struct Slice {
Polygons polygons;
size_t num_branches{ 0 };
};
struct Tree {
std::vector<Branch> branches;
std::vector<Slice> slices;
LayerIndex first_layer_id{ -1 };
};
std::vector<Tree> trees;
struct TreeVisitor {
static void visit_recursive(std::vector<SupportElements> &move_bounds, SupportElement &start_element, Tree &out) {
assert(! start_element.state.marked && ! start_element.parents.empty());
// Collect elements up to a bifurcation above. // Collect elements up to a bifurcation above.
start_element.state.marked = true; start_element.state.marked = true;
// For each branch bifurcating from this point:
SupportElements &layer = move_bounds[start_element.state.layer_idx];
SupportElements &layer_above = move_bounds[start_element.state.layer_idx + 1];
bool root = out.branches.empty();
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) { for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
path.clear(); Branch branch;
path.emplace_back(&start_element); branch.path.emplace_back(&start_element);
// Traverse each branch until it branches again. // Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]]; SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(path.back()->state.layer_idx + 1 == first_parent.state.layer_idx); assert(branch.path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
path.emplace_back(&first_parent); branch.path.emplace_back(&first_parent);
if (first_parent.parents.size() < 2) if (first_parent.parents.size() < 2)
first_parent.state.marked = true; first_parent.state.marked = true;
if (first_parent.parents.size() == 1) { SupportElement *next_branch = nullptr;
if (first_parent.parents.size() == 1)
for (SupportElement *parent = &first_parent;;) { for (SupportElement *parent = &first_parent;;) {
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()]; SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(path.back()->state.layer_idx + 1 == next_parent.state.layer_idx); assert(branch.path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
path.emplace_back(&next_parent); branch.path.emplace_back(&next_parent);
if (next_parent.parents.size() > 1) if (next_parent.parents.size() > 1) {
next_branch = &next_parent;
break; break;
}
next_parent.state.marked = true; next_parent.state.marked = true;
if (next_parent.parents.size() == 0) if (next_parent.parents.size() == 0)
break; break;
parent = &next_parent; parent = &next_parent;
} }
assert(branch.path.size() >= 2);
branch.has_root = root;
branch.has_tip = ! next_branch;
out.branches.emplace_back(std::move(branch));
if (next_branch)
visit_recursive(move_bounds, *next_branch, out);
} }
}
};
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx)
for (SupportElement &start_element : move_bounds[layer_idx])
if (! start_element.state.marked && ! start_element.parents.empty()) {
trees.push_back({});
TreeVisitor::visit_recursive(move_bounds, start_element, trees.back());
assert(! trees.back().branches.empty());
}
const SlicingParameters &slicing_params = print_object.slicing_parameters();
MeshSlicingParams mesh_slicing_params;
mesh_slicing_params.mode = MeshSlicingParams::SlicingMode::Positive;
tbb::parallel_for(tbb::blocked_range<size_t>(0, trees.size()),
[&trees, &config, &slicing_params, &move_bounds, &mesh_slicing_params, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
indexed_triangle_set partial_mesh;
std::vector<float> slice_z;
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id];
for (const Branch &branch : tree.branches) {
// Triangulate the tube. // Triangulate the tube.
partial_mesh.clear(); partial_mesh.clear();
extrude_branch(path, config, slicing_params, move_bounds, partial_mesh); std::pair<float, float> zspan = extrude_branch(branch.path, config, slicing_params, move_bounds, partial_mesh);
#if 0 LayerIndex layer_begin = branch.has_root ?
{ branch.path.front()->state.layer_idx :
char fname[2048]; std::min(branch.path.front()->state.layer_idx, layer_idx_ceil(slicing_params, config, zspan.first));
static int irun = 0; LayerIndex layer_end = (branch.has_tip ?
sprintf(fname, "d:\\temp\\meshes\\tree-raw-%d.obj", ++ irun); branch.path.back()->state.layer_idx :
its_write_obj(partial_mesh, fname); std::max(branch.path.back()->state.layer_idx, layer_idx_floor(slicing_params, config, zspan.second))) + 1;
#if 0 slice_z.clear();
temp_mesh.clear(); for (LayerIndex layer_idx = layer_begin; layer_idx < layer_end; ++ layer_idx) {
cut_mesh(partial_mesh, layer_z(slicing_params, path.back()->state.layer_idx) + EPSILON, nullptr, &temp_mesh, false); const double print_z = layer_z(slicing_params, config, layer_idx);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed1-%d.obj", irun); const double bottom_z = layer_idx > 0 ? layer_z(slicing_params, config, layer_idx - 1) : 0.;
its_write_obj(temp_mesh, fname); slice_z.emplace_back(float(0.5 * (bottom_z + print_z)));
partial_mesh.clear();
cut_mesh(temp_mesh, layer_z(slicing_params, path.front()->state.layer_idx) - EPSILON, &partial_mesh, nullptr, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed2-%d.obj", irun);
#endif
its_write_obj(partial_mesh, fname);
} }
#endif std::vector<Polygons> slices = slice_mesh(partial_mesh, slice_z, mesh_slicing_params, throw_on_cancel);
its_merge(cummulative_mesh, partial_mesh); size_t num_empty = std::find_if(slices.begin(), slices.end(), [](auto &s) { return !s.empty(); }) - slices.begin();
layer_begin += LayerIndex(num_empty);
for (; slices.back().empty(); -- layer_end);
LayerIndex new_begin = tree.first_layer_id == -1 ? layer_begin : std::min(tree.first_layer_id, layer_begin);
