Brute force optimization code, buggy yet
wip wip wip refactor
This commit is contained in:
parent
b4e30cc8ad
commit
c193d7c930
@ -215,7 +215,8 @@ add_library(libslic3r STATIC
|
||||
SimplifyMeshImpl.hpp
|
||||
SimplifyMesh.cpp
|
||||
MarchingSquares.hpp
|
||||
Optimizer.hpp
|
||||
Optimize/Optimizer.hpp
|
||||
Optimize/NLoptOptimizer.hpp
|
||||
${OpenVDBUtils_SOURCES}
|
||||
SLA/Pad.hpp
|
||||
SLA/Pad.cpp
|
||||
|
120
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
120
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
@ -0,0 +1,120 @@
|
||||
#ifndef BRUTEFORCEOPTIMIZER_HPP
|
||||
#define BRUTEFORCEOPTIMIZER_HPP
|
||||
|
||||
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
namespace detail {
|
||||
// Implementing a bruteforce optimizer
|
||||
|
||||
template<size_t N>
|
||||
constexpr long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
|
||||
{
|
||||
long ret = 0;
|
||||
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct AlgBurteForce {
|
||||
bool to_min;
|
||||
StopCriteria stc;
|
||||
size_t gridsz;
|
||||
|
||||
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
|
||||
|
||||
template<int D, size_t N, class Fn, class Cmp>
|
||||
void run(std::array<size_t, N> &idx,
|
||||
Result<N> &result,
|
||||
const Bounds<N> &bounds,
|
||||
Fn &&fn,
|
||||
Cmp &&cmp)
|
||||
{
|
||||
if (stc.stop_condition()) return;
|
||||
|
||||
if constexpr (D < 0) {
|
||||
Input<N> inp;
|
||||
|
||||
auto max_iter = stc.max_iterations();
|
||||
if (max_iter && num_iter(idx, gridsz) >= max_iter) return;
|
||||
|
||||
for (size_t d = 0; d < N; ++d) {
|
||||
const Bound &b = bounds[d];
|
||||
double step = (b.max() - b.min()) / (gridsz - 1);
|
||||
inp[d] = b.min() + idx[d] * step;
|
||||
}
|
||||
|
||||
auto score = fn(inp);
|
||||
if (cmp(score, result.score)) {
|
||||
result.score = score;
|
||||
result.optimum = inp;
|
||||
}
|
||||
|
||||
} else {
|
||||
for (size_t i = 0; i < gridsz; ++i) {
|
||||
idx[D] = i;
|
||||
run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::forward<Cmp>(cmp));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Fn, size_t N>
|
||||
Result<N> optimize(Fn&& fn,
|
||||
const Input<N> &/*initvals*/,
|
||||
const Bounds<N>& bounds)
|
||||
{
|
||||
std::array<size_t, N> idx = {};
|
||||
Result<N> result;
|
||||
|
||||
if (to_min) {
|
||||
result.score = std::numeric_limits<double>::max();
|
||||
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::less<double>{});
|
||||
}
|
||||
else {
|
||||
result.score = std::numeric_limits<double>::lowest();
|
||||
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::greater<double>{});
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace bruteforce_detail
|
||||
|
||||
using AlgBruteForce = detail::AlgBurteForce;
|
||||
|
||||
template<>
|
||||
class Optimizer<AlgBruteForce> {
|
||||
AlgBruteForce m_alg;
|
||||
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
|
||||
: m_alg{cr, gridsz}
|
||||
{}
|
||||
|
||||
Optimizer& to_max() { m_alg.to_min = false; return *this; }
|
||||
Optimizer& to_min() { m_alg.to_min = true; return *this; }
|
||||
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& func,
|
||||
const Input<N> &initvals,
|
||||
const Bounds<N>& bounds)
|
||||
{
|
||||
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
|
||||
}
|
||||
|
||||
Optimizer &set_criteria(const StopCriteria &cr)
|
||||
{
|
||||
m_alg.stc = cr; return *this;
|
||||
}
|
||||
|
||||
const StopCriteria &get_criteria() const { return m_alg.stc; }
|
||||
};
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
||||
#endif // BRUTEFORCEOPTIMIZER_HPP
|
@ -12,134 +12,11 @@
|
||||
#endif
|
||||
|
||||
#include <utility>
|
||||
#include <tuple>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
#include <libslic3r/Optimize/Optimizer.hpp>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
// A type to hold the complete result of the optimization.
|
||||
template<size_t N> struct Result {
|
||||
int resultcode;
|
||||
std::array<double, N> optimum;
|
||||
double score;
|
||||
};
|
||||
|
||||
// An interval of possible input values for optimization
|
||||
class Bound {
|
||||
double m_min, m_max;
|
||||
|
||||
public:
|
||||
Bound(double min = std::numeric_limits<double>::min(),
|
||||
double max = std::numeric_limits<double>::max())
|
||||
: m_min(min), m_max(max)
|
||||
{}
|
||||
|
||||
double min() const noexcept { return m_min; }
|
||||
double max() const noexcept { return m_max; }
|
||||
};
|
||||
|
||||
// Helper types for optimization function input and bounds
|
||||
template<size_t N> using Input = std::array<double, N>;
|
||||
template<size_t N> using Bounds = std::array<Bound, N>;
|
||||
|
||||
// A type for specifying the stop criteria. Setter methods can be concatenated
|
||||
class StopCriteria {
|
||||
|
||||
// If the absolute value difference between two scores.
|
||||
double m_abs_score_diff = std::nan("");
|
||||
|
||||
// If the relative value difference between two scores.
|
||||
double m_rel_score_diff = std::nan("");
|
||||
|
||||
// Stop if this value or better is found.
|
||||
double m_stop_score = std::nan("");
|
||||
|
||||
// A predicate that if evaluates to true, the optimization should terminate
|
||||
// and the best result found prior to termination should be returned.
|
||||
std::function<bool()> m_stop_condition = [] { return false; };
|
||||
|
||||
// The max allowed number of iterations.
|
||||
unsigned m_max_iterations = 0;
|
||||
|
||||
public:
|
||||
|
||||
StopCriteria & abs_score_diff(double val)
|
||||
{
|
||||
m_abs_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double abs_score_diff() const { return m_abs_score_diff; }
|
||||
|
||||
StopCriteria & rel_score_diff(double val)
|
||||
{
|
||||
m_rel_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double rel_score_diff() const { return m_rel_score_diff; }
|
||||
|
||||
StopCriteria & stop_score(double val)
|
||||
{
|
||||
m_stop_score = val; return *this;
|
||||
}
|
||||
|
||||
double stop_score() const { return m_stop_score; }
|
||||
|
||||
StopCriteria & max_iterations(double val)
|
||||
{
|
||||
m_max_iterations = val; return *this;
|
||||
}
|
||||
|
||||
double max_iterations() const { return m_max_iterations; }
|
||||
|
||||
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
||||
{
|
||||
m_stop_condition = cond; return *this;
|
||||
}
|
||||
|
||||
bool stop_condition() { return m_stop_condition(); }
|
||||
};
|
||||
|
||||
// Helper class to use optimization methods involving gradient.
|
||||
template<size_t N> struct ScoreGradient {
|
||||
double score;
|
||||
std::optional<std::array<double, N>> gradient;
|
||||
|
||||
ScoreGradient(double s, const std::array<double, N> &grad)
|
||||
: score{s}, gradient{grad}
|
||||
{}
|
||||
};
|
||||
|
||||
// Helper to be used in static_assert.
|
||||
template<class T> struct always_false { enum { value = false }; };
|
||||
|
||||
// Basic interface to optimizer object
|
||||
template<class Method, class Enable = void> class Optimizer {
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &)
|
||||
{
|
||||
static_assert (always_false<Method>::value,
|
||||
"Optimizer unimplemented for given method!");
|
||||
}
|
||||
|
||||
Optimizer<Method> &to_min() { return *this; }
|
||||
Optimizer<Method> &to_max() { return *this; }
|
||||
Optimizer<Method> &set_criteria(const StopCriteria &) { return *this; }
|
||||
StopCriteria get_criteria() const { return {}; };
|
||||
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& func,
|
||||
const Input<N> &initvals,
|
||||
const Bounds<N>& bounds) { return {}; }
|
||||
|
||||
// optional for randomized methods:
|
||||
void seed(long /*s*/) {}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Helper types for NLopt algorithm selection in template contexts
|
||||
@ -166,19 +43,6 @@ struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
|
||||
template<class M, class T = void>
|
||||
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
|
||||
|
||||
// Helper to convert C style array to std::array. The copy should be optimized
|
||||
// away with modern compilers.