LayerIndex new_end = tree.first_layer_id == -1 ? layer_end : std::max(tree.first_layer_id + LayerIndex(tree.slices.size()), layer_end);
size_t new_size = size_t(new_end - new_begin);
if (tree.first_layer_id == -1) {
} else if (tree.slices.capacity() < new_size) {
std::vector<Slice> new_slices;
new_slices.reserve(new_size);
if (LayerIndex dif = tree.first_layer_id - new_begin; dif > 0)
new_slices.insert(new_slices.end(), dif, {});
append(new_slices, std::move(tree.slices));
tree.slices.swap(new_slices);
} else if (LayerIndex dif = tree.first_layer_id - new_begin; dif > 0)
tree.slices.insert(tree.slices.begin(), tree.first_layer_id - new_begin, {});
tree.slices.insert(tree.slices.end(), new_size - tree.slices.size(), {});
layer_begin -= LayerIndex(num_empty);
for (LayerIndex i = layer_begin; i != layer_end; ++ i)
if (Polygons &src = slices[i - layer_begin]; ! src.empty()) {
Slice &dst = tree.slices[i - new_begin];
if (++ dst.num_branches > 1)
append(dst.polygons, std::move(src));
else
dst.polygons = std::move(std::move(src));
}
tree.first_layer_id = new_begin;
}
}
});
tbb::parallel_for(tbb::blocked_range<size_t>(0, trees.size()),
[&trees, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id];
for (Slice &slice : tree.slices)
if (slice.num_branches > 1) {
slice.polygons = union_(slice.polygons);
slice.num_branches = 1;
} }
throw_on_cancel(); throw_on_cancel();
} }
}
return cummulative_mesh;
}
// Organic specific: Slice the cummulative mesh produced by draw_branches().
static void slice_branches(
PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
const std::vector<Polygons> &overhangs,
std::vector<SupportElements> &move_bounds,
const indexed_triangle_set &cummulative_mesh,
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage,
std::function<void()> throw_on_cancel)
{
const SlicingParameters &slicing_params = print_object.slicing_parameters();
std::vector<float> slice_z;
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++ layer_idx) {
const double print_z = layer_z(print_object.slicing_parameters(), config, layer_idx);
const double bottom_z = layer_idx > 0 ? layer_z(print_object.slicing_parameters(), config, layer_idx - 1) : 0.;
slice_z.emplace_back(float(0.5 * (bottom_z + print_z)));
}
// Remove the trailing slices.
while (! slice_z.empty())
if (move_bounds[slice_z.size() - 1].empty())
slice_z.pop_back();
else
break;
#if 0
its_write_obj(cummulative_mesh, "d:\\temp\\meshes\\tree.obj");
#endif
MeshSlicingParamsEx params;
params.closing_radius = float(print_object.config().slice_closing_radius.value);
params.mode = MeshSlicingParams::SlicingMode::Positive;
std::vector<ExPolygons> slices = slice_mesh_ex(cummulative_mesh, slice_z, params, throw_on_cancel);
// Trim the slices.
std::vector<Polygons> support_layer_storage(move_bounds.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, slices.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx)
if (ExPolygons &src = slices[layer_idx]; ! src.empty())
support_layer_storage[layer_idx] = diff_clipped(to_polygons(std::move(src)), volumes.getCollision(0, layer_idx, true));
}); });
std::vector<Polygons> support_roof_storage(move_bounds.size()); size_t num_layers = 0;
finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage, for (Tree &tree : trees)
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel); if (tree.first_layer_id >= 0)
num_layers = std::max(num_layers, size_t(tree.first_layer_id + tree.slices.size()));
std::vector<Slice> slices(num_layers, Slice{});
for (Tree &tree : trees)
if (tree.first_layer_id >= 0) {
for (LayerIndex i = tree.first_layer_id; i != tree.first_layer_id + LayerIndex(tree.slices.size()); ++ i)
if (Slice &src = tree.slices[i - tree.first_layer_id]; ! src.polygons.empty()) {
Slice &dst = slices[i];
if (++ dst.num_branches > 1)
append(dst.polygons, std::move(src.polygons));
else
dst.polygons = std::move(src.polygons);
}
}
std::vector<Polygons> support_layer_storage(move_bounds.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, std::min(move_bounds.size(), slices.size())),
[&slices, &support_layer_storage, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t slice_id = range.begin(); slice_id < range.end(); ++ slice_id) {
Slice &slice = slices[slice_id];
support_layer_storage[slice_id] = slice.num_branches > 1 ? union_(slice.polygons) : std::move(slice.polygons);
throw_on_cancel();
}
});
//FIXME simplify!
return support_layer_storage;
} }
/*! /*!
@ -4413,10 +4483,9 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel); bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
else { else {
assert(print_object.config().support_material_style == smsOrganic); assert(print_object.config().support_material_style == smsOrganic);
indexed_triangle_set branches = draw_branches(*print.get_object(processing.second.front()), volumes, config, move_bounds, throw_on_cancel); std::vector<Polygons> support_layer_storage = draw_branches(*print.get_object(processing.second.front()), volumes, config, move_bounds, throw_on_cancel);
// Reduce memory footprint. After this point only slice_branches() will use volumes and from that only collisions with zero radius will be used. std::vector<Polygons> support_roof_storage(support_layer_storage.size());
volumes.clear_all_but_object_collision(); finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage,
slice_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds, branches,
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel); bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
} }