|
||||
template<size_t N, class T> auto to_arr(const T *a)
|
||||
{
|
||||
std::array<T, N> r;
|
||||
std::copy(a, a + N, std::begin(r));
|
||||
return r;
|
||||
}
|
||||
|
||||
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
||||
{
|
||||
return to_arr<N>(static_cast<const T *>(a));
|
||||
}
|
||||
|
||||
enum class OptDir { MIN, MAX }; // Where to optimize
|
||||
|
||||
@ -357,24 +221,12 @@ public:
|
||||
void seed(long s) { m_opt.seed(s); }
|
||||
};
|
||||
|
||||
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
||||
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
||||
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
||||
{
|
||||
return ScoreGradient<N>(s, detail::to_arr(grad));
|
||||
}
|
||||
|
||||
// Predefinded NLopt algorithms that are used in the codebase
|
||||
// Predefinded NLopt algorithms
|
||||
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
|
||||
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
|
||||
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
|
||||
using AlgNLoptDIRECT = detail::NLoptAlg<NLOPT_GN_DIRECT>;
|
||||
|
||||
// TODO: define others if needed...
|
||||
|
||||
// Helper defs for pre-crafted global and local optimizers that work well.
|
||||
using DefaultGlobalOptimizer = Optimizer<AlgNLoptGenetic>;
|
||||
using DefaultLocalOptimizer = Optimizer<AlgNLoptSubplex>;
|
||||
using AlgNLoptMLSL = detail::NLoptAlg<NLOPT_GN_MLSL>;
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
182
src/libslic3r/Optimize/Optimizer.hpp
Normal file
182
src/libslic3r/Optimize/Optimizer.hpp
Normal file
@ -0,0 +1,182 @@
|
||||
#ifndef OPTIMIZER_HPP
|
||||
#define OPTIMIZER_HPP
|
||||
|
||||
#include <utility>
|
||||
#include <tuple>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
// A type to hold the complete result of the optimization.
|
||||
template<size_t N> struct Result {
|
||||
int resultcode; // Method dependent
|
||||
std::array<double, N> optimum;
|
||||
double score;
|
||||
};
|
||||
|
||||
// An interval of possible input values for optimization
|
||||
class Bound {
|
||||
double m_min, m_max;
|
||||
|
||||
public:
|
||||
Bound(double min = std::numeric_limits<double>::min(),
|
||||
double max = std::numeric_limits<double>::max())
|
||||
: m_min(min), m_max(max)
|
||||
{}
|
||||
|
||||
double min() const noexcept { return m_min; }
|
||||
double max() const noexcept { return m_max; }
|
||||
};
|
||||
|
||||
// Helper types for optimization function input and bounds
|
||||
template<size_t N> using Input = std::array<double, N>;
|
||||
template<size_t N> using Bounds = std::array<Bound, N>;
|
||||
|
||||
// A type for specifying the stop criteria. Setter methods can be concatenated
|
||||
class StopCriteria {
|
||||
|
||||
// If the absolute value difference between two scores.
|
||||
double m_abs_score_diff = std::nan("");
|
||||
|
||||
// If the relative value difference between two scores.
|
||||
double m_rel_score_diff = std::nan("");
|
||||
|
||||
// Stop if this value or better is found.
|
||||
double m_stop_score = std::nan("");
|
||||
|
||||
// A predicate that if evaluates to true, the optimization should terminate
|
||||
// and the best result found prior to termination should be returned.
|
||||
std::function<bool()> m_stop_condition = [] { return false; };
|
||||
|
||||
// The max allowed number of iterations.
|
||||
unsigned m_max_iterations = 0;
|
||||
|
||||
public:
|
||||
|
||||
StopCriteria & abs_score_diff(double val)
|
||||
{
|
||||
m_abs_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double abs_score_diff() const { return m_abs_score_diff; }
|
||||
|
||||
StopCriteria & rel_score_diff(double val)
|
||||
{
|
||||
m_rel_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double rel_score_diff() const { return m_rel_score_diff; }
|
||||
|
||||
StopCriteria & stop_score(double val)
|
||||
{
|
||||
m_stop_score = val; return *this;
|
||||
}
|
||||
|
||||
double stop_score() const { return m_stop_score; }
|
||||
|
||||
StopCriteria & max_iterations(double val)
|
||||
{
|
||||
m_max_iterations = val; return *this;
|
||||
}
|
||||
|
||||
double max_iterations() const { return m_max_iterations; }
|
||||
|
||||
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
||||
{
|
||||
m_stop_condition = cond; return *this;
|
||||
}
|
||||
|
||||
bool stop_condition() { return m_stop_condition(); }
|
||||
};
|
||||
|
||||
// Helper class to use optimization methods involving gradient.
|
||||
template<size_t N> struct ScoreGradient {
|
||||
double score;
|
||||
std::optional<std::array<double, N>> gradient;
|
||||
|
||||
ScoreGradient(double s, const std::array<double, N> &grad)
|
||||
: score{s}, gradient{grad}
|
||||
{}
|
||||
};
|
||||
|
||||
// Helper to be used in static_assert.
|
||||
template<class T> struct always_false { enum { value = false }; };
|
||||
|
||||
// Basic interface to optimizer object
|
||||
template<class Method, class Enable = void> class Optimizer {
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &)
|
||||
{
|
||||
static_assert (always_false<Method>::value,
|
||||
"Optimizer unimplemented for given method!");
|
||||
}
|
||||
|
||||
// Switch optimization towards function minimum
|
||||
Optimizer &to_min() { return *this; }
|
||||
|
||||
// Switch optimization towards function maximum
|
||||
Optimizer &to_max() { return *this; }
|
||||
|
||||
// Set criteria for successive optimizations
|
||||
Optimizer &set_criteria(const StopCriteria &) { return *this; }
|
||||
|
||||
// Get current criteria
|
||||
StopCriteria get_criteria() const { return {}; };
|
||||
|
||||
// Find function minimum or maximum for Func which has has signature:
|
||||
// double(const Input<N> &input) and input with dimension N
|
||||
//
|
||||
// Initial starting point can be given as the second parameter.
|
||||
//
|
||||
// For each dimension an interval (Bound) has to be given marking the bounds
|
||||
// for that dimension.
|
||||
//
|
||||
// initvals have to be within the specified bounds, otherwise its undefined
|
||||
// behavior.
|
||||
//
|
||||
// Func can return a score of type double or optionally a ScoreGradient
|
||||
// class to indicate the function gradient for a optimization methods that
|
||||
// make use of the gradient.
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& /*func*/,
|
||||
const Input<N> &/*initvals*/,
|
||||
const Bounds<N>& /*bounds*/) { return {}; }
|
||||
|
||||
// optional for randomized methods:
|
||||
void seed(long /*s*/) {}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Helper to convert C style array to std::array. The copy should be optimized
|
||||
// away with modern compilers.
|
||||
template<size_t N, class T> auto to_arr(const T *a)
|
||||
{
|
||||
std::array<T, N> r;
|
||||
std::copy(a, a + N, std::begin(r));
|
||||
return r;
|
||||
}
|
||||
|
||||
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
||||
{
|
||||
return to_arr<N>(static_cast<const T *>(a));
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// Helper functions to create bounds, initial value
|
||||
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
||||
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
||||
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
||||
{
|
||||
return ScoreGradient<N>(s, detail::to_arr(grad));
|
||||
}
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
||||
#endif // OPTIMIZER_HPP
|
@ -4,6 +4,7 @@
|
||||
#include <tbb/spin_mutex.h>
|
||||
#include <tbb/mutex.h>
|
||||
#include <tbb/parallel_for.h>
|
||||
#include <tbb/parallel_reduce.h>
|
||||
#include <algorithm>
|
||||
#include <libslic3r/libslic3r.h>
|
||||
|
||||
@ -21,28 +22,43 @@ template<> struct _ccr<true>
|
||||
using SpinningMutex = tbb::spin_mutex;
|
||||
using BlockingMutex = tbb::mutex;
|
||||
|
||||
template<class Fn, class It>
|
||||
static IteratorOnly<It, void> loop_(const tbb::blocked_range<It> &range, Fn &&fn)
|
||||
{
|
||||
for (auto &el : range) fn(el);
|
||||
}
|
||||
|
||||
template<class Fn, class I>
|
||||
static IntegerOnly<I, void> loop_(const tbb::blocked_range<I> &range, Fn &&fn)
|
||||
{
|
||||
for (I i = range.begin(); i < range.end(); ++i) fn(i);
|
||||
}
|
||||
|
||||
template<class It, class Fn>
|
||||
static IteratorOnly<It, void> for_each(It from,
|
||||
It to,
|
||||
Fn && fn,
|
||||
size_t granularity = 1)
|
||||
static void for_each(It from, It to, Fn &&fn, size_t granularity = 1)
|
||||
{
|
||||
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
||||
[&fn, from](const auto &range) {
|
||||
for (auto &el : range) fn(el);
|
||||
loop_(range, std::forward<Fn>(fn));
|
||||
});
|
||||
}
|
||||
|
||||
template<class I, class Fn>
|
||||
static IntegerOnly<I, void> for_each(I from,
|
||||
I to,
|
||||
Fn && fn,
|
||||
size_t granularity = 1)
|
||||
template<class I, class Fn, class MergeFn, class T>
|
||||
static T reduce(I from,
|
||||
I to,
|
||||
const T & init,
|
||||
Fn && fn,
|
||||
MergeFn &&mergefn,
|
||||
size_t granularity = 1)
|
||||
{
|
||||
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
||||
[&fn](const auto &range) {
|
||||
for (I i = range.begin(); i < range.end(); ++i) fn(i);
|
||||
});
|
||||
return tbb::parallel_reduce(
|
||||
tbb::blocked_range{from, to, granularity}, init,
|
||||
[&](const auto &range, T subinit) {
|
||||
T acc = subinit;
|
||||
loop_(range, [&](auto &i) { acc = mergefn(acc, fn(i, acc)); });
|
||||
return acc;
|
||||
},
|
||||
std::forward<MergeFn>(mergefn));
|
||||
}
|
||||
};
|
||||
|
||||
@ -55,23 +71,39 @@ public:
|
||||
using SpinningMutex = _Mtx;
|
||||
using BlockingMutex = _Mtx;
|
||||
|
||||
template<class It, class Fn>
|
||||
static IteratorOnly<It, void> for_each(It from,
|
||||
It to,
|
||||
Fn &&fn,
|
||||
size_t /* ignore granularity */ = 1)
|
||||
template<class Fn, class It>
|
||||
static IteratorOnly<It, void> loop_(It from, It to, Fn &&fn)
|
||||
{
|
||||
for (auto it = from; it != to; ++it) fn(*it);
|
||||
}
|
||||
|
||||
template<class I, class Fn>
|
||||
static IntegerOnly<I, void> for_each(I from,
|
||||
I to,
|
||||
Fn &&fn,
|
||||
size_t /* ignore granularity */ = 1)
|
||||
template<class Fn, class I>
|
||||
static IntegerOnly<I, void> loop_(I from, I to, Fn &&fn)
|
||||
{
|
||||
for (I i = from; i < to; ++i) fn(i);
|
||||
}
|
||||
|
||||
template<class It, class Fn>
|
||||
static void for_each(It from,
|
||||
It to,
|
||||
Fn &&fn,
|
||||
size_t /* ignore granularity */ = 1)
|
||||
{
|
||||
loop_(from, to, std::forward<Fn>(fn));
|
||||
}
|
||||
|
||||
template<class I, class Fn, class MergeFn, class T>
|
||||
static IntegerOnly<I, T> reduce(I from,
|
||||
I to,
|
||||
const T & init,
|
||||
Fn && fn,
|
||||
MergeFn &&mergefn,
|
||||
size_t /*granularity*/ = 1)
|
||||
{
|
||||
T acc = init;
|
||||
loop_(from, to, [&](auto &i) { acc = mergefn(acc, fn(i, acc)); });
|
||||
return acc;
|
||||
}
|
||||
};
|
||||
|
||||
using ccr = _ccr<USE_FULL_CONCURRENCY>;
|
||||
|
@ -2,23 +2,19 @@
|
||||
#include <exception>
|
||||
|
||||
//#include <libnest2d/optimizers/nlopt/genetic.hpp>
|
||||
#include <libslic3r/Optimizer.hpp>
|
||||
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
|
||||
#include <libslic3r/SLA/Rotfinder.hpp>
|
||||
#include <libslic3r/SLA/Concurrency.hpp>
|
||||
#include <libslic3r/SLA/SupportTree.hpp>
|
||||
#include <libslic3r/SLA/SupportPointGenerator.hpp>
|
||||
#include <libslic3r/SimplifyMesh.hpp>
|
||||
#include "Model.hpp"
|
||||
|
||||
#include <thread>
|
||||
|
||||
namespace Slic3r {
|
||||
namespace sla {
|
||||
|
||||
double area(const Vec3d &p1, const Vec3d &p2, const Vec3d &p3) {
|
||||
Vec3d a = p2 - p1;
|
||||
Vec3d b = p3 - p1;
|
||||
Vec3d c = a.cross(b);
|
||||
return 0.5 * c.norm();
|
||||
}
|
||||
|
||||
using VertexFaceMap = std::vector<std::vector<size_t>>;
|
||||
|
||||
VertexFaceMap create_vertex_face_map(const TriangleMesh &mesh) {
|
||||
@ -35,61 +31,75 @@ VertexFaceMap create_vertex_face_map(const TriangleMesh &mesh) {
|
||||
return vmap;
|
||||
}
|
||||
|
||||
// Find transformed mesh ground level without copy and with parallell reduce.
|
||||
double find_ground_level(const TriangleMesh &mesh,
|
||||
const Transform3d & tr,
|
||||
size_t threads)
|
||||
{
|
||||
size_t vsize = mesh.its.vertices.size();
|
||||
|
||||
auto minfn = [](double a, double b) { return std::min(a, b); };
|
||||
|
||||
auto findminz = [&mesh, &tr] (size_t vi, double submin) {
|
||||
Vec3d v = tr * mesh.its.vertices[vi].template cast<double>();
|
||||
return std::min(submin, v.z());
|
||||
};
|
||||
|
||||
double zmin = mesh.its.vertices.front().z();
|
||||
|
||||
return ccr_par::reduce(size_t(0), vsize, zmin, findminz, minfn,
|
||||
vsize / threads);
|
||||
}
|
||||
|
||||
// Try to guess the number of support points needed to support a mesh
|
||||
double calculate_model_supportedness(const TriangleMesh & mesh,
|
||||
const VertexFaceMap &vmap,
|
||||
// const VertexFaceMap &vmap,
|
||||
const Transform3d & tr)
|
||||
{
|
||||
static const double POINTS_PER_UNIT_AREA = 1.;
|
||||
static const Vec3d DOWN = {0., 0., -1.};
|
||||
static constexpr double POINTS_PER_UNIT_AREA = 1.;
|
||||
|
||||
double score = 0.;
|
||||
if (mesh.its.vertices.empty()) return std::nan("");
|
||||
|
||||
// double zmin = mesh.bounding_box().min.z();
|
||||
size_t Nthr = std::thread::hardware_concurrency();
|
||||
size_t facesize = mesh.its.indices.size();
|
||||
|
||||
// std::vector<Vec3d> normals(mesh.its.indices.size(), Vec3d::Zero());
|
||||
double zmin = find_ground_level(mesh, tr, Nthr);
|
||||
|
||||
double zmin = 0;
|
||||
for (auto & v : mesh.its.vertices)
|
||||
zmin = std::min(zmin, double((tr * v.cast<double>()).z()));
|
||||
auto score_mergefn = [&mesh, &tr, zmin](size_t fi, double subscore) {
|
||||
|
||||
static const Vec3d DOWN = {0., 0., -1.};
|
||||
|
||||
for (size_t fi = 0; fi < mesh.its.indices.size(); ++fi) {
|
||||
const auto &face = mesh.its.indices[fi];
|
||||
Vec3d p1 = tr * mesh.its.vertices[face(0)].cast<double>();
|
||||
Vec3d p2 = tr * mesh.its.vertices[face(1)].cast<double>();
|
||||
Vec3d p3 = tr * mesh.its.vertices[face(2)].cast<double>();
|
||||
Vec3d p1 = tr * mesh.its.vertices[face(0)].template cast<double>();
|
||||
Vec3d p2 = tr * mesh.its.vertices[face(1)].template cast<double>();
|
||||
Vec3d p3 = tr * mesh.its.vertices[face(2)].template cast<double>();
|
||||
|
||||
// auto triang = std::array<Vec3d, 3> {p1, p2, p3};
|
||||
// double a = area(triang.begin(), triang.end());
|
||||
double a = area(p1, p2, p3);
|
||||
Vec3d U = p2 - p1;
|
||||
Vec3d V = p3 - p1;
|
||||
Vec3d C = U.cross(V);
|
||||
Vec3d N = C.normalized();
|
||||
double area = 0.5 * C.norm();
|
||||
|
||||
double zlvl = zmin + 0.1;
|
||||
if (p1.z() <= zlvl && p2.z() <= zlvl && p3.z() <= zlvl) {
|
||||
score += a * POINTS_PER_UNIT_AREA;
|
||||
continue;
|
||||
// score += area * POINTS_PER_UNIT_AREA;
|
||||
return subscore;
|
||||
}
|
||||
|
||||
double phi = 1. - std::acos(N.dot(DOWN)) / PI;
|
||||
phi = phi * (phi > 0.5);
|
||||
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
Vec3d N = U.cross(V).normalized();
|
||||
// std::cout << "area: " << area << std::endl;
|
||||
|
||||
double phi = std::acos(N.dot(DOWN)) / PI;
|
||||
subscore += area * POINTS_PER_UNIT_AREA * phi;
|
||||
|
||||
std::cout << "area: " << a << std::endl;
|
||||
return subscore;
|
||||
};
|
||||
|
||||
score += a * POINTS_PER_UNIT_AREA * phi;
|
||||
// normals[fi] = N;
|
||||
}
|
||||
double score = ccr_seq::reduce(size_t(0), facesize, 0., score_mergefn,
|
||||
std::plus<double>{}, facesize / Nthr);
|
||||
|
||||
// for (size_t vi = 0; vi < mesh.its.vertices.size(); ++vi) {
|
||||
// const std::vector<size_t> &neighbors = vmap[vi];
|
||||
|
||||
// const auto &v = mesh.its.vertices[vi];
|
||||
// Vec3d vt = tr * v.cast<double>();
|
||||
// }
|
||||
|
||||
return score;
|
||||
return score / mesh.its.indices.size();
|
||||
}
|
||||
|
||||
std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
|
||||
@ -97,7 +107,7 @@ std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
|
||||
std::function<void(unsigned)> statuscb,
|
||||
std::function<bool()> stopcond)
|
||||
{
|
||||
static const unsigned MAX_TRIES = 1000000;
|
||||
static const unsigned MAX_TRIES = 100;
|
||||
|
||||
// return value
|
||||
std::array<double, 2> rot;
|
||||
@ -126,12 +136,14 @@ std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
|
||||
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
|
||||
(const opt::Input<2> &in)
|
||||
{
|
||||
std::cout << "in: " << in[0] << " " << in[1] << std::endl;
|
||||
|
||||
// prepare the rotation transformation
|
||||
Transform3d rt = Transform3d::Identity();
|
||||
rt.rotate(Eigen::AngleAxisd(in[1], Vec3d::UnitY()));
|
||||
rt.rotate(Eigen::AngleAxisd(in[0], Vec3d::UnitX()));
|
||||
|
||||
double score = sla::calculate_model_supportedness(mesh, {}, rt);
|
||||
double score = sla::calculate_model_supportedness(mesh, rt);
|
||||
std::cout << score << std::endl;
|
||||
|
||||
// report status
|
||||
@ -142,10 +154,11 @@ std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
|
||||
|
||||
// Firing up the genetic optimizer. For now it uses the nlopt library.
|
||||
|
||||
opt::Optimizer<opt::AlgNLoptDIRECT> solver(opt::StopCriteria{}
|
||||
.max_iterations(max_tries)
|
||||
.rel_score_diff(1e-3)
|
||||
.stop_condition(stopcond));
|
||||
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
|
||||
.max_iterations(max_tries)
|
||||
.rel_score_diff(1e-6)
|
||||
.stop_condition(stopcond),
|
||||
10 /*grid size*/);
|
||||
|
||||
// We are searching rotations around the three axes x, y, z. Thus the
|
||||
// problem becomes a 3 dimensional optimization task.
|
||||
@ -153,7 +166,7 @@ std::array<double, 2> find_best_rotation(const ModelObject& modelobj,
|
||||
auto b = opt::Bound{-PI, PI};
|
||||
|
||||
// Now we start the optimization process with initial angles (0, 0, 0)
|
||||
auto result = solver.to_max().optimize(objfunc, opt::initvals({0.0, 0.0}),
|
||||
auto result = solver.to_min().optimize(objfunc, opt::initvals({0.0, 0.0}),
|
||||
opt::bounds({b, b}));
|
||||
|
||||
// Save the result and fck off
|
||||
|
@ -1,7 +1,7 @@
|
||||
#include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
|
||||
|
||||
#include <libslic3r/SLA/SpatIndex.hpp>
|
||||
#include <libslic3r/Optimizer.hpp>
|
||||
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
Loading…
Reference in New Issue
Block a user